
Solving the horizontal conflation problem
with a constrainedDelaunay triangulation

Hugo Ledoux Ken Arroyo Ohori

This is an author’s version of the paper. The authoritative version is:

Solving the horizontal conflation problem with a constrained Delaunay
triangulation. Hugo Ledoux and Ken Arroyo Ohori. Journal of Geographical
Systems 19(1), January 2017, pp. 21–42. ISSN: 1435–5930 (print version),
1435–5949 (electronic version).
doi: 10.1007/s10109-016-0237-7

Related source code is available at:
https://github.com/tudelft3d/pprepair

Datasets produced by different countries or organisations are seldom properly
aligned and contain several discrepancies (e.g. gaps and overlaps). This problem
has been so far almost exclusively tackled by snapping vertices based on a user-
defined threshold. However, as we argue in this paper, this leads to invalid geome-
tries, is error-prone, and leaves several discrepancies along the boundaries. We
propose a novel algorithm to align the boundaries of adjacent datasets. It is based
on a constrained Delaunay triangulation to identify and eliminate the discrep-
ancies, and the alignment is performed without moving vertices with a snapping
operator. This allows us to guarantee that the datasets have been properly con-
flated and that the polygons are geometrically valid. We present our algorithm,
our implementation (based on the stable and fast triangulator in CGAL), and we
show how it can be used it practice with different experiments with real-world
datasets. Our experiments demonstrate that our approach is highly efficient and
that it yields better results than snapping-based methods.

1

http://dx.doi.org/10.1007/s10109-016-0237-7
https://github.com/tudelft3d/pprepair


1 Introduction

One of the main issues when dealing with
datasets produced by different countries or
organisations is the management of the
one-dimensional connections between geo-
graphical objects at their common bound-
aries (e.g. on either side of an international
or provincial border). We need to en-
sure that the objects adjacent in reality are
connected and that the discrepancies have
been eliminated. These discrepancies are
present because different equipments were
used to collect the data, because the data
are represented at different scales, because
different coordinates reference systems are
used and the conversion to a unified one in-
troduces errors, or because the border is a
natural feature such as a river [Ruiz et al.,
2011]. This issue is often referred to as hori-
zontal conflation since the datasets to be in-
tegrated do not overlap spatially (or only
slightly, at their boundaries) [Yuan and Tao,
1999;Davis, 2003]. The other type of confla-
tion is vertical: datasets covering the same
area are combined, usually to create a new
dataset whose accuracy is improved [Lynch
and Saalfeld, 1985].

We focus in this paper on one aspect of
horizontal conflation (see Figure 1): given
two or more datasets composed of polygons
(e.g. representing provinces, municipalities
or cadastral parcels), we want to modify
the boundaries of (some of) the polygons
and “align” them so that gaps and over-
lapping areas are eliminated. As further
explained in Section 2, this problem has
been almost exclusively tackled by first iso-
lating the boundaries of the datasets from
the polygons they are incident to, and sec-
ond using line-based algorithms to elimi-
nate the discrepancies: corresponding real-
world entities are matched using a thresh-
old (a maximum searching distance), and
then the alignment is performed by mov-
ing the lines to the same location (often re-
ferred to as “snapping”). We see several
problems with this approach (we elaborate
on these in Section 2). First, in our expe-
rience, finding a matching threshold that
will resolve all discrepancies in a dataset
is often impossible—a too small value pre-

(a)

(b)

Figure 1: Two datasets: part of France (blue)
and of Germany (green). Both
datasets are formed of polygons
representing the first administra-
tive subdivisions. (a): Original
datasets (from different sources).
(b)After horizontal conflation has
been applied.

vents some lines to be matched, and a too
large value creates invalid geometries some-
where else. Second, this problem is ampli-
fied if we consider that the edges are not
in isolation but are the boundaries of poly-
gons: the risk of collapsing parts of poly-
gons to lines is high since it is tempting
to use a large threshold to solve problems.
Third, there are no reliable mechanisms to
verify if the snapping was successful and
what were the consequences of it on the ge-
ometries.

We present in Section 3 a novel algorithm
to align the boundaries of adjacent datasets.
Our algorithm differs significantly from
other ones since it considers the polygon as
its primitive (and does not isolate lines or

2



focus solely on them), does not use a thresh-
old to match features, and the alignment
is performed without moving/snapping ge-
ometries. Instead, the discrepancies are
identified and eliminated by using a con-
strained Delaunay triangulation (CDT) as a
supporting structure. This allows us to guar-
antee that the datasets have been properly
conflated and that the polygons are geomet-
rically valid. We can furthermore indicate
to the user what changes were made to the
polygons.

The algorithm we present in this paper is
an extension of our previous work for au-
tomatically repairing planar partitions: we
filled small gaps and overlaps (often not vis-
ible to the user) by using a triangulation-
based method [Arroyo Ohori et al., 2012].
Our extensions are threefold: (1) gaps and
overlaps are eliminated in a manner this is
consistent with how practitioners conflate
datasets, i.e. by modifying first geometries
with the lowest accuracy; (2) large prob-
lem areas (such as those in Figure 1a) are
partitioned and each part is repaired in-
dependently, which ensures that the poly-
gons involved to fix the area are not mod-
ify too much (the errors are distributed)
and that the connection between features
are preserved; (3) we propose a modifica-
tion that allows us to perform what we
call spatial extent alignment, e.g. to ensure
that a set of polygons representing munic-
ipalities (or other administrative entities)
fit exactly in a larger polygon represent-
ing their province. The latter improve-
ments has the added benefits of allowing us
to potentially align the boundaries of very
large datasets, since we align them at dif-
ferent levels—from the neighbourhoods in
a city to provinces in a country—and we
can thus subdivide datasets into parts that
fit in memory. We report in Section 4 on
our implementation of the algorithm (it is
based on the stable and fast triangulator in
CGAL1) and on the experiments we have
made with different real-world datasets in
Europe. We also demonstrate how bound-
ary lines, often used in practice, can be in-
corporated in our approach. Finally, we dis-
cuss in Section 5 the shortcomings of our
1The Computational Geometry Algorithms Library:
http://www.cgal.org

method and future work.

2 Relatedwork

The specific issue we are addressing in
this paper—the horizontal conflation of
datasets formed by polygons—is rarely ex-
plicitly discussed in the scientific literature.
The algorithms implemented in commer-
cial software and used by practitioners for
this case are the generic ones developed for
either edge-matching or for vertical confla-
tion.

Edge-matching. Edge-matching is a vague
term that has no agreed-upon definition in
geographical information systems (GIS). It
is most often used to refer to linear fea-
tures (e.g. roads or rivers) on both sides of a
border (e.g. international or provincial) that
need to be connected. Although its name
implies otherwise, it usually means both
finding the corresponding entities (match-
ing) and aligning them (fixing the discrep-
ancies). The matching between two features
is performed by finding the closest pairs (of
either vertex-vertex or vertex-edge), up to a
given distance (a threshold, which is usually
defined by the user). If two vertices/edges
are matched, they are then snapped together
so that they become the same object in the
resulting dataset. Snapping is usually per-
formed with one dataset being the refer-
ence dataset, that is, when matching, the ge-
ometries are moved to the ones in the ref-
erence dataset. The latter does not move
because it is usually known that it is of
higher accuracy. When the accuracy of both
datasets is the same, or is not known, the
errors can be distributed: two vertices to
be snapped are then moved to their mid-
point. The INSPIRE Directive mandates to
use both methods (with and without ref-
erence dataset) for the harmonisation of
European datasets [INSPIRE, 2008, Annex
B].

Most GIS packages implement edge-
matching as described above (e.g. ArcGIS,
FME, GRASS and Radius Topology), albeit
the algorithms used differ in: (1) the order

3

http://www.cgal.org


in which vertices are snapped together; and
(2) what geometries are snapped (only to
vertices or also to edges). It is also common
in the scientific literature to see that snap-
ping is being used with different types of
datasets, e.g. cadastral boundaries [Siejka
et al., 2013; Zygmunt et al., 2014], topo-
graphic datasets [Butenuth et al., 2007],
digital gazetteer [Hastings, 2008], and
census data [Schuurman et al., 2006].

As shown in Figure 2, if edge-matching is
used for with polygons as input, then it im-
plies that the vertices/edges on the bound-
ary of each dataset are snapped to those in
the adjacent dataset—the concept of lines
being the boundaries of polygons is there-
fore ignored.

While snapping yields satisfactory results
for simple cases, Arroyo Ohori et al. [2012]
demonstrate that for more complex ones it
is often impossible or impractical to find a
threshold applicable to the whole dataset,
and that it is prone to errors that cause in-
valid geometries. There is often no sin-
gle value that can be used for the whole
dataset since it requires an almost uniform
distribution of points, and discrepancies
(gaps/overlaps) that are of the similar sizes.
Observe the result in Figure 2c for instance,
which snaps vertices from the top dataset
to the closest geometry (vertex or line) in
the reference dataset (bottom one). Even if
other rules were used (e.g. snapping points
only to other points), the results would still
not be satisfactory. Also, the decision to
snap or not parts of lines/polygons is of-
ten binary: all the vertices/edges closer
than the threshold are snapped, the others
not. While in theory the threshold value
is linked to the accuracy of a dataset, in
practice users do not always know how to
translate the accuracy into a value, and if
they choose the wrong value then their re-
sulting dataset will not be properly edge-
matched. Notice that while INSPIRE clearly
states that each Thematic Working Group
will define the appropriate threshold [IN-
SPIRE, 2008], this is in our experiencewish-
ful thinking since the geographical datasets
related to one theme usually come fromdif-
ferent sources that have very different accu-
racies.

In practice, we have observed that snapping
is performed by practitioners with a trial-
and-error threshold value. However, there
exists no straightforward mechanism to de-
tect automatically if the results are correct,
i.e. if all discrepancies were resolved. Other
tools have to be used (e.g. constructing the
planar partition of the resulting datasets
and comparing the number of polygons),
and if there are problems then a different
threshold value is used.

If we consider that in practice datasets very
rarely contain only one polygon, snapping
increases the risk of creating topologically
invalid polygons and intersection polygons
(because the boundaries between the poly-
gons will also be snapped to the closest ge-
ometry); Figure 3 shows an example.

Klajnšek and Žalik [2005] consider, as is our
case, datasets containing several polygons
and find matching points and lines by us-
ing threshold distances. However, they do
not align the boundaries, but instead sim-
ply removed from the dataset the matched
geometries (since their aim is to create a dis-
solved dataset). The removals significantly
simplifies the problem and avoid creating
intersections.

Vertical conflation. The term vertical con-
flation was coined by Saalfeld in the early
1980s for the integration of two datasets
representing the same region [Ruiz et al.,
2011]. One dataset is always the refer-
ence (the master), and the other one (the
slave) is aligned by first finding correspond-
ing matching points (by using a threshold
value) and then applying rubber-sheeting,
i.e. a function to move all the other points
according to the deviation of the control
points. Gillman [1985] and Saalfeld [1988]
use a triangulation to subdivide the slave
dataset into subregions (triangles) and ap-
ply an affine transformation to each; the
process is repeated iteratively until the dis-
placement is minimal. Rubber-sheeting is
meant to work with points and lines, and
the concept of polygons (and their preserva-
tion) is not present. These could be recon-
structed from the resulting lines, but there
is n guarantee that the polygons will be pre-
served.

4



(a) (b) (c)

Figure 2: Edge-matching two datasets. (a) Input datasets (green is the master). (b) Snap-
ping distance is shown as grey circles, and the closest geometry is shown by a
dashed line. (c) Result of the edge-matching process.

p1
p2

p3

(a) (b)

Figure 3: (a) One dataset to be conflated is formed by two polygons (𝑝 and 𝑝). (b) Snap-
ping the vertices of the blue dataset to the closest primitives in the green dataset
introduces topological errors and intersections (in the red circle).

Beard and Chrisman [1988] use ideas of
rubber-sheeting for the horizontal confla-
tion of map sheets, i.e. datasets having only
horizontal and vertical boundaries. The
threshold to find matches is applied to
points within a certain distance of the
boundaries, and the lines incident to these
are moved based on a rubber-sheeting func-
tion. To avoid moving all the points in-
side the dataset, a second threshold is used:
only vertices closer to the boundaries are in-
volved. There is no guarantee that after a
movement the polygon or lines are valid (or
that they are free of intersections).

Doytsher [2000] tackles the exact same
problem as we do by first matching vertices
(also using a tolerance) and then moving
all the vertices in the dataset according to a
rubber-sheeting transformation. The RMS
errors of the transformation areminimised,
and while it is claimed that the topological
properties of the polygons are preserved, it
is not proved and we do not see how this
could be the case (since there are no con-
straints when moving vertices).

3 Aligning the boundaries of
datasets with a
triangulation-based
algorithm

Our approach to aligning the boundaries
of polygons builds upon our previous work
to automatically repair the small gaps and
overlaps in planar partitions where all poly-
gons are stored independently (with the
Simple Features paradigm [OGC, 2006], a
shapefile for instance). In Arroyo Ohori
et al. [2012], we used a constrained trian-
gulation (CT) as a supporting structure be-
cause, as explained below, it permits us to
fill the whole spatial extent of the datasets
with triangles, and then the triangles allow
us to identify easily the gaps and overlaps
between different polygonal datasets. We
use the idea of labelling each triangle with
the label of the polygon it decomposes: gaps
will have no labels and regions where poly-
gons overlap will have more than one la-
bel. Repairing implies relabelling triangles
so that each triangle has one and only one

5



(a) (b)

(c) (d)

(e)

Figure 4: (a)Original dataset with two poly-
gons (same as Figure 2). (b) The
CT of the input polygons. (c)
Labelling of the triangles: the
colours represent the label of each
polygon (orange = no label; red =
2+ labels). (d) Triangles are re-
labelled such that each triangle
has one and only one label. (e)
The resulting alignment of the two
polygons.

triangle.

We first briefly describe in Section 3.1
the original algorithm for repairing pla-
nar partitions. Then, in Section 3.2, we
describe our extensions to this algorithm
so that the boundaries of datasets can be
properly aligned when the datasets are
formed by several polygons and when the
gaps/overlaps are large. We also propose
two modifications to our approach (in Sec-
tions 3.3 and 3.4) so that two common con-
flation issues faced by practitioners can be
solved: how to perform horizontal confla-
tion of polygons against a boundary repre-
sented as a line, and spatial extent confla-
tion.

3.1 Using a CT to repair a planar
partition

The workflow of Arroyo Ohori et al. [2012]
is illustrated in Figure 4 and is as follows:

(a) (b) (c)

Figure 5: (a) Two adjacent polygons, one
of them containing 3 holes. (b)
The constrained Delaunay trian-
gulation of the segments of these
two polygons. (c) From the CT, it
is possible to obtain the triangles
decomposing each polygon (here
represented with the colour).

1. the CT of the input segments forming
the polygons is constructed;

2. each triangle in the CT is labelled with
the identifier of the polygon inside
which it is located;

3. problems are detected by identifying
triangles with no label or with two or
more labels;

4. gaps/overlaps are fixed locally with the
most appropriate label;

5. modified polygons are reconstructed
and returned in a GIS format (e.g. a
shapefile).

Constrained triangulations. A con-
strained triangulation (CT) permits us
to decompose one or more polygons into
non-overlapping triangles, Figure 5 shows
an example. Notice that no edges of the
triangulation cross the constraints (the
boundaries of the polygon). It is known
that any polygon (also with holes) can
be triangulated without adding extra ver-
tices [de Berg et al., 2000; Shewchuk, 1997].
In our original approach, the triangulation
was performed by constructing a CT of all
the segments representing the boundaries
(exterior and interior) of each polygon.

If, as in Figure 5, two polygons are adja-
cent by one edge 𝑒, then 𝑒 will be inserted
twice. Doing this is usually not a problem

6



for triangulation libraries because they ig-
nore points and segments at the same lo-
cation (as is the case with the solution we
use, see Section 4). Likewise, when edges
are found to intersect, they are split with a
new vertex created at the intersection point.
These are the only vertices that are added
during the conflation process.

Labelling triangles. The labels are as-
signed to the triangles by first labelling
the triangles adjacent to the edges of each
polygon, and then visiting all the triangles
with graph-based algorithms (i.e. depth-
first search) without traversing constrained
edges (the original boundaries of the input
polygons). Triangles located inside the
convex hull of the dataset, but not decom-
posing any polygons, are labelled with a
special label ‘universe’. See Arroyo Ohori
et al. [2012] for the details.

Identifying problems: gaps and overlaps.
If the set of input polygons forms a pla-
nar partition, then every triangle will be la-
belled with one and only one label. Prob-
lems are easily identified: gaps are formed
of triangles having no label, and overlaps of
triangles having two or more labels.

Repairing problems: relabelling triangles.
Repairing a gap or an overlap simply in-
volves relabelling the triangles with an ap-
propriate label, which means that the label
assigned should be the same as one of the 3
neighbours, otherwise regions can become
disconnected. Arroyo Ohori et al. [2012]
proposes 6 repair operations. Four of them
use triangles as a base: the label assigned
is based on that of the 3 neighbouring tri-
angles, for example the label present in the
largest number of adjacent triangles is as-
signed (this method is used in Figure 4e).
Triangle-based operators are fast (purely lo-
cal operations that are performed in con-
stant time) and modify the area of each in-
put polygon the least. However, the shape of
the resulting polygons can be significantly
different from the original (because of the
‘spikes’ that are created).

(a) (b)

Figure 6: Dataset from Figure 4a when a
region-based repair method is
used (based on longest-edge). (a)
Labelling of the triangles. (b) The
resulting alignment of the two
polygons.

The other two methods use regions of adja-
cent triangles with equivalent sets of labels,
which is slower but generally yields results
in which the polygons have less spikes. Fig-
ure 6 shows one example where each of the
eight problematic regions of Figure 4a is as-
signed one label. The label is obtained with
the longest-boundarymethod, i.e. the bound-
ary of the problem region is first decom-
posed according to the label of the trian-
gles incident to it (but outside the problem
region), and second the label is that of the
longest portion of the boundary.

Notice that these repair operations can be
used one after the other, for instance if first
the repair according to the largest number
of adjacent triangles has a tie, then this is
solved by using another method (or ran-
domly choose one)—this was used in Fig-
ure 4e.

3.2 The extensions necessary for
horizontal conflation of
polygons

To align boundaries of polygons, we extend
and modify the repair algorithm described
above. The extended algorithm to align the
boundaries of two or more datasets is de-
scribed in Algorithm 1 and contains three
improvements: (1) priority list of datasets;
(2) gaps and overlaps treated differently; (3)
subdivision of gap regions by adding extra
constrained edges.

Priority list of datasets. The first extension
is that we use a new operator based on a pri-

7



Algorithm 1: AlignBoundaries
Input: An ordered list 𝐿 of datasets (acc. to

a given priority)
Output: the boundaries of the datasets in 𝐿

are aligned

1 𝒯 ← CDT of segments in 𝐿;
2 label each triangle in𝒯 with (𝑑𝑠𝑖𝑑, 𝑝𝑖𝑑);
// 𝑑𝑠𝑖𝑑 = input dataset; 𝑝𝑖𝑑 = ID of

the polygon
3 for each overlap region do
4 𝑙 ← label whose 𝑑𝑠𝑖𝑑 is highest in 𝐿;
5 relabel triangles with 𝑙;
6 for each gap region do
7 ExtraConstraints (Algorithm 2);
8 while some triangles in𝒯 have 0 label do
9 for each gap subregion do
10 if subregion adjacent to > 1 datasets

then
11 𝑙 ← label whose 𝑑𝑠𝑖𝑑 is lowest in

𝐿;
12 relabel triangles with 𝑙;

ority list of datasets. It is a generalisation of
the concept of a reference dataset oftenused
for edge-matching. We extend this concept
so that several datasets can be used all at
once (instead of performing edge-matching
with only two datasets). The input of the
algorithm has a priority list with all the
datasets involved, ordered based a given cri-
terion. The criterion is usually the accuracy
of the datasets, but others can be used. In a
given problem region between two adjacent
datasets, the one with the lowest accuracy
(priority) should be moved/modified. The
first dataset in the list is the master and oth-
ers are its slaves; for instance, referring to
Figure 7, the list would be [𝑀, 𝑇, 𝑆], since we
assume that𝑀 has the higher accuracy, and
𝑆 the lowest.

Gaps and overlaps handled differently.
The gap and overlap regions are handled
differently, and this allows us to modify
the boundaries of datasets in a way that is
consistent with the master-slave paradigm.
A second modification is that the labels
assigned to each triangle are formed by a
tuple of the dataset and the unique iden-

tifier of the polygon: (𝑑𝑠𝑖𝑑, 𝑝𝑖𝑑). For an
overlap region, the label used to relabel all
triangles is that whose 𝑑𝑠𝑖𝑑 is the highest
in the priority list, e.g. in Figure 7c the 3
overlapping regions (red regions) are filled
with polygons from the dataset 𝑀 (having
labels𝑚,𝑚 and𝑚). For a gap, this label is
the lowest in the priority list; the candidate
labels are those adjacent to the gap region.
If a gap region is adjacent to more than
1 polygon from the same dataset (see for
instance Figure 7b where both 𝑠 and 𝑠
could be assigned to the region), then the
ID can be determined with the one of the
repair methods mentioned above, such as
the longest boundary.

However, aligning boundaries with this ap-
proach gives unsatisfactory results for gaps,
that is we obtain results that are far from
what a human being would manually do.
For instance, in Figure 7, the gap between
the datasets is entirely assigned to the poly-
gon 𝑠, while we could argue that some parts
should be assigned to 𝑠 and 𝑡. Observe
that the overlap regions do not suffer from
this problem since the constrained edges di-
vide the region; in Figure 7c the top over-
lap region between𝑀 and 𝑆 is divided into
two sub-regions by the constraints, and each
gets the appropriate label (𝑚 and𝑚).

Subdividing gap regions. To improve the
labels assigned to gaps, we propose a heuris-
tic to subdivide the gap regions into sub-
regions. This is achieved by inserting ex-
tra constrained edges in the triangulation
(as shown in Figure 8). The constrained
edge are not new edges, but rather existing
edges that are labelled as constraints (thus
no complex geometric operations are in-
volved). Observe that while a generic con-
strained triangulation was sufficient to per-
form validation and repair in our original
work [Arroyo Ohori et al., 2012], here a
constrained Delaunay triangulations (CDT)
is required. A CDT is a triangulation for
which the triangles are as equilateral as pos-
sible [Chew, 1987]. We use the edges of
the triangles (and their lengths), and having
well-shaped triangles is an advantage.

For a given gap region, we proceed as fol-
lows (see Algorithm 2). First, we visit each

8



s1

t1

m1

m3

m2s2

(a)

s1

t1

m1

m3

m2s2

(b)

s1

t1

m1

m3

m2

m3

m1

m2

s2

(c)

s1

t1

m1

m3

m2

m3

m1

m2

s2

s2

(d)

s1

t1

m1

m3

m2s2

(e)

Figure 7: (a) Three datasets (𝑆=purple; 𝑇=grey; 𝑀=green), having respectively 2, 1 and 3
polygons, need to be aligned. (b) The CDT of the datasets with problematic re-
gions highlighted (red=overlaps; orange=gaps). (c) Overlaps are repaired with
the random neighbour method. (d) Holes with the same method. (e) Resulting
aligned datasets.

s1

t1

m1

m3

m1

m3

m2

m2

e

b

c

d

s2 a

(a)

s1

t1

m1

m3

m1

m3

s2

m2

m2

s2

(b)

s1

t1

m1

m3

m1

m3

m2

m2

s2

s2

s1

(c)

s1

t1

m1

m3

m1

m3

t1

m2

m2

s2

s2

s1

(d)

s1

t1

m1

m3

m1

m3

m2

m2

t1 t1

s2

s2

s1

(e)

s1

t1

m1

m3

m2s2

(f)

Figure 8: The same three input datasets as in Figure 7. The overlapping regions have al-
ready been repaired. (a) 5 split vertices are identified (𝑎, 𝑏, 𝑐, 𝑑, and 𝑒), and 3
extra constrained edges are inserted in the CDT (𝑏𝑑, 𝑐𝑑 and the one incident to
𝑎), separating the gap region into 4 sub-regions. (b) The sub-region adjacent to
𝑠 is relabelled. (c) The sub-region adjacent to 𝑠 is relabelled. (d) The sub-region
adjacent to 𝑡 is relabelled. (e) The last sub-region is relabelled (to 𝑡). (f) The
resulting aligned datasets.

9



Algorithm 2: ExtraConstraints
Input: A gap region 𝑅 in a labelled CDT𝒯 ;

and a maximum length 𝑙
Output: 𝒯 with potentially some extra

constrained edges added in 𝑅
1 // let 𝑆 be the list of split

vertices
2 for each vertex 𝑣 ∈ 𝑅 do
3 if degree(𝑣) > 2 // only constrained

edges are considered
4 then
5 add 𝑣 to 𝑆;
6 for each 𝑠 in 𝑆 do
7 𝑒 ← get shortest edge 𝑠𝑢 (where 𝑢 ∈ 𝑆);
8 if (𝑒 ≠ 𝑁𝑈𝐿𝐿) and (length(𝑒) < 𝑙) then
9 insert constraint 𝑒 in𝒯 ;
10 else
11 𝑒 ← get shortest edge 𝑠𝑢 (where

𝑢 ∈ 𝑅);
12 if (𝑒 ≠ 𝑁𝑈𝐿𝐿) and (length(𝑒) < 𝑙)

then
13 insert constraint 𝑒 in𝒯 ;

vertex 𝑣 on the boundary of the gap (there
are 9 in Figure 8a) and identify split ver-
tices: vertices whose number of incident
constrained edges in the CDT is more than
2. These allow us to identify where different
polygons of the same dataset are adjacent
(e.g. vertices 𝑎 and 𝑑 in Figure 8a) and also
where different datasets are adjacent (e.g.
vertices 𝑏, 𝑐 and 𝑒 in Figure 8a).

Second, for each split vertex, we try to in-
sert one constrained edge inside the gap re-
gion (which means here that the edge is
not on the boundary of the region). An
edge whose both ends are split vertices is
favoured, if there are none then the shortest
edge is inserted as a constraint. Only edges
that are shorter than a user-defined maxi-
mum length are inserted as constraints. It is
possible that for a candidate vertex no con-
straint is inserted, either because there is no
incident edges inside the gap region (𝑒 in
Figure 8a), or that the constraint is already
present. In Figure 8a, the extra constraints
𝑏𝑑 is added twice; the second insertion does
not modify the CDT.

The algorithm for labelling gap regions is
then used as described in Section 3.1, but
now each subregion is processed separately;
after the insertion of the extra constraint in
Figure 8a there are thus 4 gap regions. In
the Algorithm 1, the relabelling of regions
are not applied to the CDT directly (since
the result of one could influence another,
creating dependence on the order in which
the triangles are visited). Instead, triangles
that have been relabelled are saved in a sepa-
rate list, and only after all the triangles have
been visited are the new labels applied. Be-
cause the insertion of extra constraints iso-
lates subregions, not all subregions can be
directly relabelled. A subregion can be re-
labelled only if it is adjacent to two or more
datasets. If a subregion is adjacent to only
one (e.g. the lower-right orange region in
Figure 8a), then it is not repaired until one
of its adjacent is relabelled (Figure 8d). This
implies that several ‘passes’ over all the tri-
angles have to be performed, each pass tries
to find a new label for triangles having 0 la-
bel and these are applied at the end of the
pass.

Our heuristic has the added benefit of con-
necting lines that are the boundaries of
polygons and/or datasets and of preserving
better the area of polygons since gap re-
gions are split and subregions are assigned
to different polygons. We demonstrate in
Section 4 the results we obtained with real-
world datasets.

3.3 Edge-matching to a linear
boundary

In practice, international and delimiting
boundaries between countries and admin-
istrative entities are often available as lines,
because these are agreed upon by the neigh-
bouring parties. A trivial modification of
our algorithm can be made for such cases:
the linear boundary is converted to a poly-
gon. As shown in Figure 9, this can be easily
done by first offsetting the line by a distance
𝑑 (to either side of the line), and then link-
ing the two lines (this can be seen as a ‘half-
buffer’). We demonstrate in Section 4 how
this performs with real-world datasets.

10



(a) (b) (c)

Figure 9: Creation of a polygon from (a) an input line that is (b) offset by a given distance.
(c) The resulting polygon

3.4 Spatial extent conflation

Anotherminormodification toAlgorithm1
allows us to perform what we refer to as spa-
tial extent conflation. This is used to en-
sure that a set of polygons fits exactly in a
spatial extent polygon that represents the
entity higher in the hierarchy for instance.
It is a common problem for practitioners
whodealwith administrative and territorial
units, among others2. Each country is di-
vided into administrative units at different
administrative levels in a hierarchy. In the
INSPIRE directive3, the hierarchy goes from
the national level to the 6th level (sub-city
level inmost cases) [INSPIRE, 2014]. All the
units at one level should fit exactly inside
its parent unit, and there should not be any
gaps.

Figure 10 shows the main modification to
our algorithm: the polygon representing
the spatial extent becomes a hole of a larger
polygon (whose shape is irrelevant, it can
be obtained by enlarging the axis-aligned
bounding box of all the polygons by 10% for
instance).

The only modification necessary to Algo-
rithm 1 is that a new label, let us call it spa-
tialextent, is assigned to the triangles de-
composing this polygon and it is assigned
the highest priority. Triangles having this
label are ignored during the process of re-
construction of the polygons.

2These units are called in Europe ‘Nomenclature of
Territorial Units for Statistics’, or NUTS

3The European directive that ensures that the spatial
data infrastructures of the Member States are com-
patible with each others and usable.

(a) (b)

(c) (d)

(e) (f)

Figure 10: (a) Four polygons with (b) the
spatial extent polygon to which
they should be aligned. (c) The
spatial extent polygon becomes
the hole of a larger polygon. (d)
CDT + labelling + insertion of ex-
tra constraints. (e) Relabelling of
the problem regions. (f) Result-
ing aligned datasets.

11



(a)

(b)

Figure 11: Examples of two municipalities
in the Netherlands (in yellow)
having disconnected regions. (a)
Baarle-Nassau has 3 Belgian en-
claves (white holes), and one of
them has an enclave belonging to
Baarle-Nassau. (b) A municipal-
ity formed by 5 different islands
(Schouwen-Duiveland).

In practice, the spatial extent polygon is not
always a single polygon. As Figure 11 shows,
municipalities or counties are often discon-
nected (e.g. due to islands) and have inner
rings (holes). Thus, the creation of the poly-
gons used for the input can be obtained by
first generating a large rectangle containing
all the spatial extent polygons, and then do-
ing a Boolean difference between the two.

Observe that aligning polygons to a spatial
extent allows us to align the boundaries of
very large hierarchical datasets sincewe can
align them individually at each level. As
shown in Figure 12, if we begin the align-
ment at the highest level (the 1st level being
the spatial extent of the polygons of the 2nd

1st level (e.g. country)

2nd level (e.g. provinces)

3rd level (e.g. municipalities)

Figure 12: Top 3 levels of a NUTS dataset.

level), and then continue iteratively to the
lower administrative level using the previ-
ously generated results (i.e. in Figure 12 the
7 polygons are used as spatial extents for the
3rd level, and so on), then the memory foot-
print of the alignment should remain rela-
tively small. That is, the process is bounded
by the size of the largest polygon and its de-
composition one level lower. We demon-
strate in the next section an example with
real-world examples.

4 Implementation &
Experiments

We have implemented the algorithm de-
scribed in this paper with the C++ program-
ming language, using external libraries for
some functionalities: (1) GDAL4, which al-
lows us to read/write from/to a large variety
of data formats common in GIS and to han-
dle the attributes of each polygon; and (2)
CGAL5 which has support for many robust
spatial data structures and the operations
based on them, including polygons and tri-
angulations [Boissonnat et al., 2002].

Our prototype is open-source (under a GPL
license) and can be freely downloaded at
www.github.com/tudelft3d/pprepair. It
can read most GIS formats, perform the
alignment of the boundaries, and return

4Geospatial Data Abstraction Library: www.gdal.org
5Computational Geometry Algorithms Library: www.
cgal.org

12

www.github.com/tudelft3d/pprepair
www.gdal.org
www.cgal.org
www.cgal.org


(a)

(b)

Figure 13: For the datasets in Figure 1a,
(a) labelled triangulation of the
datasets, and (b) errors as poly-
gons. For both: red=overlap and
orange=gap.

to the user the input files with the bound-
aries modified; all the attributes of the poly-
gons are preserved. Furthermore, as shown
in Figure 13, the user obtains an overview
of which polygons were modified, and the
modifications are also exported as a GIS file
(in the form of polygons showing parts that
were added/removed from the datasets).
This is something practitioners often men-
tion as useful (“how much was my dataset
modified?”) and that is rather difficult to ac-
complish with traditional snapping-based
alignment methods. The only solution is
to perform a Boolean difference between
the input dataset and the output, which
is computationally expensive and prone to
floating-point errors.

We have tested our implementation with
several real-world datasets that are pub-
licly available, and we report on some of

Figure 14: Overview of two datasets used for
the Experiment #1. The blue
dataset is a subset of GEOFLA,
and the neighbouring countries
(from top to bottom: Belgium,
Luxembourg, Germany, Switzer-
land and Italy) are a subset of
VMAP0.

these in the following. Our experiments
cover a broad range of alignment problems
that practitioners have to solve. Further-
more, our implementation handles Multi-
Polygons and polygons with holes, which
are very common in practice when dealing
with administrative subdivisions and other
datasets related to the territory.

4.1 Experiment #1: Conflation of
polygons

The eastern border of France was selected as
a test area, and subsets of these two datasets
are used (shown in Figure 14):

1. the GEOFLA6 of the 2nd level of the ad-
ministrative units in France. [21 poly-
gons – 6,678 vertices]

2. The Vector Map (VMAP) at the lowest
resolution (VMAP0)7. [37 polygons –
10,256 vertices]

6http://professionnels.ign.fr/geofla
7http://gis-lab.info/qa/vmap0-eng.html

13

http://professionnels.ign.fr/geofla
http://gis-lab.info/qa/vmap0-eng.html


To obtain a comparison with other tools,
we performed snapping as described in Sec-
tion 2 with FME8. We used the Anchored-
Snapper transformer with the VMAP0 as
master dataset; vertices in the slave dataset
(GEOFLA) are snapped to the closest ver-
tex/line in the VMAP0 dataset (a rather
large snapping value was used because of
the large gap near Geneva). Both our proto-
type and FME took about the same process-
ing time (0.5s versus 0.6s).

We have been able to align the boundaries
successfully with our implementation, that
is all output polygons are valid and there
are no gaps nor overlaps along the bound-
ary of France and its neighbours. With
FME, there are several cases where there
are gaps and overlaps, and several parts of
polygons have collapsed, creating invalid
geometries. We show in the Figure 15 the
results for some specific locations. First,
observe that in Figure 15b there are still
gaps and overlaps. These are mostly caused
because only slave vertices are snapped to
the master primitives without the insertion
of extra vertices. With our implementa-
tion, the gaps are split into different re-
gions and the alignment is performed with-
out leaving any problematic regions. Sec-
ond, observe in Figure 15e how snapping
makes the slave move to the wrong bound-
ary (that of an administrative unit that is
not on the boundary of the dataset), and
how the very large gap is only partly aligned
(some parts of it are within the given toler-
ance, others not). A large tolerance would
havemost likely solved this issue, but would
also have modified the boundaries of poly-
gons unacceptably more in other parts of
the dataset. Third, it can be seen in Fig-
ure 15h that part of the boundary between 2
French polygons is collapsed to the bound-
ary of the master dataset; in our implemen-
tation this boundary is left intact. Fourth,
in Figure 15k, an enclave is snapped to the
master dataset, which actually separates the
polygon containing the enclave into uncon-
nected parts.

8http://www.safe.com/fme/fme-desktop

4.2 Experiment #2: Conflation
with an international boundary

As shown inFigure 16, wehave extracted the
international boundary from the VMAP0
and used it as input. The results of the
aligned GEOFLA is exactly the same as in
the previous section.

4.3 Experiment #3: Spatial extent

We have performed a hierarchical confla-
tion with the hierarchy of a dataset from
the Statistics Netherlands9. The dataset, let
us call it CBS2009, is shown in Figure 17
and is publicly available10 The 441 munici-
palities are divided into 2,542 districts, and
these are further divided into 11,574 neigh-
bourhoods (many of these objects are Mul-
tiPolygons, as explained in Section 3.4).
Each polygon has an identifier linking it to
its parent. The conflation was performed
in 2 steps: (1) all the district polygons
with a given identifier are aligned to their
respective municipality polygon (thus 441
times); (2) all the neighbourhood polygons
with a given identifier are aligned to their
respective (aligned and modified) district
polygon (thus 2,542 times). As an indi-
cation, the whole process—2,983 boundary
alignments—took 9m50s (4m45s computa-
tion; 5m05s for reading/writing to disk the
datasets). While there were no very large er-
rors, 98/441 municipalities and 2,213/2,542
districts were not properly subdivided (of-
ten by only a millimetre or less).

5 Conclusions

We have proposed a new algorithm to per-
form the horizontal conflation and we have
shown that it is suitable for several cases
that practitioners face in their work. It can
be used with polygons and lines, and sup-
ports the alignment of polygons to a spatial
9CBS (Centraal Bureau voor de Statistiek)

10http://www.cbs.nl/nl-NL/menu/themas/
dossiers/nederland-regionaal/publicaties/
geografische-data/archief/2010/
2010-wijk-en-buurtkaart-2009.htm

14

http://www.safe.com/fme/fme-desktop
http://www.cbs.nl/nl-NL/menu/themas/dossiers/nederland-regionaal/publicaties/geografische-data/archief/2010/2010-wijk-en-buurtkaart-2009.htm
http://www.cbs.nl/nl-NL/menu/themas/dossiers/nederland-regionaal/publicaties/geografische-data/archief/2010/2010-wijk-en-buurtkaart-2009.htm
http://www.cbs.nl/nl-NL/menu/themas/dossiers/nederland-regionaal/publicaties/geografische-data/archief/2010/2010-wijk-en-buurtkaart-2009.htm
http://www.cbs.nl/nl-NL/menu/themas/dossiers/nederland-regionaal/publicaties/geografische-data/archief/2010/2010-wijk-en-buurtkaart-2009.htm


(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 15: Left column: input (parts of Figure 14). Middle column: results with snapping.
Right column: results with our implementation.

15



(a) (b)

(c) (d)

Figure 16: (a) Part of the GEOFLA dataset with an international boundary (red line). (b)
Creation of a polygon from the boundary (red polygon). (c) The labelled CDT.
(d) GEOFLA correctly aligned to the boundary.

extent. Furthermore, the conflation can be
performed with a local criteria, instead of a
global one (the user-tolerance is usually for
the the whole dataset).

Our approach is highly efficient (since it
is based on a highly optimised triangula-
tor and only the labelling of triangles is in-
volved), it avoids the pitfalls of choosing
the appropriate threshold (if it even exists),
and, perhaps more importantly, it guaran-
tees that valid geometries are constructed,
which allows practitioners to use the out-
put for further analysis. Anyone who has
tried—and perhaps failed—to find the ap-
propriate snapping threshold for a given
dataset by using trial and error will recog-
nise that our approach has great benefits.
One can get an overview of which polygons
were modified (including what part(s) of
these, and their exact geometry), and col-
lapsed geometries are completely avoided
(which happen often with large snapping
tolerance).

We plan in the future to modify the algo-
rithm so that the conflation of only lines is
possible, e.g. for highways or rivers crossing
a boundary. These would be “linked”, with
edges of the CT, although the use of a toler-
ance would still be necessary. We also plan
to add more repair functions, particularly
one where we can edge-match two polygons
without the notion of a master and a slave
and thus distribute errors. Triangles could
be used to find the centreline of a region, as
Bader and Weibel [1998] showed.

References
Ken Arroyo Ohori, Hugo Ledoux, and Mar-

tijn Meijers. Validation and automatic
repair of planar partitions using a con-
strained triangulation. Photogrammetrie,
Fernerkundung, Geoinformation, 1(5):613–
630, 2012.

Matthias Bader and Robert Weibel. Detect-

16



(a) (b)

Figure 17: (a)Municipalities of the Netherlands (CBS2009 dataset). (b) Each municipality
is subdivided into districts and then into neighbourhoods.

ing and resolving size and proximity con-
flicts in the generalization of polygonal
maps. In Proceedings 18th International
Cartographic Conference, Stockholm, Swe-
den, 1998.

Kate M. Beard and Nicholas R. Chrisman.
Zipper: A localized approach to edge-
matching. Cartography and Geographic In-
formation Science, 15(2):163–172, 1988.

Jean-Daniel Boissonnat, Olivier Devillers,
Sylvain Pion, Monique Teillaud, and Ma-
riette Yvinec. Triangulations in CGAL.
Computational Geometry—Theory and Ap-
plications, 22:5–19, 2002.

Matthias Butenuth, Guido v. Gösseln,
Michael Tiedge, Christian Heipke, Udo
Lipeck, and Monika Sester. Integration
of heterogeneous geospatial data in a
federated database. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 62(5):
328–346, 2007.

L.P. Chew. Constrained Delaunay triangu-
lations. In Proceedings of the third an-
nual symposiumonComputational geometry,
pages 215–222, 1987.

Martin Davis. Java conflation suite.
Technical report, Vivid Solutions,
2003. Draft available at http:
//www.vividsolutions.com/jcs/, has
never been completed.

Mark de Berg, Marc van Kreveld, Mark
Overmars, and Otfried Schwarzkopf.
Computational geometry: Algorithms and
applications. Springer-Verlag, Berlin,
second edition, 2000.

Yerahmiel Doytsher. A rubber sheeting al-
gorithm for non-rectangular maps. Com-
puters & Geosciences, 26(9–10):1001–1010,
2000.

Daniel W. Gillman. Triangulations for
rubber-sheeting. In Proceedings Autocarto
7, pages 191–199, 1985.

17

http://www.vividsolutions.com/jcs/
http://www.vividsolutions.com/jcs/


J. T. Hastings. Automated conflation of dig-
ital gazetteer data. International Journal
of Geographical Information Science, 22(10):
1109–1127, 2008.

INSPIRE. Drafting Team “Data
Specifications”—deliverable d2.6:
Methodology for the development of
data specifications. Technical Report
Identifier: D2.6_v3.0, Infrastructure for
Spatial Information in Europe, 2008.

INSPIRE. D2.8.i.4 data specification on
Administrative Units—technical guide-
lines. Technical Report Identifier:
D2.8.I.4_v3.1, Infrastructure for Spatial
Information in Europe, 2014.

Gregor Klajnšek and Borut Žalik. Merg-
ing polygons with uncertain boundaries.
Computers & Geosciences, 31(3):353–359,
2005.

M. P. Lynch and Alan Saalfeld. Con-
flation: Automated map compilation—a
video gameapproach. InProceedings Auto-
Carto VII, pages 343–352, 1985.

OGC. OpenGIS implementation specifica-
tion for geographic information—simple
feature access. Open Geospatial Consor-
tium inc., 2006. Document 06-103r3.

Juan J. Ruiz, F. Javier Ariza, Manuel A.
Ureña, and Elidia B. Blázquez. Digital
map conflation: a review of the process
and a proposal for classification. Interna-
tional Journal of Geographical Information
Science, 25(9):1439–1466, 2011.

Alan Saalfeld. Conflation—automated map
compilation. International Journal of Ge-
ographical Information Systems, 2(3):217–
228, 1988.

Nadine Schuurman, Darrin Grund,
Michael Hayes, and Suzana Dragicevic.
Spatial/temporal mismatch: a conflation
protocol for canada census spatial files.
The Canadian Geographer, 50(1):74–84,
2006.

Jonathan Richard Shewchuk. Delaunay Re-
finement Mesh Generation. PhD thesis,
School of Computer Science, Carnegie
Mellon University, Pittsburg, USA, 1997.

M. Siejka, M. Ślusarski, and M. Zygmunt.
Verification technology for topological
errors in official databaseswith case study
in Poland. Survey Review, 46(334):50–57,
2013.

Shuxin Yuan and Chuang Tao. Develop-
ment of conflation components. In Pro-
ceedings of Geoinformatics, pages 1–13, Ann
Harbour, USA, June 1999.

M. Zygmunt, M. Siejka, M. Ślusarski,
Z. Siejka, I. Piech, and S. Bacior. Database
inconsistency errors correction, on ex-
ample of LPIS databases in Poland. Survey
Review, 47(343):256–264, 2014.

18


	Introduction
	Related work
	Aligning the boundaries of datasets with a triangulation-based algorithm
	Using a CT to repair a planar partition
	The extensions necessary for horizontal conflation of polygons
	Edge-matching to a linear boundary
	Spatial extent conflation

	Implementation & Experiments
	Experiment #1: Conflation of polygons
	Experiment #2: Conflation with an international boundary
	Experiment #3: Spatial extent

	Conclusions

