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Figure 0.1: As Sphere tries to
explain the nature of 3D space
to Square by passing through its
plane of view: ‘You cannot indeed
see more than one of my sections, or
Circles, at a time; for you have no
power to raise your eye out of the
plane of Flatland; but you can at
least see that, as I rise in Space, so my
sections become smaller’ [Abbott,
1884].

Figure 0.2: As Professor
Farnsworth explains why a
two-ended digestive system can-
not exist in a 2D world: ‘As you
can see, or rather can’t see, but take
my word for it, such a digestive
system would divide a 2D being into
separate pieces.’. From Futurama
season 7 episode 14.

1: https://en.wikisource.org/
wiki/Letter_to_the_Free_Age_
Press
2: https://en.wikipedia.org/
wiki/Subversive_Proposal

Preface

We usually associate the three usual dimensions with length, width
and height (in any order), and the fourth dimension with time.
However, mathematically, dimensions are essentially a artificial
construct and do not have a fixed meaning linked to any specific as-
pect of reality. By associating each dimension with a variable, they
can be used to represent pretty much anything that we can put a pa-
rameter to. Within this thesis, representations of anydimension are
thus used to model various aspects of geographic information, such
as the typical geographic coordinates, but also time and scale.

At the end of the 19th century, a couple of non-scientific books were
notable for popularising thinking about dimensions, the satyrical
Flatland: A Romance of Many Dimensions [Abbott, 1884] (Figure 0.1),
and the more serious A New Era of Thought [Hinton, 1888]. These
books used playful analogies between familiar 0D–3D situations and
those in higher dimensions, attempting to give readers an intuitive
feeling of what these abstract higher dimensions are like. Plenty of
others continue to follow in their footsteps (Figure 0.2).

In order to ensure that all descriptions are formally correct, this
thesis necessarily uses some formal descriptions for its data struc-
tures and algorithms. However, it also tries to provide intuitive ex-
planations and analogies across different dimensions, offering ex-
planations of higher-dimensional problems based on our intuitive
knowledge of similar 2D and 3D cases. I hope that the result is ap-
proachable and serves to broach the subject in a practical way, and
that potential readers (if any) are not put off by overly technical ex-
planations or by the overly simplistic examples that I am able to
draw.

About this thesis

During the past 4+ years I have found many things to love about
the scientific process, but many things to hate about how its results
are released and published. More than a century after Leo Tolstoy’s
Letter to the Free Age Press1 and 20 years after Stevan Harnad’s sub-
versive proposal2, it is rather sad to see that so much science is still
kept behind paywalls or stymied by legal restrictions evenwhen it is
taxpayer-funded. This is not only damaging to scientific discourse,
but it keeps important knowledge from the public at large, includ-
ing educators and legislators.

1

https://en.wikisource.org/wiki/Letter_to_the_Free_Age_Press
https://en.wikisource.org/wiki/Letter_to_the_Free_Age_Press
https://en.wikisource.org/wiki/Letter_to_the_Free_Age_Press
https://en.wikipedia.org/wiki/Subversive_Proposal
https://en.wikipedia.org/wiki/Subversive_Proposal


2 Figures

3: Even asmany of themhave abu-
sive fees that bear no relation with
the marginal cost of internet dis-
tribution.

4: See for instance Morin et al.
[2012], Joppa et al. [2013] and Ince
et al. [2012]

At the same time, there is a concerted effort to restrict knowl-
edge creation and creative expression through draconian intellec-
tual property laws, including providing IP holders with special (ex-
tra)legal privileges and misappropriating author and user rights
while extending already excessive copyright terms. Plenty of laws
have been enacted on the matter with a complete lack of trans-
parency, despite obvious harm to users and evidence to a lack of
economic benefits [Hargreaves, 2011; Reda, 2014; EFI, 2015].

By releasing this thesis’ contents into the public domain and mak-
ing its source publicly available, I wish to make a small statement
about how I believe science should be distributed in the future—
openly and without restrictions. Open access journals are a step in
the right direction3, but I hope it is not too long before we are able
to get rid of profit-driven journals and publishers altogether.

Following in the same spirit, the source code of the main prototype
implementations that were developed during this PhD project have
also been made publicly available under permissive licences, which
are linked to in the correspondingparts of this thesis. As others have
pointed out beforeme4, there is a great disparity between the alleged
importance of scientific evidence andwidespread acceptance of not
disclosing software implementations.
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6: Within this thesis, I always use
‘GIS’ and not ‘GISs’. This is partly
because of aesthetics (GISs reads
badly and hears worse), but also
because I would argue that cur-
rent GIS are not really systems
but disparate collections of meth-
ods, tools and processes. As such,
when I write about GIS I rarely re-
fer to systems and most often use
the word as a modifier rather than
a noun.

Introduction 1
Spatial information describes the location of objects in space and
the relationships between them. Within this thesis the emphasis
is on geographic information as represented in a computer, which
uses similar techniques but narrows this definition to information
that is about the real world and at a human-to-Earth scale, using
abstracted digital representations of real-world entities such as ter-
rain, cities, roads and buildings. These entities and the relation-
ships between them are defined using sets of interlinked computer
primitives. Because of this, spatial information forms a necessary
component of any computermodel of theworld aswe know it at any
significant level of detail.

The core of the research carried out in this thesis is concerned with
geographic information systems (GIS)6, which produces tools to cre-
ate, manipulate, analyse and visualise the digital objects that are in-
herent in these abstract representations of the world. Compared to
other software categories that also allow us to model and manipu-
late objects that are represented geometrically, such as those used in
computer-aided design (CAD) and geometric modelling, GIS tools
stand out as being remarkably generic [Coppock and Rhind, 1991;
Gold, 2006]. GIS are used equally to manually build objects by ap-
plying interactive drawing operations, to semi-automatically create
full models from raw acquired data, to manage large collections of
heterogeneous datasets and keep them up to date, or as interactive
point-and-click environments to query the attributes of and per-
formsimple calculations on existingdatasets. Because of this gener-
icity, GIS are expected to support a large number of different data
formats from multiple sources and a wide variety of operations—all
while solving problems in a mix of 2D and 3D and preserving the
key characteristics of sometimes mutually incompatible computer
representations. Rather than attempting to find the best solution on in-
put fulfilling strict conditions, GIS tools are expected to make a best effort
to obtain a good solution on the often invalid data that is available. This
thesis follows this philosophy to a large extent.

For historical and practical reasons, current GIS mostly use simple
2D representations [ESRI, 2005; OGC, 2011], which are relatively
easy to use and efficient, essentially consisting of sets of linked
points, lines and polygons. Their efficiency is due to the fact that

3



4 1 Introduction

Figure 1.1: A polygon as a cycle of
points

Figure 1.2: The polygons in the
CORINE7 dataset in the area
around Delft [CEC, 1995]

7: http://www.eea.europa.eu/
publications/COR0-landcover

Figure 1.3: A cube represented as
the 6 square faces that bound it

they can rely on many strong properties that are intrinsic to 2D ob-
jects. For example, one such property is that it is possible to define
a natural order for the points around a closed polygonal curve, as
shown in Figure 1.1, and so a polygon can be represented as a se-
quence of points that forma cycle along its boundary [Jordan, 1887],
which are implicitly connected by line segments between each con-
secutive pair. Another such property is based on planar partitions—
sets of polygons that form a subdivision of the plane—such as the
one in Figure 1.2. Since in a planar partition there are two polygons
incident to any edge (except those bordering the exterior), a com-
plete planar partition can be stored easily as a set of edges where ev-
ery edge is linked to two other edges and records the polygons that
lie on each of its two sides [Peucker and Chrisman, 1975].

2D GIS are also able to take advantage of a great number of exist-
ing techniques that are based on 2D representations, such as those
that are used to model the flow of water over a terrain [van Kreveld,
1997a] or to combine multiple maps into one (i.e. a map overlay)
[de Berg et al., 2008, §2.3]. Moreover, these techniques have been
developed and improved over decades, whereas any change in rep-
resentation would require the development of new accompanying
techniques in order to be truly useful.

The aforementioned advantages of 2D representations mean that
even ‘3D’ GIS usually mimic the third dimension by using a so-
called 2.5D structure, essentially treating the third dimension as a
simple attribute that is attached to each object [Raper, 1989], or rep-
resent individual 3D objects only implicitly through the 2D surface
that separates their interior from their exterior [Edmonds, 1960;
Baumgart, 1975], as the cube in Figure 1.3, rather than as true solid
objects. These solutions are compromises, as they limit the type of
geometries that can be represented and complicate the storage of
the relations that exist between 3D objects.

Another important consequence is that when non-spatial charac-
teristics that have a strong link to space, such as time and scale,
are integrated in a GIS, they are usually implemented using sim-
ilar adaptations of 2D representations. For example, spatiotem-
poral GIS keep multiple representations of 2D structures [Arm-
strong, 1988], each at a different point in time, or a list of changes
per object [Worboys, 1992a; Peuquet, 1994], while multi-scale
datasets generally consist of independent datasets for each scale
with some common identifiers that link objects between datasets
[Friis-Christensen and Jensen, 2003; Stoter et al., 2014].

The use of 2D representations also limits the capabilities of GIS soft-
ware, as the techniques that can be implemented on top of these 2D
representations cannot make full use of the potential of 3D spatial
information [Zlatanova, 2000, Ch. 3]. For instance, current GIS are
largelyunable toperformcomplexmanipulations of 3Dobjects or to
compute geometric operations betweenmultiple 3D objects, forcing

http://www.eea.europa.eu/publications/COR0-landcover
http://www.eea.europa.eu/publications/COR0-landcover


1.1 Research objective and scope 5

Figure 1.4: Five dimensions based
on 3D space, time and scale

Figure 1.5: This non-manifold
shape cannot be handled properly
in many representations.

Figure 1.6: The top and bottom
faces of this torus have holes in
them.

users to performsuch functions in 3Dmodelling software. These ex-
amples are notable as equivalent functionality in 2D is widespread
in 2D GIS and expected by its users.

A potential solution to solve the representation problems of 3D,
spatio-temporal and multiscale data is opting out of further ad
hoc adaptations of 2D structures. Instead, this thesis shows that
it is possible to represent certain parametrisable characteristics as
additional dimensions in the geometric sense, as shown in Fig-
ure 1.4, such that real-world (0D–3D) entities aremodelled as higher-
dimensional objects embedded in higher-dimensional space [van Oost-
erom and Stoter, 2010]. A building existing over a time span and
stored at a variety of scales on a computer could thus be represented
as a single 5D object.

The higher-dimensional geographic information modelling approach
is well grounded in long-standing mathematical theories, such as
the setting of coordinates to space [Descartes, 1637], and theo-
ries of higher-dimensional geometry [Riemann, 1868] and topol-
ogy [Poincaré, 1895]. It also opens the door for new, more pow-
erful techniques and practical applications. For example, these 𝑛-
dimensional representations could be used to ensure that an object
is consistent along all dimensions (e.g. a building at different points
in time or levels of detail), or to analyse its relations to other objects
along all dimensions (e.g. whether two moving objects were ever ad-
jacent).

There is a large body of related work on the representation of ab-
stract 𝑛-dimensional objects in mathematics and computer science
[Brisson, 1993; Lienhardt, 1994], as well as a few instances of work
on its application to GIS [Karimipour et al., 2010]. However, by
and large higher-dimensional representations remain unanalysed in the
context of geographic information. For instance, it is necessary to see
how abstract representations can be made fit for use with real-world
objects, which have aspects that are difficult to handle, e.g. certain
kinds of geometries (Figure 1.5), holes (Figure 1.6) and complex
semantics. Additionally, making this approach attractive in prac-
tice requires the development of high-level techniques to construct,
analyse and visualise higher-dimensional geographic objects. Fi-
nally, there are significant technical issues involved in the realisa-
tion of these representations and techniques into a computer im-
plementation. All of these aspects, which in short encompass con-
cepts, representations, operations and visualisation, are tackled in this
thesis.

1.1 Research objective and scope

In order to determine whether the higher-dimensional modelling of
geographic information is worthwhile, and if so, the conditions un-
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8: In this instance, real-world
does not imply tackling all the
problems inherent in using the
entirety of the very large, complex
and invalid datasets that are
currently available. Due to the
experimental nature of this thesis,
small subsets of these real-world
datasets that showcase specific
problems are necessarily chosen.

der which it makes sense to follow it, it is necessary to first gain a
greater understanding of the entire modelling process in higher di-
mensions as well as its technical consequences. The main aim of
this thesis is therefore to gain this understanding by realising the
fundamental aspects of a higher-dimensional Geographic Infor-
mation System, including the development of the necessary mod-
elling concepts that are analogous to familiar modelling concepts
in 2D/3D GIS, the use of appropriate higher-dimensional represen-
tations, and the development of simple higher-dimensional oper-
ations. While not every aspect of a higher-dimensional GIS can
be fully developed within the timeframe allotted for this thesis,
prototype-level working software is created whenever possible and
tested using real-world higher-dimensional datasets8. In this sense,
this thesis doesnot intend toprove that thehigher-dimensional spa-
tialmodelling approach is better or worse than existing approaches,
but instead to highlight its advantages and disadvantages so as to
better evaluate it for future applications.

1.2 Structure of this thesis

This thesis comprises two main parts, each of which contains a few
chapters and which respectively cover methods to solve problems
inherent in: (i) representing objects in arbitrary dimensions, and
(ii) creating and manipulating such objects. After these, there are
some independent chapters that fall outside the two parts, covering
practical aspects such as the processing of real-world (invalid) data,
implementation details and how the results of all chapters come to-
gether. All chapters are described in detail below.

Part I Representing geographic information

Chapter 2 introduces the mathematical concepts and back-
ground behind spatial data modelling.

Chapter 3 describes and analyses the state of the art in the 2D
and 3D modelling of space, time, scale and attributes. It
concludes by listing some of the shortcomings of current
approaches.

Chapter 4 presents the higher-dimensional modelling
paradigm that is the basis of this thesis, which aims to
solve many of the problems alluded to in Chapter 3. It
also describes and evaluates the higher-dimensional
representations that can be used in order to realise this
approach, which take the form of 𝑛-dimensional data
models and structures.
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Part II Constructing and manipulating objects

Chapter 5 presents a few fundamental operations for some of
the data structures described in Chapter 4. These are used
in order to build the higher level operations described in
the other chapters within Part II.

Chapter 6 describes 𝑛-dimensional extrusion, an extension
of the well-known 2D to 3D extrusion operator in GIS.
It can be used to generate simple prism-shaped 𝑛-
dimensional objects from an (𝑛 − 1)-dimensional space
partition by assigning to each (𝑛−1)-dimensional object a
range along which it exists.

Chapter 7 describes incremental construction, an operation
which is able to generate arbitrary 𝑛-dimensional objects
based on defining their (𝑛 − 1)-dimensional boundary. It
is equivalent to the generation of the topological relation-
ships that exist between a set of (𝑛−1)-dimensional objects.

Chapter 8 shows how a higher level construction operator
that links a series of 2D or 3D models can be created. This
enables the constructionof 4Dmodels fromreal-world 3D
city models covering the same region.

Chapter 9 explains how 2D and 3D information can be ex-
tracted from a higher-dimensional representation by
selecting appropriate portions of the data (e.g. cross-
sections) and projecting it to 2D/3D space.

Chapter 10 explains the main data validation and repair tech-
niques that are used to create 2D/3D/𝑛D objects and space par-
titions out of real-world GIS datasets, which often have defects
that impede their usage. By obtaining clean geometric mod-
els, these techniques enable the use of the higher-dimensional
modelling approach in practice.

Chapter 11 concludes this thesis by explaining the achievements of
this PhD project and highlighting the main challenges to fur-
ther develop a higher-dimensional GIS. It contains an outlook
on how higher-dimensional modelling can be used in GIS as
well as some suggestions for future work.

Appendix A describes the most relevant implementation details
concerning the representations and operations from the pre-
vious chapters, such as the use of various software libraries,
robust geometric operations and programming techniques.
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Appendix B contains a short dictionary of terms for higher-
dimensional GIS. As the terminology used in 2D GIS, 3D GIS,
CAD, geometric modelling and other related fields can be dif-
ferent and is often used inconsistently and rather loosely, the
appendix is intended for use as a general reference and for the
better understanding of the thesis.
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Representing geographic information





10: Even as some mathematicians
and philosophers have argued
against set theory as a foundation
for all of mathematics.

11: In short, these intuitive
definitions pretty much assume
that anything can be put into a
set without leading to paradoxes,
which formally is not the case.

Mathematical foundations ofspatial
modelling 2

Spatialmodellinghas its origins in the geographical notionof space,
which is in turn based onour ownobservations of theworld and em-
pirical experience [Couclelis, 1999]. However, these informal no-
tions are error-prone and differ from person to person. In order to
describe space unambiguously, people have thus turned to models
that still describe geographical phenomena, but do so using formal
notions derived from mathematics. These formal models make it
possible to create and store digital representations of the world in
a computer, and thus to use the power of a computer to easily solve
spatial problems [Burrough, 1986; Bailey and Gatrell, 1995].

The current chapter describes some of these formal notions and
their relevant context, which are used to study the spatialmodelling
approaches presented in the upcoming chapters. §2.1 introduces
some concepts of elementary set theory and mathematical logic,
which are later used in definitions in this thesis. §2.2 introduces
the basic concepts of geometry, which are used to describe the posi-
tion, shape andorientationof objects. §2.3 builds on these topresent
topology, which formalises notions such as the boundary and inte-
rior of an object or the relationships between multiple objects.

2.1 Elementary set theory andmathematical logic

Set theory is the branch of mathematics that studies sets, which are
collections of abstract objects. While the study of set theory only
formally started with Cantor [1874], its intuitive and minimal con-
cepts were later used in order to give a foundation to almost all ar-
eas ofmathematics10. Since the basic concepts of set theory are used
in this thesis in order to describe many other concepts, this section
gives a very short primer using the samenotation that is used in this
thesis. However, it is worth noting that the descriptions used here
are reflect the concepts generally used inGIS, and so aremeant to be
intuitive and not very formal. Perhaps more importantly, these def-
initions donot reflectmodernmathematical thought on the topic11,
which is much more precise but also less accessible, e.g. axiomatic
set theory.

11
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12: These are the most commonly
described basic operations. How-
ever, it is possible to define other
operations that are equally useful
as a base. Either can be used to
form other operations by compo-
sition.

Set theory starts by considering the existence of a given domain of
objects from which one may build sets, which is known as the uni-
verse set and denoted as𝕌. These objects can be anything, including
other sets. Set theory allows sets to be regarded as single entities and
operated upon [Devlin, 1993]. If an object 𝑎 is part of a set𝕏, it is de-
noted as 𝑎 ∈ 𝕏, read as ‘𝑎 is an element of 𝕏’. If 𝑎 is not part of a set 𝕏,
it is denoted as 𝑎 ∉ 𝕏, read as ‘𝑎 is not an element of 𝕏’.

There are two broad ways to describe the elements in a set, both us-
ing curly braces, i.e. { and }. One way to do so is to enumerate all the
elements of the set one by one. For instance, the set {1, 2, 3} is the set
containing 1, 2 and 3 as elements (and no others). The other way to
do so is to specify one ormore rules that the elements of the set need
to fulfil. For instance, the set {𝑥 ∣ 𝑥 is a prime number} consists of all
prime numbers. It is read as ‘𝑥, such that 𝑥 is a prime number’.

Sets are by definition unordered and contain unique elements—
duplicate items are ignored by convention. A set may contain an
infinite number of elements (e.g. as the prime number example
above), or no elements at all, in which case it is a special set known
as the null set and denoted as {} or∅. Other commonly used sets with
a special notation and name are: the natural numbers (ℕ), the real
numbers (ℝ), the rational numbers (ℚ) and the integers (ℤ).

In order to buildmore complex sets, the concepts andnotation from
mathematical logic are used, in particular propositional logic. Propo-
sitional logic works with propositions, which are sentences that are
either true or false, but not both. These propositions might be al-
tered and combined using various symbols expressing various no-
tions, such as: and (∧), or (∨), not (¬), implies (⇒), is implied by (⇐), if
and only if (⇔), for all (∀) and exists (∃).

Using these concepts it becomes possible to state relationships be-
tween sets. For instance, 𝔸 and 𝔹 are then equal (𝔸 = 𝔹) when an
element is in𝔸 if and only if it is also in 𝔹, which can be denoted as
∀𝑥 ∶ 𝑥 ∈ 𝔸 ⇔ 𝑥 ∈ 𝔹. A set𝔸 is called a subset of a set𝔹 (𝔸 ⊆ 𝔹), or𝔹 is
a superset of𝔸 (𝔹 ⊇ 𝔸), when if an element is in𝔸 then it is also in
𝔹, denoted as ∀𝑥 ∶ 𝑥 ∈ 𝔸 ⇒ 𝑥 ∈ 𝔹. If 𝔸 ⊆ 𝔹 but 𝔸 ≠ 𝔹, i.e. there is at
least one extra element in 𝔹, then𝔸 is a proper subset of 𝔹 (𝔸 ⊂ 𝔹),
or alternatively 𝔹 is a proper superset of𝔸 (𝔹 ⊃ 𝔸).

It is also possible to use propositional logic to create new sets by
defining certain operations between sets, in particular Boolean set
operations, consisting of intersection, union, difference and com-
plement12. The intersection of the sets 𝔸 and 𝔹, denoted as 𝔸 ∩ 𝔹,
consists of all the elements that are both in𝔸 and in 𝔹, i.e.𝔸∩ 𝔹 =
{𝑥 ∣ 𝑥 ∈ 𝔸 ∧ 𝑥 ∈ 𝔹}. The union of the sets𝔸 and 𝔹, denoted as𝔸∪ 𝔹,
consists of all the elements that are either in 𝔸 or in 𝔹, i.e. 𝔸∪ 𝔹 =
{𝑥 ∣ 𝑥 ∈ 𝔸 ∨ 𝑥 ∈ 𝔹}. The difference between sets 𝔸 and 𝔹, denoted as
𝔸 − 𝔹, consists of all the elements that are in 𝔸 but not in 𝔹, i.e.
𝔸 − 𝔹 = {𝑥 ∣ 𝑥 ∈ 𝔸 ∧ 𝑥 ∉ 𝔹}. The complement of a set 𝔸, denoted as
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13: Non-Euclidean geometry does
away with some of these axioms
while remaining self-consistent
[Bolyai, 1832; Lobachevsky, 1840].
However, it is much less relevant
in the context of spatial mod-
elling.

Figure 2.1: There is exactly one
line that passes through any pair
of points.

14: A more rigorous and correct
explanation would be based on a
set of linearly independent vec-
tors, but this creates a recursive
definition.

¬𝔸, consists of all the elements that are in the universe set but are
not in𝔸, i.e. ¬𝔸 = {𝑥 ∣ 𝑥 ∈ 𝕌 ∧ 𝑥 ∉ 𝔸}.

Apart from sets, it is also possible to consider tuples of elements,
which unlike sets are sequences of ordered elements. A tuple con-
taining exactly two elements is known as a pair, one containing
three elements is a treble and one containing 𝑛 elements is an 𝑛-
tuple. Tuples are denoted using parenthesis, i.e. ( and ).

A common operation that generates tuples is the Cartesian product.
The Cartesian product of sets𝔸 and 𝔹, denoted as𝔸×𝔹, is defined
as {(𝑎, 𝑏) ∣ 𝑎 ∈ 𝔸 ∧ 𝑏 ∈ 𝔹}. In other words, it is a set of pairs, where the
first element of a pair is an element of 𝔸 and the second element
of the pair is an element of 𝔹. This can be generalised to more than
two sets, such that the 𝑛-fold Cartesian product of 𝑛 sets is an 𝑛-tuple.
The 𝑛-fold Cartesian product of a set 𝔸 with itself, i.e. 𝔸 ×𝔸 × …𝔸,
is denoted as𝔸𝑛.

2.2 Geometry

Geometry is the branch of mathematics concerned with the posi-
tion of objects in space, a topic that was already formalised by the
ancient Greek mathematician Euclid in his textbook the Elements
around 300 BCE [Fitzpatrick, 2008]. Euclidean geometry consists
of a small set of geometric axioms considered to be intuitively obvi-
ous, such as the fact that it is possible to draw exactly one line that
passes through two points (Figure 2.1), as well as a long series of pos-
tulates derived from these and which describe more complex con-
structions13.

However, even as Euclidean geometry has the notions of relative
distances, angles and areas, objects in Euclidean geometry do not
have an absolute position in space. Analytic or Cartesian geome-
try, developed by Descartes [1637] and de Fermat [1679], signifi-
cantly changed this by introducing the concept of coordinates. A
coordinate system makes it possible to uniquely describe the abso-
lute location of a point as a tuple of real numbers. In particular, the
Cartesian coordinate system uses a tuple of perpendicular directed
lines as axes, with a positive direction and a negative direction, all
of which intersect at a commonpoint known as the origin. A point’s
coordinates in the system are then given by signed distances to the
respective axes14.

𝑛-dimensional Euclidean space, which can be described by the set
of points ℝ𝑛, has 𝑛 perpendicular axes intersecting at the origin 𝑂,
defined by the 𝑛-tuple (0, 0, … , 0), and a point 𝑝 in 𝑛D space is thus de-
scribed by an 𝑛-tuple (𝑝􏷠, 𝑝􏷡, … , 𝑝𝑛), where 𝑝𝑖 is the signed distance to
the 𝑖-th axis. For example, as shown inFigure 2.2, three-dimensional
Euclidean space (ℝ􏷢), has three axes, usually named𝑋, 𝑌 and𝑍, such
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Figure 2.2: A point 𝑝 in 3D de-
scribed by a treble (𝑝𝑥, 𝑝𝑦, 𝑝𝑧)

Figure 2.3: A plane separates ℝ􏷬

into two parts on either side of it.

that a given point 𝑝 in 3D can be described by a treble (𝑝𝑥, 𝑝𝑦, 𝑝𝑧),
where 𝑝𝑥 is the signed distance to the 𝑋 axis, 𝑝𝑦 to the 𝑌 axis and
𝑝𝑧 to the 𝑍 axis.

A point 𝑎 = (𝑎􏷠, 𝑎􏷡, … , 𝑎𝑛) can also be used to define a vector 𝑎⃗, which
goes from the origin to 𝑎. The norm, or magnitude of 𝑎⃗, denoted
as ‖𝑎⃗‖, gives the length of the line segment between 𝑎 and the origin
and is computed as:

‖𝑎⃗‖ = √𝑎􏷠􏷡 + 𝑎􏷡􏷡 +⋯+ 𝑎𝑛􏷡

This analytic description of objects also enables using algebra to
compute properties, such as the Euclidean distance between two
points 𝑎 = (𝑎􏷠, 𝑎􏷡, … , 𝑎𝑛) and 𝑏 = (𝑏􏷠, 𝑏􏷡, … , 𝑏𝑛), also known as the Eu-
clidean metric. This is given by:

distance(𝑎, 𝑏) = √(𝑎􏷠 − 𝑏􏷠)
􏷡 + (𝑎􏷡 − 𝑏􏷡)􏷡 +⋯+ (𝑎𝑛 − 𝑏𝑛)􏷡

Some other objects can be described as a linear combination of
linearly independent points (i.e. two different points, three non-
collinear points, four non-coplanar points, etc.). Considering the
points 𝑝􏷠, 𝑝􏷡, … , 𝑝𝑛, a linear combination of them takes the form
𝑎􏷠𝑝􏷠 + 𝑎􏷡𝑝􏷡 +⋯+ 𝑎𝑛𝑝𝑛, where∑𝑛

𝑖=􏷠 𝑎𝑖 = 1. For every point 𝑝𝑖, 𝑎𝑖 is thus a
scalar coefficient that determines its weight.

If negative weights are allowed, the linear combination of 𝑛 + 1 lin-
early independent points forms an 𝑛-dimensional unbounded lin-
ear object, e.g. a line using two points or a plane using three points.
All of these points lie exactly on the object. When the weights are
instead restricted to the interval [0, 1], the linear combination of
𝑛 + 1 linearly independent points forms an 𝑛-dimensional simplex
(called an 𝑛-simplex)—a convex shapewith 𝑛+1 vertices. A 0-simplex
is thus a point, a 1-simplex is a line segment, a 2-simplex is a triangle,
a 3-simplex is a tetrahedron, and so on.

Other, more complex objects can be described using equations,
which describe particular subsets of ℝ𝑛. A hyperplane in ℝ𝑛, i.e. a
space of dimension ℝ𝑛−􏷠 in ℝ𝑛, can be described by a linear equa-
tion of the form 𝑎􏷠𝑥􏷠 + 𝑎􏷡𝑥􏷡 + ⋯ + 𝑎𝑛𝑥𝑛 = 𝑏, where 𝑎􏷠, 𝑎􏷡, … , 𝑎𝑛 are the
coefficients of the linear equation. Apart from the points exactly on
the hyperplane, as shown in Figure 2.3, such a hyperplane separates
ℝ𝑛 into two parts on either side of it. These are known as open half-
spaces and canbe obtained by transforming the linear equation into
the strict linear inequalities: 𝑎􏷠𝑥􏷠 + 𝑎􏷡𝑥􏷡 + ⋯ + 𝑎𝑛𝑥𝑛 < 𝑏 for the half-
space below the hyperplane and 𝑎􏷠𝑥􏷠 + 𝑎􏷡𝑥􏷡 +⋯+𝑎𝑛𝑥𝑛 > 𝑏 for the one
above it. If non-strict linear inequalities are used instead (i.e. using
≤ and ≥ instead of < and >), these closed half-spaces also contain the
points on the hyperplane.
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15: This hides the fact that using
real numbers in a computer is very
difficult in practice, thus floating-
point approximations are gener-
ally used instead [Goldberg, 1991].
The main consequences of this in
spatial modelling are discussed in
§A.2.

Considering that a point can be described as a tuple of its coordi-
nates, a hyperplane as a tuple of its coefficients, and similar con-
structions are possible for many other objects (e.g. a sphere based
on a centre point and radius), it becomes possible to have a computer
representation of these objects simply by storing tuples of numbers
in a data structure15. Moreover, it becomes possible to use them as
a basis to describe other, more complex objects by using them as
building blocks, either directly or using someof the topological con-
cepts described in the next section, e.g. them forming the boundary
of another object.

Since analytic geometry allows the description of objects as sets of
points in ℝ𝑛, as shown in Figure 2.4, it is also possible to define ob-
jects based on Boolean set operations of their point sets.

(a)𝔸 (purple) and 𝔹 (blue) (b) Intersection: 𝔸∩𝔹

(c) Union: 𝔸∪𝔹 (d) Difference: 𝔸−𝔹

Figure 2.4: Based on two balls 𝔸
and 𝔹, other objects that can be
defined using Boolean set opera-
tions.

2.3 Topology

Topology is the mathematical study of the shape of objects, grow-
ing out of the analysis of certain problems in geometry, such as the
boundaries of objects and the different possible notions of connect-
edness. In particular, it studies the properties of certain objects that
are preserved under so-called topological transformations or continu-
ous maps, which include stretching and bending but exclude tearing
or gluing.

There are two branches of topology that are most relevant in the
context of spatial modelling, point-set topology and algebraic topol-
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Figure 2.5: The rectangle 𝔸 is rep-
resented by the set of points where
􏷠 ≤ 𝑥 ≤ 􏷣 and 􏷠 ≤ 𝑦 ≤ 􏷢. In more
compact (set builder) notation,
𝔸 = 􏿺(𝑥, 𝑦)|𝑥 ∈ [􏷠, 􏷣] ∧ 𝑦 ∈ [􏷠, 􏷢]􏿽. For
the other objects, rectangle 𝔹 =
􏿺(𝑥, 𝑦)|𝑥 ∈ [􏷡, 􏷢] ∧ 𝑦 ∈ [􏷠, 􏷡]􏿽, point 𝑎 ∈
𝔸, point 𝑏 ∈ 𝔹 and point 𝑏 ∈ 𝔸. 𝔹
is a subset of𝔸 (i.e. 𝔹 ⊂ 𝔸).

16: Note that there are alternative
definitions based on the concepts
of closed sets or of neighbour-
hoods [Hausdorff, 1914]. For a
simple definition using neigh-
bourhoods in a GIS context see
Worboys and Duckham [2004,
§3.2.2].

Figure 2.6: An open interval ℂ =
(􏷟, 􏷢) = {𝑥|􏷟 < 𝑥 < 􏷢} does not in-
clude its endpoints. By contrast,
a closed interval 𝔻 = [􏷟, 􏷢] =
{𝑥|􏷟 ≤ 𝑥 ≤ 􏷢} includes its endpoints.

ogy, respectivelypresented in §2.3.1 and §2.3.2. Point-set topologyde-
scribes space using concepts derived mainly from set theory, repre-
senting objects as continuous sets of points. The properties of these
sets and the relationships between multiple sets can then be anal-
ysed and described. Algebraic topology adds concepts from abstract
algebra as well, representing objects as structured sets of discrete el-
ements, such as points, edges and faces. As these elements and the
relationships between them are both discrete, it is possible to use a
wide variety of algorithmic methods on them, including graph the-
ory, combinatorics, algorithmic algebra, and computational geom-
etry and topology.

2.3.1 Point-set topology

Point-set topology, also known as general topology, describes objects
as sets of points satisfying certain conditions, such as those in the
construction in Figure 2.5. These objects can then be analysed based
on the properties of the sets that describe them, such as whether a
set is bounded or unbounded, has a certain number of holes, or is
orientable or unorientable. When multiple objects are present, the
relationships between their corresponding sets can be analysed as
well, such as whether they are touching or overlapping, or whether
it is possible to define a function that maps between these sets.

Point-set topology works with topological spaces, a much more gen-
eral notion than that of Euclidean space. This allows the description
of different types of space with different properties. A topological
space consists of a set of points and a topology on them satisfying a
series of axioms. Edelsbrunner [2014] provides the following sim-
ple formulation. Given a set of points 𝕏, a topology of 𝕏 is a collec-
tion of subsets, which are called open sets16, such that:

► 𝕏 is open and the empty set is open;

► the intersection of any two open sets is open;

► the union of any family of open sets is open.

While the definition of an open set for general topological spaces is
rather complex, in the context of spatial modelling we are generally
interested in Euclidean space, which has a straightforward defini-
tion analogous to the concept of an open interval in 1D (Figure 2.6).
A point set 𝕊 in Euclidean space is open if, given any point 𝑝 ∈ 𝕊,
there exists a real number 𝜖 > 0 such that, given any point 𝑞 whose
Euclidean distance to 𝑝 is smaller than 𝜖, then 𝑞 ∈ 𝕊 as well. A point
set is closed when the point set formed by its complement is open.
Any point on an open interval fulfils these conditions, but the end-
points of a closed interval do not. Note that it is possible for a set to
be open and closed (e.g. an interval containing only one of its end-
points).
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Figure 2.7: The unit open disk, i.e.
an open disk of radius 1 centred at
the origin can be defined as 𝔻 =
􏿺𝑥 ∈ ℝ􏷫|‖𝑥‖ < 􏷠􏿽.

Figure 2.8: An annulus with
boundary partitions the Eu-
clidean plane into three parts: its
interior (yellow), its boundary
(black) and its exterior (the rest of
this page). Note that none of these
necessarily have to be connected.

For example, in 2D, the plane together with the topology generated
by the Euclidean metric is the topological space known as the Eu-
clidean topology of the plane, which can be defined based on open disks,
which are analogous to 1D open intervals. An open disk is the set of
points closer to a point 𝑝 ∈ ℝ􏷡 than a non-zero distance 𝑟, such as the
unit open disk shown in Figure 2.7. It is easy to see that as these 2D
disks do not contain their boundaries, the intersection of any two
open disks and the union of any number of disks are both open.

Based on the concepts of open intervals in 1D, open disks in 2D, or
open balls when talking about any dimension, it is possible to par-
tition a Euclidean space into three parts: its interior, boundary and
exterior. An example of these is shown in Figure 2.8. The interior of
a point set 𝕊 consists of all pointswhere there exists anopenball cen-
tred at them such that all the points in the ball are in 𝕊, the boundary
of 𝕊 consists of the points where all possible open balls centred at
them have points in 𝕊 and out of 𝕊, and the exterior of 𝕊 consists of
all points where there exists an open ball centred at them such that
all the points in the ball are out of 𝕊. The closure of 𝕊 is the union of
its interior and its boundary. The regularisation of 𝕊 is the closure
of its interior and a point set is thus regular when it is equal to its
regularisation.

Once objects are defined as sets of points, point-set topology works
with functions that relate these sets to each other. A function from
one point set to another is said to be continuous if the preimage (i.e.
the inverse image) of every open set is open. If a function is con-
tinuous and its inverse function is also continuous, it is known as
a homeomorphism. When such a function exists between two point
sets, they are said to be homeomorphic or, more informally, topologi-
cally equivalent, such as the two objects shown in Figure 2.9.

Another important topological concept is that of a manifold. A
manifold is a topological space that is homeomorphic to the Eu-
clidean space of a certain dimension. Intuitively, this means that a

(a) A coffee mug (b) A donut

Figure 2.9: A coffee mug and a
donut are homeomorphic17. In-
tuitively, this can be known as
it is possible to deform one into
the other. The mug was rendered
from the model at http://www.
thingiverse.com/thing:7953.

http://www.thingiverse.com/thing:7953
http://www.thingiverse.com/thing:7953
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Figure 2.10: The problem of the Seven Bridges of Königsberg asks whether it is possible to find a route through the city that
would cross each bridge (highlighted in red) exactly once. Euler [1741] proved that there is no such route in terms of a graph.
Whenever one enters a piece of land by a bridge, one has to leave it by another bridge except at the beginning or end of the
route. Thus, there must be an even number of bridges connected to all but (at most) two pieces of land. Since all pieces of land
have an odd number of bridges, the problem has no solution. Based on an image from a 1613 engraving by Joachim Bering.

17: Related to the joke: ‘A topolo-
gist is a mathematician who can’t
tell the difference between a coffee
mug and a donut’.

manifold locally resembles Euclidean space, even if globally it does
not. For example, a line and a circle are 1-manifolds, while a plane, a
sphere and a torus are 2-manifolds. Generally, when the term man-
ifold is used in GIS it refers to a 2-manifold.

2.3.2 Algebraic topology

Conceptually based on point-set topology, algebraic topology, also
known as combinatorial topology, uses concepts from abstract al-
gebra in order to analyse topological spaces. A famous early appli-
cation involved the answer to the problem of the Seven Bridges of
Königsberg by Euler [1741], explained in Figure 2.10. However, the
real foundations of thefieldwere setwhenmanyof its conceptswere
formalised in algebraic form by Poincaré [1895].

Algebraic topology works by relating topological spaces to groups
with specific properties, often by creating combinatorial analogues
of such spaces, from which their properties can be extracted using
algebraic methods [Henle, 1994], which can be applied algorithmi-
cally. As it uses discrete structures rather than continuous point
sets, it is often more suited to computer implementations of topo-
logical concepts than point-set topology [Worboys and Duckham,
2004, §3.3.5].

Two constructions of algebraic topology are widely used as the ba-
sis of GIS: simplicial complexes and cell complexes. An 𝑛-dimensional
simplicial complex is a structure made of connected simplices, the
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Figure 2.11: An 𝑛-dimensional
simplex is a combinatorial
primitive made from a set of
𝑛 + 􏷠 vertices. A 0-simplex is
thus a point, a 1-simplex is a
line segment, a 2-simplex is a
triangle, and a 3-simplex is a
tetrahedron. Here they are shown
as if embedded in ℝ􏷬.

18: Note that this implies a defini-
tion where a simplex contains its
boundary.

simplest objects that can be built in any dimension. As shown in
Figure 2.11, an 𝑛-dimensional simplex (𝑛-simplex) is a combinato-
rial primitive made from a set of 𝑛 + 1 vertices. Figure 2.12 shows
a group of buildings represented as a 3D simplicial complex. A 0D
simplicial complex consists of a set of discrete points (i.e. a point
cloud) and a 1D simplicial complex is a plane graph. A 2D simpli-
cial complex is known as a triangulation and a 3D simplicial complex
as a tetrahedralisation.

A 𝑗-dimensional face (𝑗-face) of an 𝑖-simplex, 𝑗 < 𝑖, is a 𝑗-simplexmade
from a proper subset of its vertices. Sometimes the dimension of
the face is omitted and it can be deduced from the context, but in
GIS it generally refers to each of the 𝑖 + 1 (𝑖 − 1)-faces of an 𝑖-simplex.
In the context of an 𝑖-dimensional simplicial complex, a face refers
to each of the 𝑖-simplices in the complex, such as the triangles in a
triangular mesh.

More formally, a simplicial complex can be defined as a collection
of simplices such that:

► every face of a simplex is also in the simplicial complex;

► the intersection of any two simplices is either empty or is a
common face of both of them18.

Based on the set of common vertices shared by two simplices, it is
possible to define certain topological relationshipsbetween them. Two
𝑖-simplices are said to be adjacent if they have a common (𝑖 − 1)-face.
An 𝑖-simplex and a 𝑗-simplex, 𝑖 ≠ 𝑗, are said to be incident if either is
a face of the other.

A cell complex is a structure made of connected cells, where an 𝑖-
dimensional cell (𝑖-cell) is an object homeomorphic to an open 𝑖-ball
(i.e. point, open arc, open disk and open ball). 0-cells are known
as vertices, 1-cells as edges, 2-cells as faces and 3-cells as volumes.
Considering only linear geometries, 1-cells are thus line segments,
2-cells polygons and 3-cells polyhedra. Figure 2.13 shows a group of
buildings represented as a 3D cell complex.

A 𝑗-dimensional face (𝑗-face) of an 𝑖-cell is a 𝑗-cell, 𝑗 ≤ 𝑖, that lies on
the boundary of the 𝑖-cell. A facet of an 𝑖-cell is an (𝑛 − 1)-face of the
cell. As in a simplicial complex, two 𝑖-cells are said to be adjacent if
they have a common facet, and an 𝑖-cell and a 𝑗-cell, 𝑖 ≠ 𝑗, are said
to be incident if either is a face of the other. In the context of an
𝑖-dimensional cell complex, a face refers to each of the 𝑖-cells in the
complex, such as the polygons in a polygonal mesh.

More formally, a cell complex can be defined inductively as in
Hatcher [2002]. An 𝑛-dimensional cell complex is built by starting
from a set of isolated vertices, and ∀0 < 𝑖 ≤ 𝑛 an 𝑖-cell is built by at-
taching itself to the (𝑖 − 1)-faces (facets) on its boundary, these facets
having been previously added to the complex. That is, an edge is
built by linking the vertices on its boundary, a surface by linking
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19: It was only formulated as
an observation without proof in
Poincaré [1893]. Poincaré [1895]
describes it in more detail but
contains a flawed proof. Valid
proofs would have to wait until
Poincaré [1899, 1900].

the edges on its boundary, a volume by linking the surfaces on its
boundary, and so on. Like in a simplicial complex, a facet of a 𝑛-cell
in an 𝑛-dimensional cell complex lies between it and an adjacent 𝑛-
cell, unless it is on the boundary of the complex.

Apart from the concepts of adjacency, incidence and other relation-
ships between between individual simplices and cells in a complex,
it is also possible to define relations and transformations between
entire simplicial/cell complexes. The Poincaré duality theorem
[Poincaré, 1893]19 states that for every 𝑛-dimensional simplicial/-
cell complex, there exists a dual simplicial/cell complex of the same
dimension, where for every dimension 𝑖, the 𝑖-simplices/cells in the
original complex are mapped one-to-one to (𝑛 − 𝑖)-simplices/cells in
the dual complex. The duality transformation is an operation that
creates the dual of a simplicial/cell complex. This can be seen as a
generalisation of the concept of a dual graph in 2D, where a graph 𝐺
has a dual 𝐺∗, such that vertices in 𝐺 correspond to faces in 𝐺∗, edges
in 𝐺 correspond to edges in 𝐺∗ and faces in 𝐺 correspond to vertices
in 𝐺∗.

For example, considering the Platonic solids in Figure 2.14, the
tetrahedron is self-dual (i.e. it is dual to itself), the octahedron is
dual to the cube (and vice versa), and the dodecahedron is dual to
the icosahedron (and vice versa). This transformation can be seen
by creating a new vertex at the centre point of the face of the Pla-
tonic solid, connecting these vertices when their dual faces are ad-
jacent. The original vertices become faces whose number of vertices
is equal to the number of originally incident faces.
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Figure 2.12: The buildings in the TUDelft campus are represented as a 3D simplicial complex, such that each separate building
is a set of adjacent tetrahedra. Note that only the tetrahedra’s edges are shown here.

Figure 2.13: The buildings in the TU Delft campus are represented as a 3D cell complex. All the 2-cells of a 3-cell are shown in
the same colour, the 1-cells are shown as black lines.

(a) (b) (c) (d) (e)

Figure 2.14: The Platonic solids
are the five regular polyhedra that
have regular polygonal faces: (a)
tetrahedron, (b) octahedron, (c)
cube or hexahedron, (d) dodecahe-
dron, and (e) icosahedron. From
Wikimedia Commons.





Modelling of 2D/3Dspace, time, scale and
attributes 3

This chapter describes how space is usually modelled in 2D/3D GIS
and related disciplines, aswell as the non-spatial characteristics that
are typically used together with it, such as time and scale. §3.1 ex-
plainswhat spatialmodelling is and the abstractionprocess through
which it is accomplished, discussing the main approaches that can
be followed at three levels in this abstraction process, which take the
form of data models, data structures and dual combinatorial/em-
bedding structures. §3.2 describes how 2D and 3D space is currently
modelled in a range of representative concrete cases, from the very
minimal representations used in exchange file formats, in which
simple structures and low storage requirements are preferred, up to
those used internally in CAD-like software, in which the complex
operations that are required necessitate the explicit storage of pre-
cise topological relationships.

Afterwards, this chapter contains sections on how specific non-
spatial characteristics—that nevertheless have a strong link to
space—are modelled: time in §3.3 and geographic scale or the level
of detail of a model in §3.4. Finally, §3.5 concludes the chapter by
pointing out some of the shortcomings of the aforementioned ap-
proaches to model 2D/3D space, time, scale and attributes. As will
be seen in Chapter 4, many of these shortcomings can be resolved
by using a higher-dimensional modelling approach.

3.1 Spatial datamodels and data structures

Spatial modelling aims at the creation of digital representations of
real-world objects. However, real-world objects are complex and
vaguely defined, while computers can only operate on their heav-
ily abstracted and precisely defined digital counterparts. The spa-
tial modelling process therefore uses a series of progressive abstrac-
tions, which start by interpreting reality as a set of high-level con-
crete entities that still resemble real-world objects and processes,
and ultimately aims at creating abstract low-level representations
that are close to what is actually stored in a computer, possibly us-
ing intermediate levels in the process.

23
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This implies the existence of different levels of abstraction, and at
each of these levels different approaches can be followed. While not
all of these approaches are compatible with each other, the feasible
combinationsnevertheless result in a very largenumber of different
computer representations.

As §3.1.1 explains, there are many classification schemes that at-
tempt to group these approaches in a meaningful way according to
various criteria, finding similarities and identifying schemes used
by more than one representation. However, there is no agreement
on the optimumnumber of levels of abstraction to be used, at which
level some of these representational choices fit, nor a comprehen-
sive clear-cut classification of them with no overlapping methods.
In fact, as many of these choices only partially solve the difficulties
of representing a digital object, a single computer system generally
must resort to multiple methods. For instance, implicit (high-level)
models are often used as a way to provide easy user interaction in
software. However, these generally have to be ‘evaluated’ into an-
other, more explicit (low-level) model in order for them to be visu-
alised [Mäntylä, 1988] or to perform the type of computations ex-
pected in GIS, such as many spatial analysis and geometric opera-
tions.

Nevertheless, recognising this layered approach as the basis of the
spatial modelling process, this section introduces the process by de-
scribing the main approaches that can be followed at three different
levels: high-level data models using different paradigms to structure
and discretise space in §3.1.2, how data structures implement these
data models to model 2D/3D space in a form that is easy to imple-
ment in a computer in §3.1.3, and how combinatorial and embedding
structures respectively model the topological and geometric infor-
mation of some of these data structures in §3.1.4.

3.1.1 Classifications of spatialmodels

Considering that there is an incredible variety of methods that are
used to create digital models of the world, but many of these share
important parts of their respective approaches, there are various
classifications that attempt to group them in a meaningful way.

Some of these are primarily based on human cognition of space.
Couclelis [1992] distinguishes views based on empty space pop-
ulated by discrete objects from those based on continuous space-
filling fields, and Goodchild [1992] links objects and fields to spe-
cific computer models that are suitable for them. Freundschuh and
Egenhofer [1997]makes distinctions based on the scaleof suchmod-
els compared to how people experience space, separating models
of objects that are intuitively manipulatable by humans from those
that are not.
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Others are based on suitability for a particular application or use
case. For example, Afyouni et al. [2012] does so for indoor nav-
igation, Gold [2005] for multidimensional GIS, Domínguez et al.
[2011] for building interiors and Pelekis et al. [2004] for spatio-
temporal models.

However, for the purposes of this thesis, it is more interesting to
consider the classifications that reflect a different discretisation of
space or mathematical basis, as these will produce significantly dif-
ferent computer representations.

Regarding general classifications in the GIS domain, researchers
and practitioners alike generally agree on the existence of two high-
level data models—formalised structures describing the world as ab-
stract primitives—, which are the vector and rastermodels. These are
subdivided into a variety of low-level data structures, particular im-
plementations of these data models, of which there are many [van
Kreveld, 1997b]. This classification is not ideal asGIS data structures
are usually specified in an ad hoc manner, sometimes accompanied
with added indexing structures that do not neatly fit into the vector
or raster approach (e.g. R-trees [Guttman, 1984] and 𝑘-d trees [Bent-
ley, 1975]).

Apart from data models and data structures, some authors consider
additional levels. Frank [1992] considers spatial concepts as well, the
humannotions used to understand space. Peuquet [1984] considers
reality itself as a topmost level, including all aspects that may or may
not be perceived by individuals, and a lowermost level with the file
structure, describing how the information is actually represented in
hardware. These are certainly interesting and worthy of study, but
they are out of the scope of this thesis.

In the domain of geometric modelling and computer graphics, the
schemes used are more varied, and thus the classifications used dif-
fer significantly. For 3D objects, there is usually a high-level clas-
sification with several solid representation schemes [Requicha, 1980;
Hoffmann, 1992; Foley et al., 1995], general paradigms to model the
world using a different approach to discretise and decompose ob-
jects. As these normally do not reach the level where it is possible
to unambiguously devise a single computer implementation, these
are more akin to the data models used in GIS. Mäntylä [1988] fol-
lows a similar classification, but groups these schemes into three
paradigms: decomposition models, constructive models and boundary
models, while recognising the existence of hybrid approaches com-
bining multiple paradigms.

While some of these schemes use 3D primitives stored as simple
parametric structures, many of them rely on the specification of 2D
primitives using a separate mechanism, which can also be used di-
rectly for the description of 2D objects. These are usually described
at a low level, generally consisting of 2D cell or simplicial complexes
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21: Cartesian products of sim-
plices

respectively in the form of polygon or triangle meshes, which use one
of a few data structures [Joy et al., 2003; Alumbaugh and Jiao, 2005;
Blandford et al., 2005; de Floriani and Hui, 2005].

Some authors follow a more pragmatic approach, directly classify-
ing data structures based on the class of objects that they are capable
of representing. Čomić and de Floriani [2012] does so for cell com-
plexes, de Floriani and Hui [2005] for simplicial complexes, Lien-
hardt [1991] for spaces in different dimensions, de Floriani et al.
[2005] for models supporting multiple levels of detail, and Lien-
hardt et al. [2009] for models for simplicial, simploidal21 and cell
structures.

Finally, at the lowest level, some authors distinguish between a topo-
logical or combinatorial model [Lienhardt, 1991], which describes the
connectivity between a set of predefined elements, and a geometric
or embedding model, which specifies the exact shape and position of
individual elements [Mäntylä, 1988].

3.1.2 Datamodels or representation schemes

Datamodels are considered as different representation schemes op-
erating at a high-level, differing mostly in their overall approach to
decompose and discretise space into a set of elements with certain
characteristics. Just as the concepts of geometry and topology seen
in Chapter 2, these models are essentially dimension-independent—
even if in practice they are generally implemented as dimension-
specific data structures.

As argued by McKenzie et al. [2001], the ideal data model to be used
depends on the application. An ideal data model is expected to be
both simple and powerful, but unfortunately these properties tend
to conflict. Powerful structures are built upon small and simple
primitives of a fixed form with a fixed (or at least bounded) num-
ber of links to other related primitives, such as boxes or simplices,
enabling them to have a simple but powerful algebra to manipulate
them and to navigate between their primitives efficiently, e.g. the
quad-edge in 2D [Guibas and Stolfi, 1985] or the facet-edge in 3D
[Dobkin and Laszlo, 1987]. However, partitioning complex objects
into these simple primitives can be difficult and result in a large
number of primitives, requiring significant preprocessing, making
them space-intensive and limiting the types of objects thatmight be
stored. In this sense, different data models make different choices
and necessarily involve a trade-off.

The main data models that are used in 2D and 3D are briefly de-
scribed in the following sections, roughly in order of increasing ex-
plicitness. A short statement on how well they extend to higher di-
mensions is also included in each section. The most promising of
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22: There are certainly excep-
tions, such as 3D+scale models
as 4D models where a volume
collapses to a point. However, the
large number of primitives that
would need to be defined for a
system of this kind would make it
impractical.

these models are further analysed in a higher-dimensional context
in §4.3.

Primitive instancing

In primitive instancing, the systemdefines a library of primitives suit-
able for a particular application. Each of the primitives in the li-
brary represents a template for an object that can be parametrised
in terms of high-level parameters, such as the number of teeth and
the size of a gear or the diameter and thickness of a pipe [Foley
et al., 1995]. In 3D city modelling, a common application involves
the modelling of roofs using a library of basic roof shapes (e.g. flat,
hipped and gabled) [Kada, 2007].

The fact that only a few parameters need to be defined makes it easy
to create objects, that is, as long as the desired object resembles one
of the templates in the library. Moreover, given these parameters
and a primitive’s position and orientation, a program can create the
geometry of an object that matches those parameters as output us-
ing a more explicit representation. Such an object can then be used
either directly or as a base for further operations.

Usually, the primitives used in primitive instancing are 3D volu-
metric objects, but they can actually be objects of any dimension.
However, this approach is not very practical for higher-dimensional
models of geographic information, as the objects modelled gener-
ally do not conform to a set of easily parametrisable primitives22.

Sweep representations

Many objects can be modelled as the space occupied by another ob-
ject while it is being translated and rotated along a path. Usually
a 2D cross-section is used for this purpose, which is either trans-
lated or rotated, generating a volume in 3D space. Generalisations
where the cross-section is deformed as well are sometimes consid-
ered [Blackmore et al., 1994]. When the path is linear and the cross-
section is not rotated, it is called a translational sweep, or an extrusion
as it resembles a physical extrusion process as used in manufactur-
ing. When the cross-section does not move and it is merely rotated,
it is called a rotational sweep or a solid of revolution. Among other
applications, this representation is particularly convenient for ap-
plications that require volume computations as itmatches well with
calculus techniques to compute integrals, which can be easily solved
numerically in a computer [Lee and Requicha, 1982].

Since the description of a 2D cross-section is easier than that of a full
3D volume, this significantly eases the process of modelling certain
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Figure 3.1: An object represented
as a tree of Boolean set opera-
tions on a sphere, a cube and three
cylinders. From Wikimedia Com-
mons.

23: i.e. a line in 2D and a plane in
3D.

types of objects [Weld and Leu, 1990]. In a higher-dimensional con-
text, this property is later used to generate 𝑛-dimensional extruded
models in Chapter 6. Generatingmore general higher-dimensional
sweeps and revolutions is also possible using similar methods.

Constructive solid geometry

Constructive solid geometry (CSG) [Requicha andVoelcker, 1977, §12.3]
represents objects as a tree of regularised Boolean set operations on
a set of simple parametrisable primitives. In most instances, these
are volumetric primitives such as balls, cylinders, parallelepipeds,
cones and tori. Figure 3.1 shows an example of such an object. One
of the strengths of CSG is that it allows many operations to be dis-
tributed among the primitives in a tree.

The regularisation step ensures that the resulting objects of any
Boolean set operation are both volumetric and water-tight [Re-
quicha and Tilove, 1978], making many computations easy and ro-
bust. It also makes it relatively easy to transform a CSG tree to a
more explicit representation. CSG is therefore used in most CAD
software and in many game engines.

While CSG extends naturally to higher dimensions, evaluating gen-
eral CSG trees into more explicit representations is non-trivial in
dimensions higher than three. A possible approach to do so would
involve higher-dimensional Nef polyhedra, which are described af-
terwards.

Boolean set operations on half-spaces

There are various representations that store objects using an expres-
sionmadeof Boolean set operations on a set of (openor closed) half-
spaces. Any convex object of any dimension can be represented as
the intersection of a finite set of half-spaces, a common problem
in both linear programming and computational geometry [Shamos
and Hoey, 1976; Preparata and Muller, 1979]. As Figure 3.2 shows,
if a polyhedron is first decomposed into convex parts [Chazelle and
Dobkin, 1979; Bajaj and Dey, 1990], it is then possible to represent
an object as a union of these convex parts, which are then repre-
sented as intersections of half-spaces.

Each of these half-spaces can then be stored easily, e.g. as a tuple
containing the coefficients of a hyperplane23 equation plus an up-
/down direction [Naylor, 1990; Thompson, 2007]. The half-spaces
for an object can be stored either all together or separate per convex
part. Together, for instance, as a collection of plane equations that
represent all the faces of all the convex parts, and each convex part
is represented as a set of tuples of Boolean values, where each value
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(a) (b) (c)

Figure 3.2: (a) A polygon can be
represented as the union of its de-
composition into the convex poly-
gons (b) and (c). Each of these can
then be represented as the inter-
section of four half-planes.

24: This is equivalent to a triangle
in 2D and a polyhedral pyramid in
3D.

(a)

(b)

Figure 3.3: (a) ANef polygon is rep-
resented by (b) a set of local pyra-
mids (circles). At every local pyra-
mid, the polygon (red) becomes an
angular interval. Incident edges
become points at the endpoints of
these intervals.

states whether the part is on the up or down side of a specific plane
[Tammik, 2007].

Nef polyhedra

Nef polyhedra [Nef, 1978; Bieri and Nef, 1988] follow a similar ap-
proach to half-spacemodels, but extend it with the concept of a local
𝑛-dimensional pyramid24, which stores the neighbourhood infor-
mation around every vertex. As Figure 3.3 shows, the local pyramid
of a vertex thus contains the symbolic intersection of an infinitesi-
mally small sphere (in 3D) or circle (in 2D) with the volumes, faces
and edges incident to this vertex. An incident volume thus becomes
a face, an incident face becomes an edge, and an incident edge be-
comes a vertex on the surface of the local pyramid sphere/circle, es-
sentially lowering the dimension of every object by one. An 2D/3D
object can be represented as a set of local pyramids, which can indi-
vidually be stored using simpler 1D/2D data structures.

Nef polyhedra have two properties that make them one of the most
promising representations for higher-dimensional models of geo-
graphic information: (i) the possibility to reduce the dimensional-
ity of a representation by one, which can be applied recursively in
order to model objects of any dimension, and (ii) the possibility to
perform operations on the local pyramid level. The former is dis-
cussed in more detail in §4.3.3 and the latter in §5.1.2.

Function representation

Function representation, commonly abbreviated as F-rep, involves
representing objects as point sets using an arbitrary continuous
function [Pasko et al., 1995], which is represented as an algebraic
expression. When a given function 𝑓(𝑥􏷟, 𝑥􏷠, … , 𝑥𝑛) is evaluated at
a point with coordinates (𝑥􏷟, 𝑥􏷠, … , 𝑥𝑛), it is possible to know if the
point lies in the interior, boundary or exterior of an object. If it is
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25: http://www.ecmwf.
int/en/about/media-
centre/news/2016/new-
forecast-model-cycle-brings-
highest-ever-resolution

positive the point is in the interior of the object, when it is zero it is
on the boundary of the object—in 2D known as an isoline and in 3D
as an isosurface—, and when it is negative it is outside the object.

By varying the number of input parameters, which in most cases
represent a point along an axis, function representations are ap-
plicable to any dimension. Moreover, unlike a half-space inequal-
ity, such functions do not need to be linear. As with half-space
based representations, the spaces described by these functions can
be combined using Boolean set operations, which is done on the
basis of Rvachev functions (R-functions) [Rvachev, 1963]. How-
ever, evaluating these functions in higher dimensions can be com-
plex, and obtaining a continuous function that adequately models
a higher-dimensional object is also non-trivial.

Exhaustive enumeration

Starting from the description of a domain that covers the objects
that need to be described, a simple deterministic rule is used in or-
der to partition the domain directly into cells, which are of the same
dimension as the domain (i.e. they are space-filling). In this man-
ner, the decomposition rule is encoded into the model rather than
in the data being represented, and so the cells do not need to store
any geometric information of their own. Normally, the domain
has a simple shape (e.g. a rectangle, hexagon or box) [ISO, 2007a,
§6.8] and the rule partitions it into simple cells of the same size and
shape (e.g. rectangles or boxes themselves), in which case it is called
amonohedral tessellation [Boots, 1999]. If the cells are regular poly-
gons or polyhedra, it is known as as regular tessellation.

In most cases, squares or rectangles (in 2D) and cubes or paral-
lelepipeds (in 3D) are used for simplicity, respectively resulting in
pixel and voxel structures. When other shapes are used, it is nor-
mally desirable to have cells that resemble equally-sized disks or
balls as much as possible, something that is related to the sphere
packing or kissing number problems in geometry [Conway and
Sloane, 1992]. Semi-regular tessellations, which consist ofmore than
one type of polygon/polyhedron are also possible but are not widely
used, even in 2D. In 2D, the most commonly used other shapes are
triangles and hexagons. In 3D, parallelepipeds or cubes are almost
always used, but the face-centred cubic or hexagonal close-packed
lattices are possibilities that resemble balls more closely. For in-
stance, the newmodel cycle from the EuropeanCentre forMedium-
Range Weather Forecasts25 uses a cube-octahedron honeycomb that
wraps around the Earth.

These cells are thenused to recordwhether the cell belongs to the in-
terior of the object or not, or in the case of multiple objects, which

http://www.ecmwf.int/en/about/media-centre/news/2016/new-forecast-model-cycle-brings-highest-ever-resolution
http://www.ecmwf.int/en/about/media-centre/news/2016/new-forecast-model-cycle-brings-highest-ever-resolution
http://www.ecmwf.int/en/about/media-centre/news/2016/new-forecast-model-cycle-brings-highest-ever-resolution
http://www.ecmwf.int/en/about/media-centre/news/2016/new-forecast-model-cycle-brings-highest-ever-resolution
http://www.ecmwf.int/en/about/media-centre/news/2016/new-forecast-model-cycle-brings-highest-ever-resolution
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objects are present inside the cell. After such a tessellation is de-
fined, a programatic order or path that traverses all cells (i.e. a space
filling curve) is defined [Sagan, 1994], and the order of the cells
along this curve is used to store them by enumerating for each cell
whether a cell belongs to the interior of an object.

Exhaustive enumeration schemes are straightforward to extend to
higher dimensions, as is further discussed in §4.3.1, with the caveat
that their space complexity can increase exponentially on the di-
mension.

Hierarchical subdivisions using trees

A more general possibility to partition a domain involves using a
hierarchical schemewhere a space is recursively subdivided accord-
ing to a particular criterion, resulting in a tree structure where a
given node is a partition primitive that divides the space defined
by its parent. The leaves of the tree are then used to record whether
a cell belongs to the interior of an object or not. Such structures are
generally known as space partitioning trees. In this manner, it is
possible to efficiently partition spaces of any dimension, including
areas and volumes where the objects’ sizes are significantly differ-
ent. However, the shape of a cell in the subdivision is only known
after traversing a path of the tree all the way from its root to the leaf
that corresponds to the cell.

In the simplest case, the space can be split evenly into halves along
all axes at every partition node, resulting in a quadtree in 2D [Finkel
and Bentley, 1974] or an octree in 3D [Meagher, 1980]. Bintrees
[Samet and Tamminen, 1985] partition space alternating among di-
mensions rather than all at once, while 𝑘-d trees [Bentley, 1975]
do so at an arbitrary point rather than at the midpoint of a space.
Many other types of trees however exist. See [Manolopoulos et al.,
2006].

As in exhaustive enumeration, this type of representation extends
very naturally to higher dimensions (§4.3.2). However, the space
used by hierarchical subdivisions can also increase exponentially
on the dimension.

More general cell decompositions

Another possibility to represent the geometry of an object involves
its decomposition into cells that are more complex than those in
the exhaustive enumeration approach, such that they are still of the
same dimension as the domain being partitioned but might have
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different sizes and/or shapes. Nevertheless, they should still be de-
scribable as single computer primitives. This requires geometric in-
formation to be stored within each cell (e.g. the coordinates of one
or more points).

While an arbitrary number of cell decomposition schemes are pos-
sible, the most interesting ones in a dimension-independent con-
text are 𝑛-dimensional constrained triangulations and Voronoi dia-
grams, as these have a simple dimension-independent formulation.
2D constrained triangulations [Chew, 1989; Shewchuk, 1996a] and
3D constrained tetrahedralisations [Si and Gärtner, 2005] are very
commonly used in GIS in order to subdivide objects respectively
into triangles and tetrahedra, resulting in models that can be repre-
sented as simplicial complexes where every simplex can be respec-
tively described by three and four linearly independent points at
their vertices. Another common possibility uses Voronoi subdivi-
sion described by a single point per cell [Voronoi, 1908], something
that is particularly suitable to field-like GIS data [Ledoux, 2006].

More information on how simplicial complexes are stored in 2D
and 3D GIS is given in §3.1.3. §4.3.4 later describes how this extends
readily to higher dimensions.

Incomplete (implicit) models

Incomplete models attempt to describe a space partition based on
implicit rules applied to lower-dimensional primitives only, usually
for simplicity purposes. As such, the actual cells forming the parti-
tion are created on the fly. Under some circumstances, such aswhen
modelling non-manifolds or when the dimension of the primitives
is significantly lower than that of thehighest-dimensional cells, they
cannot be unambiguously described.

The most typical problematic examples are wireframe models in
3D, which represent volumes using only vertices and edges. While
in many cases it is possible to correctly interpret a volume from a
wireframe model [Brewer III and Courter, 1986; Hanrahan, 1982],
as shown in Figure 3.4 there are cases wireframe representations are
ambiguous. They are therefore considered an incomplete represen-
tation and are generally not used in current systems.

Despite their drawbacks, incomplete implicit models are however
frequently used in 3D GIS and when modelling time, resulting in
ill-defined volumes or unclear equivalences of objects across time.
Many of these disadvantages are alluded later on in order to justify
using more explicit representations in higher dimensions.
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(a) (b)

(c) (d)

Figure 3.4: The wireframe model
(a) can be interpreted as the three
different volumes (b), (c) and (d).

26: This is somewhat contentious.
See van Dalen [2013, Ch. 5].

Boundary representation

Considering the Jordan curve theorem [Jordan, 1887], which states
that a closed curve separates the plane (i.e. ℝ􏷡) into two parts: an
interior shape and an exterior shape, it is possible to use this curve
in order to implicitly but unambiguously represent the interior (or ex-
terior) shape. This theorem was generalised to higher dimensions
as the Jordan-Brouwer theorem by Lebesgue [1911] and Brouwer
[1911]26, implying that a volume in ℝ􏷢 can be represented by the
2D boundary surface that separates its interior from its exterior.
Thismethod, known as boundary representation, B-rep or surface mod-
elling, reduces the complexity of the problem by making it possible
to use 2D data models/structures to store 3D objects, which are sig-
nificantly simpler. Moreover, by decomposing the 2D surface into
simple cells, e.g. triangles or polygons, it becomes possible to rep-
resent the surface using one of the many data structures capable of
representing 2Dcell complexes, and if these cells support curveddo-
mains (e.g. NURBS), these can be used to represent complex surfaces
as well.

While certain problems become more difficult by the use of bound-
ary representation, such as the fact that it is easy to create invalid
objects, some others can be performed directly on the 2D cells. For
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27: A clear exception are the ad
hoc data structures often used in
GIS, which usually define a set of
fields that is different per dimen-
sion, resulting in awkward defini-
tions at the data model level.

instance, visibility queries or determining if a point is in the inte-
rior of an object can be performed by shooting rays.

As will be discussed in §3.1.3 in 2D/3D and §4.3.5 in 𝑛D, cell com-
plexes are effectively represented using boundary representation
schemes. §4.3.6 instead shows how an 𝑛-dimensional cell complex
can be represented using a data structure based on a simplicial com-
plex. The latter approach arguably combines the benefits of both
simplicial complexes and cell complexes, andwas thusused formost
of the methods developed in the latter chapters of this thesis.

3.1.3 Data structures

The terms ‘data model’ and ‘data structure’ are often used inter-
changeably, but within this thesis it is useful to make a distinc-
tion between a data model, i.e. a particular dimension-independent
discretisation of space into abstract primitives of a certain form,
from the data structure(s) used to implement it, i.e. their represen-
tation in a computer-compatible form [Frank, 1992], which is of-
ten dimension-specific. A data model broadly defines the shape of
the primitives and relationships that exist between them. In con-
trast, a data structure defines a concrete representation of these prim-
itives, deciding to explicitly store some of these relations and omit
others. Within this thesis, we refer to the omitted relations as being
described implicitly. Note that even implicit relations can usually be
computed from a model, but with an added computational cost.

This distinction is blurred because many data models have very
straightforward, natural representations27. As shown in §2.2, many
geometric primitives can be stored on the basis of a set of points
or the coefficients of an equation—all of which can be stored as tu-
ples of numbers. This is also true for the subdivision primitives in
cell decomposition schemes and in most cases for the definition of
the domain in exhaustive enumeration as well. Meanwhile, prim-
itive instancing schemes and constructive solid geometry models
can be stored as tuples of parameters. For instance, one of these pa-
rameters is the shape that is used and the other parameters store its
parametrisable characteristics.

However, some other data models work with primitives that are
more abstract or complex to represent in a computer. For instance,
the schemes used by sweep representations, Nef polyhedra and
boundary representations all reduce the dimensionality of the ob-
jects to be modelled, but ultimately need either to be applied recur-
sively or to be combined with a different specific method.

This section lists the data structures for subdivisions of 2D and 3D
space that have a possible natural extension to higher dimensions,
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1
1  1
1  2  1
1  3  3  1
1  4  6  4  1

Figure 3.5: The (𝑖 − 􏷡)-th row of Pas-
cal’s triangle, which is obtained
by adding the numbers in the
row above, gives the number of
faces of every dimension in an 𝑖-
simplex. For instance, a tetrahe-
dron (3-simplex) has 4 vertices, 6
edges, 4 faces and 1 volume.

28: even if it is embedded in a
dimension higher than two, e.g.
the triangulated surfaces embed-
ded in 3D (TINs) that are common
in GIS

grouped based on the class of objects that they are capable of rep-
resenting efficiently, i.e. without requiring brute-force searches or
external data structures to navigate between the elements.

2D and 3D simplicial complexes

Simplicial complexes can always be respectively stored using the
data structures for cell complexes, which are presented in the fol-
lowing sections. In some cases this is necessary, such as when a sim-
plicial complex is first being created by triangulating a cell complex.
However, the simplices in a simplicial complex have a fixed shape,
which allows for the usage of more efficient data structures.

An 𝑛-dimensional simplex has a fixed number of faces of every di-
mension up to 𝑛, which are given by Pascal’s triangle as shown in
Figure 3.5. This means that in a 2D simplicial complex, i.e. a trian-
gulation28, every triangle has three vertices and three edges, and it
is adjacent to at most three other triangles. Similarly, in a 3D sim-
plicial complex, i.e. a tetrahedralisation, every tetrahedron has four
vertices, six edges and four faces, and it is adjacent to at most four
other tetrahedra.

Because of this, 2D simplicial complexes are usually stored using
triangle-based data structures and 3D simplicial complexes using
tetrahedron-based data structures. These respectively use trian-
gles/tetrahedra as primitives, which can store attributes for them-
selves (e.g. whether it is part of a given object) and for (some of)
their faces, and are linked to their adjacent triangles/tetrahedra. As
shown in Figure 3.6, a minimal representation of this type would
only consist of triangles/tetrahedra linked to their vertices, either
as tuples of coordinates or as pointers to a member of a list of sepa-
rate point primitives.

Another possibility, also enabled by the fixed form of the simplices
in a simplicial complex, is to use compression schemes in order to
store them more efficiently. For example, Blandford et al. [2005]
show how several of these schemes can be used: storing only some
of the vertices in each simplex, difference coding to minimise the

(a) Adjacent triangles (b) Vertices of a triangle (c) Coordinates of a ver-
tex

Figure 3.6: A simple triangle-based
data structure consists of a set of
triangles, each of which points to
its three adjacent triangles and its
three incident vertices. This is ac-
companied by an indexed list of
vertices and their coordinates.
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Figure 3.7: A polygonal curve, also
known as a polyline, is a curve
made from contiguous line seg-
ments. It is commonly repre-
sented as a sequenceof points con-
nected by implicit line segments,
in this case (𝑝􏷪, 𝑝􏷫, 𝑝􏷬, 𝑝􏷭).

Figure 3.8: In the polygon model,
every polygon is represented sepa-
rately as a list of vertices. Note that
every vertex is thus represented
once for each polygon where it is
used.

Figure 3.9: In the spaghetti model,
common boundaries are identi-
fied and represented only once.
However, the polygons are only
implicitly described.

size of the IDs that are stored, and using collections of adjacent sim-
plices (e.g. the star of a vertex) as primitives. It is also possible to use
progressive representations that approximate the simplicial com-
plex incrementally [Popović and Hoppe, 1997], or to compress it as
a sequence of operations from which the original structure can be
incrementally deduced [Rossignac and Szymczak, 1999].

2D cell complexes

Considering the Jordan curve theorem [Jordan, 1887] and the prin-
ciples of boundary representation, as presented in §3.1.2, 𝑛D cells
can be represented based on their (𝑛 − 1)D boundary. 2D cells can
be thus be represented based on their 1D boundary. Since linear 1D
objects, such as the polygonal curve (polyline) in Figure 3.7, are no-
tably easy to represent, this is the approach that is favoured by most
data structures for 2D cell complexes.

The simplest data structures for 2D cell complexes store every 2-cell
independently as a list of vertices, as is shown in Figure 3.8. This
might be done by storing its coordinates directly in the list, some-
times known as the polygon model, or by keeping an external list
of points and referring to point IDs in it, sometimes known as the
point dictionary representation [Peucker and Chrisman, 1975].

Another simple approach consists of identifying the polygonal
curves that form the common boundary that lies between two poly-
gons (or one polygon and the exterior), splitting them at the vertices
that are incident to three or more polygons (or two polygons and
the exterior) and storing them only once, as is shown in Figure 3.9.
This means that most points are only stored once as well (except for
those at the beginning or end of these polygonal curves). In GIS,
this is sometimes known as the spaghetti model and the polygonal
curves are known as chains29. Unlike 3D wireframe models, these
polygonal curves are sufficient to identify the polygons in a 2D cell
complex30—a problem known as polygonisation in GIS, which is
related to the computation of all intersections in arrangements of
lines in computational geometry [de Berg et al., 2008, Ch. 8]. How-
ever, additional processing is required to do so as the polygons are
not stored directly.

Most other data structures take into account the fact that every edge
or chain in a 2D cell complex lies between two cells, and so it is
very convenient to use these edges to store information about the
two cells that are incident to them. For instance, the Node-arc-area
(NAA) or POLYVRT (Polygon Converter) data structure [Peucker
and Chrisman, 1975] also uses chains, but stores for each chain the
polygons on the left and right side according to the order in which
its vertices are stored.
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(a) (b) (c)

Figure 3.10: (a) A polygon is non-2-
manifold as the space around the
vertex (highlighted in a red cir-
cle) is not homeomorphic to the
plane (i.e. ℝ􏷫). Its linear bound-
ary is non-1-manifold as the space
around the vertex is not homeo-
morphic to the line (i.e. ℝ). (b) &
(c) However, the polygon can still
be represented using a loop of ori-
ented half-edges by having a dupli-
cate vertex at that location (shown
as two half balls), but there are two
ways in which this can be done.
Note that these are not equally de-
sirable as (c) results in a discon-
nected graph.

(a) (b) (c)

Figure 3.11: (a) A 2D cell complex of
three polygons is represented us-
ing (b) the DCEL and (c) a 2D com-
binatorial map. In the DCEL, a
half-edge 𝑒 is meaningfully related
to two vertices (the origin and the
destination) and one face, and is
linked to its next half-edge (on the
same face) and its twin half-edge
(on the adjacent face). In a 2D
combinatorial map, a half-edge 𝑒 is
meaningfully related to one vertex
and two faces (on either side), and
is linked to the half-edge on the op-
posite side of the same edge 𝛼(𝑒)
and the half-edge on the same ver-
tex but on the next edge (as given
by a rotation direction).

29: Note however that the
spaghetti model sometimes refers
to other types of related models.
The only fact that all references
to a spaghetti model have in
common is the fact that chains
are stored individually.

30: As long as it strictly conforms
to the definition of a cell com-
plex, e.g. by havingnooverlapping
polygons and ensuring that poly-
gons are perfectly closed with no
overshoots or undershoots.

31: In the case of the DCEL this
is conceptually done lengthwise,
graphically resulting in side-by-
side edges with opposite orienta-
tions on either side of the edge.
In the case of 2D combinatorial
maps it is instead done at the half-
way point, graphically resulting in
end-to-end edges. However, these
are functionally equivalent.

There are several data structures based on half-edges, oriented edges
or vertex-edge pairs. All of these are functionality equivalent and
are able to store a 2D cell complex or its dual. However, since cells
in a cell complex are supposed to be manifold, special care is usu-
ally necessary to represent cells with a non-manifold domain. An
example of this shown in Figure 3.10.

Among the half-edge based data structures, the winged-edge data
structure [Baumgart, 1975] considers edges as the main primitive,
gives them an orientation, and maintains two records for the left
and right polygons, as well as four records for the previous and next
oriented edges along the boundaries of both of these polygons. As
shown inFigure 3.11, the doubly-connected edge list (DCEL) [Muller
and Preparata, 1978] and 2D combinatorial maps [Edmonds, 1960],
achieve a similar result but have a more elegant and usually more
efficient approach, dividing edges into half-edges31, which makes it
easier to follow the cycles representing polygons.

The quad-edge data structure [Guibas and Stolfi, 1985] attempts to
unify most of the half-edge-like structures by rigorously naming
all the possible relationships between an oriented edge and other
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[ ]

Figure 3.12: In the quad-edge data
structure, an edge stores a quad,
four records pointing to other
quads corresponding to the pre-
vious and next oriented edges for
the polygons on both of its sides.

nearby oriented edges or vertices in its quad-edge algebra, which
moreover includes the dual vertices and edges of the 2D cell com-
plex. However, only a few of these relations need to be stored. For
instance, Guibas and Stolfi [1985] proposes a structure of quads,
which store for a given edge only the previous and next oriented
edges for the polygons on both of its sides. As shown in Figure 3.12,
these quads store all the necessary relationships to traverse the
edges of a polygon in both clockwise and anticlockwise order, as
well as to navigate between adjacent polygons that are incident to
a given edge or vertex.

3D cell complexes

While data structures for 2D cell complexes can rely on the fact that
an edge is incident to at most two faces, this is not the case in a 3D
cell complex. The data structures for 3D cell complexes are there-
fore significantly more complex, requiring additional information
in order to efficiently traverse the many faces incident to an edge
and between different volumes.

The facet-edge data structure [Dobkin and Laszlo, 1987], shown in
Figure 3.13, considers an incident face-edge pair as a single primi-
tive, which is known as a facet-edge. Groups of eight of these primi-
tives are then stored as a single group, consisting of the four differ-
ent orientation combinations of a facet-edge and the ones of its dual
(consisting of the dual face and dual edge of the facet-edge).

The V-map data structure [Lienhardt, 1988], related to the notion
of 2D combinatorial maps [Edmonds, 1960; Cori, 1975], splits edges
into half-edges per edge, per face and per volume. These half-edges,
called threads, result in faces that are modelled as cycles of half-
edges, as is shown in Figure 3.14.

The radial edge data structure [Weiler, 1988] follows a similar ap-
proach, dividing faces into face uses per volume and representing
these faces uses as cycles of edge uses where every edge use is linked
to a vertex use. Based on this structure, it is possible to keeps a hier-
archy of 3D objects, recursively composed of volumes, shells, faces,
loops, edges and vertices.

Figure 3.13: (a) The facet-edge data
structure considers an incident
face 𝑓􏷩 and edge 𝑒􏷩 as a single facet-
edgeprimitive 𝑎, eachwith aprede-
fined orientation. The orientation
of the face of 𝑎 defines the order
along its incident edges 𝑒􏷩, 𝑒􏷪, 𝑒􏷫, 𝑒􏷬.
The orientation of the edge of 𝑎 de-
fines the order along its incident
faces 𝑓􏷩, 𝑓􏷪, 𝑓􏷫. (b) A set of opera-
tions on the facet-edge 𝑎 is used to
traverse the structure. (a) (b)
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(a) Tetrahedral 3-cell

α
σ

γ

(b) V-map

Figure 3.14: A tetrahedral 3-cell is
represented as a V-map. Since a
V-map considers half-edges to be
distinct per face and per volume,
every edge is here represented by
four threads. Within a face, it
is possible to switch between the
threads of an edge (in French arête)
with the operator 𝛼 and between
the threads of a vertex (in French
sommet) with the operator 𝜎. In
addition, it is possible to navigate
between the threads on different
faces or volumes with the operator
𝛾.

CHAPTER 3. REPRESENTATION SCHEMES
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opposite edge−use

vertex

sphere map
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oriented facet

Figure 3.3: A selective Nef complex: We show one facet with two vertices, their
sphere maps, the connecting edges, and both oriented facets. Shells and volumes
are omitted.

Edge-uses: An edge can have many incident facets (non-manifold situation). We
introduce two oppositely oriented edge-uses for each incident facet; one for
each orientation of the facet. An edge-use points to its corresponding ori-
ented edge and to its oriented facet. We can uniquely identify each edge use
with an shalfedge, or, in the special case, also with an shalfloop.

Facets: We store oriented halffacets as boundary cycles of oriented edge-uses. We
have a distinguished outer boundary cycle and several (or maybe none) inner
boundary cycles representing holes in the facet. Boundary cycles are linked
in one direction. We can access the other traversal direction when we switch
to the oppositely oriented halffacet, i.e., by using the opposite edge-use.

Shells: The volume boundary decomposes into different connected components,
the shells. They consist of a connected set of facets, edges, and vertices
incident to this volume. Facets around an edge form a radial order that is
captured in the radial order of sedges around an svertex in the sphere map.
Using this information, we can traverse a shell completely starting at an ar-
bitrary entry element with a graph search.

Volumes: A volume is defined by a set of shells, one outer shell containing the

22

Figure 3.15: A selective Nef com-
plex. The half-edge structure on
ℝ􏷬 uses standard (oriented) faces,
edges and vertices. The half-
edge structure on the surfaces of
the spheres uses sfaces (not shown
here), sedges and svertices. Note
how sedges are the intersections of
a face with the spheres of its in-
cident vertices, and svertices are
the intersections of an edge with
the spheres of its incident (origin
and destination) vertices. From
Hachenberger [2006].

Selective Nef complexes [Hachenberger, 2006], shown in Figure 3.15,
implement 3D Nef polyhedra using a combination of two half-edge
data structures, a common one that represents faces as cycles of
edge-uses, and one that represents the local pyramids around ev-
ery vertex as subdivisions on the surfaces of (infinitesimally small)
spheres. This combination of data structures significantly reduces
the complexity of computing certain operations on Nef polyhedra,
including convex decompositions, Minkowski sums and Boolean
set operations.

3.1.4 Combinatorial and embedding structures

In many of the data structures presented in §3.1.3, an additional dis-
tinction can be made between a topological or combinatorial model
[Lienhardt, 1991], which was the focus of the previous section and
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32: See Biljecki et al. [2014b] for a
good description of these.

describes the connectivity betweena set of predefinedelements, and
a geometric or embedding model, which specifies the exact shape and
position of individual elements [Mäntylä, 1988]. This embedding
model can be as simple as a point in ℝ􏷡 or ℝ􏷢 that is assigned to ev-
ery vertex, resulting in linear geometries when the points for a face
are collinear/coplanar.

However, it is often useful to have more powerful embedding
information—allowing for more complex shapes (e.g. curved sur-
faces) or the storage of attributes. Normally, this embedding in-
formation is put into embedding structures that correspond to sim-
plices or cells and can be used to store geometric and attribute in-
formation for themselves and their faces. When a simplex/cell has
an explicit representation as a single data structure primitive, these
structures are not necessary and the information for the simplex/-
cell can be put into the corresponding primitive. Otherwise, the
embedding structures are separate data structures that are linked to
related primitives, e.g. the two half-edges of an edge being linked to
an embedding structure containing information about the edge, or
a half-edge being linked to the structures for its incident faces.

Embedding structures are also used in order to keep semantic infor-
mation. While the complex structures that are required for complex
semantics are outside the scope of this thesis32, embedding struc-
tures can store a cell’s attributes as a tuple of fields for a cell. When
more complex information is required, external data structures can
bekept and linked to/from the embedding structure [Kuhn, 2005].

The geometric information that is necessary to store more complex
shapes (e.g. curves and curved surfaces) can be similarly kept as a
tuple of parameters. For instance, composite Bézier curves and sur-
faces [Bézier, 1977] can be stored using a cell complexwhere the ver-
tices store control points. These are accompanied with some external
knowledge such as the order of the curve/surface. Non-uniform ra-
tional basis splines (NURBS) curves and surfaces [Versprille, 1975]
can also be stored as a cell complex of control points with knot vec-
tors stored as lists in the embedding structures used for the edges.

3.2 Modelling of 2D and 3D space in practice

Based on the concepts of the different data models, data structures
and combinatorial/embedding structures presented above, this sec-
tion discusses how these are applied and combined in practice in
various international standards, file formats and software. These are
ordered from the simple geometric models that allow only for visu-
alisation and simple calculations, up to the complex, more topolog-
ical models that enable simulations and other complex computa-
tions.
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33: https://www.opengl.org

34: a subset of DirectX: http://
msdn.microsoft.com/directx
35: http://www.amd.com/mantle

36: https://www.khronos.org/
webgl/
37: https://www.khronos.org/
vulkan/

Figure 3.16: A triangle strip is eas-
ily defined as a list of vertices
(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ). Every triangle is
formed by three consecutive ver-
tices in the list.

3.2.1 Models used in visualisation, computer graphics and
gaming

The simplest geometric models are those that are used solely for vi-
sualisation. Low-level application programming interfaces (APIs)
for 3D graphics, e.g. OpenGL33, Direct3D34, Mantle35, WebGL36 and
Vulkan37 work with large numbers of simple geometric primitives
with 3D coordinates, such as points, line segments and triangles, all
of which can be used alone or as structured sequences (such as tri-
angle strips, as shown in Figure 3.16). These can be passed directly,
loaded into video RAM, and be processed and rendered in parallel
by graphics hardware. Subproblems in this process are therefore of-
floaded onto techniques that can be easily parallelised and done in
hardware. For example, the visibility computations involved when
rendering a set of polygons in 3D can be handled using Z-buffers
[Straßer, 1974].

3.2.2 Exchange file formats and standards in GIS and BIM

The file formats that are meant for the exchange of spatial objects
inGIS—sometimes codified in (international) standards—generally
opt for a minimal representation of the geometries involved. Poly-
lines and polygons are thus stored as sequences of points connected
by implicit line segments, as this is a more compact and intuitive
representation than a set of (unordered) line segments. By con-
trast, volumes are represented as (unordered) sets of their bound-
ing polygonal faces. As no topological relationships are recorded
between these polygons, these types of representations are known
as non-topological models in GIS.

The Simple Features Specification [OGC, 2011] is an international
standard from both the Open Geospatial Consortium and the In-
ternational Organization for Standardization (as ISO 19125 [ISO,
2006]). It is widely used as the basic geometric model in sim-
ple GIS formats and defines a variety of geometry classes, each of
which is linked to a reference system. These are shown in Fig-
ure 3.17. A LineString (or LinearRing) is represented as a se-
quence of two or more Points. Apart from this relation and ignor-
ing the generalisation relationships, the classes form a tree struc-
ture, with higher-dimensional classes being simple aggregations of
lower-dimensional ones. A Polygon is made of at least one Linear-
Ring (one outer and possibly multiple inner ones defining holes),
and a PolyhedralSurface is made of a set of patches of Polygons.
No relationships connect a class with itself or others of the same
dimension.

GML [OGC, 2012], is the most widely used international standard
to represent 2D and 3D geographic information. It has been further

https://www.opengl.org
http://msdn.microsoft.com/directx
http://msdn.microsoft.com/directx
http://www.amd.com/mantle
https://www.khronos.org/webgl/
https://www.khronos.org/webgl/
https://www.khronos.org/vulkan/
https://www.khronos.org/vulkan/
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Figure 3.17: The geometry class hierarchy defined in the Simple Features Specification [OGC, 2011].

38: There is no implicit connec-
tion between the first and last
points in a CityGML polygon, so
the first point needs to be repeated
at the end.
39: http://www.buildingsmart-
tech.org/specifications/ifc-
releases

formalised as ISO 19136 [ISO, 2007b] and is the basis of other stan-
dards, such as CityGML [Gröger et al., 2012], which is used for the
exchange of 3D city models. In terms of geometry, it implements
a subset of the types in the ISO 19107 standard [ISO, 2005a], which
are shown in Figure 3.18. It similarly considers LineStrings repre-
sented as sequences of at least two points, LinearRings as sequences
of at least four points38. Polygons consist of one exterior and zero
or more interior Rings, and various surface types are composed of
different kinds of SurfacePatches.

The Industry Foundation Classes (IFC)39 standard is an open data
model used in the Building-information modelling (BIM) domain
for the exchange of constructionmodels, often including 3Dmodels
of buildings. It has also been adapted as the ISO 16739 international
standard [ISO, 2013]. Its geometric aspects are however mostly de-
fined or derived from a different standard—ISO 10303 [ISO, 2014].
Unlike the data models originating in GIS (e.g. Simple Features and
CityGML), there is an important emphasis on the definition of a
local coordinate system per object (as opposed to the national or re-
gional coordinate systems used in GIS). This reflects the fact that in
BIM every object is generally modelled independently before later
being fitted together. Hierarchical descriptions of objects thus re-
sult in hierarchically applied coordinate system transformations.
Boundary representation and tessellation geometries are supported
as in othermodels, but IFC supports amuch greater variety of geom-
etry classes, which include implicit geometries based on half-space
intersections, Constructive Solid Geometry (as a tree of Boolean set
operations) and sweeps (based on a cross-section), such as the one
shown in Figure 3.19.

http://www.buildingsmart-tech.org/specifications/ifc-releases
http://www.buildingsmart-tech.org/specifications/ifc-releases
http://www.buildingsmart-tech.org/specifications/ifc-releases
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Figure 3.18: The geometric classes
from the ISO 19107 standard [ISO,
2005a] that are implemented in
the GML standard [OGC, 2007].

40: http://grass.osgeo.org

(a)

(b)

Figure 3.19: The IFC standard
supports objects defined through
sweeps, which are defined by (a)
an IfcPCurve (black spiral) and a
SweptArea (blue disk), in this case
resulting in (b) a screw shape.

3.2.3 Models used in 2D and 3DGIS

When the first GIS were developed in 1960s and 1970s, such as
SYMAP [Chrisman, 1988] and the Canada GIS [Tomlinson, 1988],
they used boundary representation, depicting 2D areas as polygons
definedby a sequenceof vertices. By the 1980s, a topological approach
based on planar partitionswas instead used in systems likeGRASS40

and the coverages of ArcInfo [ESRI, 2005]. This was done using an
intermediate representation where all input objects are partitioned
into homogeneous regions [Rossignac and O’Connor, 1989], such
that each region is linked to a set of input objects that are all present
in the entire region. This intermediate representation is obtained
by performing geometric intersection operations on all of the input
objects and allows these partitions to be represented using the types
of data structures for 2D cell complexes presented in §3.1.3.

However, current 2D GIS software has reverted to the use of sim-
ple data structures with very little or no topology, which are then
supplemented by external spatial indices for speed. This type of
representation has some drawbacks: it encourages inefficient rep-
resentations where primitives are represented multiple times (e.g.
when a face is part of the boundary of two polyhedra) [Cromley,

http://grass.osgeo.org
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1992, Ch. 3], whichmightnotmatch exactly [de la Losa andCervelle,
1999], it makes it difficult to check that a set of bounding elements
conforms to certain properties (e.g. properly enclosing a space or
being manifold), and the topological relationships between many
elements need to be recomputed.

However, in the context of current 2D GIS software, in which dif-
ferent data sources are dynamically loaded and used together, it is
often more efficient to opt for a representation with little topology,
instead computing topological relationships only if and when they
are needed, such as is done in ArcGIS [ESRI, 2005] and in some
QGIS plug-ins. Many current use cases can actually do without
the computation of these topological relationships: as explained in
§3.2.1, visualisation does not require explicit topology, today’s fast
computers can process many datasets using simpler brute force ap-
proaches, and algorithms can take advantage of strong properties
that are intrinsic to the 2D case, such as that it is possible to define a
natural (sequential) order for the points around a closed polygonal
curve, or that there can be atmost two polygons incident to any edge
in a planar partition.

Moreover, it is more robust—and often more convenient—to con-
sider the geometric and topological information that is stored in
a file as suspect, programming defensively to avoid errors in soft-
ware by using repair techniques such as those that will be discussed
in Chapter 10, as errors can frequently appear due to a variety of
causes, e.g. numerical errors [Goldberg, 1991; Schirra, 1997] or dif-
fering interpretations of invalid objects [Ledoux et al., 2014].

The situation regarding 3DGIS ismore complex, consisting ofmany
custom made ad hoc systems that are very frequently described in
the literature (e.g. the impressive one developed by Zhang et al.
[2011]) following both topological and non-topological approaches,
but in practice, there are very few general-purpose publicly avail-
able 3D GIS. In addition to this, there is limited 3D functionality in
existing GIS software, such as 2.5D data containing elevation as an
attribute [Raper, 1989], or capabilities for simple storage, visuali-
sation and editing (e.g. moving vertices) of 3D models. This leaves
more complex geometric operations, such as the use of Boolean set
operations or complex deformations of 3Dmodels within the realm
of CAD or 3D modelling software. Partly as a consequence, 3D GIS
datasets commonly contain large numbers of invalid geometries
[Zhao et al., 2014].

3.2.4 Models used in 3Dmodelling software and libraries

Compared to GIS software, 3D modelling, CAD and other similar
software have a greater emphasis on (interactive) editing and other
operations that alter the geometry of a 3Dobject. However,many (or
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41: Unfortunately, it is difficult to
know which data structures are
used internally in most commer-
cial software, so this analysis is
necessarily limited.

42: It is important to note the
term ‘topological data struc-
ture’ has completely opposite
meanings in GIS and CAD. The
non-topological (Simple Features)
approach in GIS is equivalent
to the standard CAD topological
data structure; the standard
GIS topological data structure
is equivalent to a CAD mesh,
which is widely considered as
the less topological approach.
Objectively, they both embrace
topology in different ways. The
GIS topological data structure
stores the (algebraic) topological
relationships between polygonal
areas; the CAD topological data
structure stores the (point-set)
topological relationships between
a polygon/polyhedron and its
different rings/shells.
43: http://www.opencascade.org
44: http://www.freecadweb.org
45: http://www.salome-
platform.org

46: http://www.blender.org
47: http://moka-modeller.
sourceforge.net

48: http://brlcad.org
49: http://www.openscad.org

most) 3D modelling software41 represent 3D objects only as closed
surfaces, using triangular or polygonal meshes that can be stored
using the data structures for 2D simplicial/cell complexes presented
in §3.1.3. This is not a limitation for simple 3D editing functionality,
such as moving vertices, splitting edges and faces, and adding new
vertices/edges/faces. However, more complex geometric operations
with and between 3D objects generally require more powerful data
structures with an explicit knowledge of volumes.

Nevertheless, some software that is used for this purpose follows a
minimal approach similar to the one used for exchange file formats
in GIS. The standard topological data structure in CAD42 considers
vertices, curved edges connecting vertices,wires consisting of a closed
loop of edges, facesmade from one outer wire and possibly multiple
inner wires, closed shells made from a set of faces, and solids con-
sisting of one outer shell and possibly multiple inner shells. For
example, this is the approach that is used in K-3D [Shead, 2010] and
openCASCADE library43, the engine used for geometric computa-
tions in CAD software like FreeCAD44 and the SALOME numerical
simulator45.

This approach often fails when attempting some operations that
are notoriously difficult to perform robustly, e.g. Boolean set opera-
tions betweenpolyhedra—something that is recognised in the docu-
mentation of multiple software packages. Other software thus uses
more powerful data structures based on 3D cell complexes, gener-
ally achieving better results in the process. Blender 3D46 uses some-
thing akin to the radial edge structure [Weiler, 1988] and Moka47

uses 3D generalised maps [Lienhardt, 1994].

A different approach is followed by software like BRL-CAD48, which
uses a Constructive Solid Geometry engine and therefore stores ob-
jects as trees of Boolean set operations. Finally, the Nef polyhedra
implementation in CGAL [Hachenberger, 2006] is able to compute
Boolean set operations [Granados et al., 2003], convex decomposi-
tions [Chazelle, 1984] and Minkowski sums robustly. It is used in
software like OpenSCAD49.

3.3 Spatiotemporalmodelling

Among the possible non-spatial characteristics that can be inte-
grated with space, time in particular has long been considered to be
interlinked with space [Akhundov, 1986]. Like space, it is consid-
ered to have geometry and topology [Earman, 1977], which are often
modelled in accordance to the ISO 19108 standard [ISO, 2005b].

Spatiotemporalmodelling attempts to create jointmodels that com-
bine spatial and temporal information. It draws inspiration from

http://www.opencascade.org
http://www.freecadweb.org
http://www.salome-platform.org
http://www.salome-platform.org
http://www.blender.org
http://moka-modeller.sourceforge.net
http://moka-modeller.sourceforge.net
http://brlcad.org
http://www.openscad.org
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Figure 3.20: The snapshot model
stores the state of a map at various
moments in time. Based on Lan-
gran and Chrisman [1988].

the independent modelling of both space and time. The main mod-
els used in spatiotemporal modelling are presented below. For a
more thorough review of spatiotemporal models see Al-Taha et al.
[1994] and Pelekis et al. [2004].

The simplest and most widespread spatiotemporal model involves
the use of timestamps. Knownas the snapshotmodel, it was probably
first used in theUSHistorical BoundaryFile [Basoglu andMorrison,
1978]. In this model, shown in Figure 3.20, every entity represents
the state of an object during a specific timeframe. These entities
might be objects of any dimension, e.g. polylines as in the US His-
torical Boundary File or polygons in a cadastral database [Hunter
andWilliamson, 1990]. An entity is therefore attachedwith a pair of
timestamps, which demarcate the start and end of the period during
which the entity existed as is represented. These models thus keep
multiple representations of 2D [Armstrong, 1988] or 3D [Hamre
et al., 1997] structures. This approach is simple but not very pow-
erful, containing no direct relations between the objects that were
present at the same location but during different periods of time.

There are a few variations of this model. For instance, it is possible
to store differential changes only [Langran and Chrisman, 1988],
specifying the areas that are added to or removed from an object at a
given time. Another related possibility is keeping the current state
of the map explicitly as well, which greatly improves the response
time of this very common query.

In the space-time composite model, objects are first split into homo-
geneous regions that share the same history, similar to how over-
lapping objects are handled in topological GIS models [Rossignac
and O’Connor, 1989]. This was first described in Chrisman [1983]
based on Peucker and Chrisman [1975]. This is more flexible than
the snapshot model, but objects can become very fragmented, slow-
ing down many operations. For instance, updating the attributes of
an object might involve updating all the regions that the object is
split into.

Other models put a greater emphasis on events, such as by keep-
ing a list of changes per object [Worboys, 1992a; Peuquet, 1994].
Event-based models [Peuquet and Duan, 1995] take this a step fur-
ther, maintaining a main structure consisting of a list of events and
a base map. Unlike other models, this makes it possible to iden-
tify and attach attributes to individual changes and events. In the
history graph model [Renolen, 1996], different types of events are
supported, which makes it possible to model continuously chang-
ing events aswell. Similarmodels are used in computer animations,
where a graph of keyframes can identify topological changes in a 2D
vector drawing [Dalstein et al., 2015].

A different option is to keep track of space and time independently,
linking objects appropriately. So called three-domain models are
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Figure 3.21: An event-based model
maintains a list of events and a
base map, with each event being
linked to all changes that occurred
since the last event. Based on Peu-
quet and Duan [1995].

50: Non-linearmeasures (e.g. area
and volume) in a model/map and
reality are related non-linearly to
this ratio.

based on this concept (the third domain being semantics). Exam-
ples include Yuan [1994] and Claramunt and Thériault [1995]. In
another example, vanOosterom [1997] uses an identifier consisting
of both a region identifier and a timestamp to index spatiotemporal
objects.

Finally, there are some generic spatiotemporal models described at
a more conceptual level [Story and Worboys, 1995], which can be
adapted to suit a specific application. For instance, Tryfona and
Jensen [1999] describe the space-time entity-relationship model,
which is based on the entity-relationship [Chen, 1976] common in
the database world. It provides rudimentary support formulti-scale
objects by allowing for multiple geometries to be stored in each fea-
ture. Claramunt et al. [1999] discusses an object-relational model
that is specifically tailored to model change. Additionally, there
are a few object-oriented spatiotemporal models [Worboys et al.,
1990].

3.4 Modelling geographic scale

Traditional paper maps and physical models have a well-defined
scale, whose value is a ratio between a linear measure in the mod-
el/map with the corresponding linear measure in the real world50.
Scale is therefore a concept that is fixed and has a clear, measurable
value in a model or map.

However, apart from this direct meaning, scale also has an indi-
rect relation to the level of detail (LOD) that is present in a map/-
model. Considering limits in resolution in printing and manufac-
turing technologies, the detail that can be put into a map or model
is limited by its scale. Moreover, since humans are only able to re-
liably distinguish features of a certain size—a commonly accepted
measure for maps being 0.5 mm [Goodchild, 2001]—, an adequate
representation at a given scale presupposes objects being of a cer-
tain minimum size and a minimum distance apart.

The abovementioned factors limit the detail that can be present in a
model/map at a given scale, but there are additional limits on thede-
tail that should be present. Considering that maps are first and fore-
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Figure 3.22: Fragments of two
Dutch topographic maps at differ-
ent scales around Delft. Note that
the region depicted in both maps
is the same and maps are (here)
presented at the same size, and
thus the scale of both in a literal
sense is the same. However, the
level of detail in each map differs.
© Kadaster51.

(a) 1:50 000 (b) 1:250 000

52: However, the consequences
of more detailed maps/models
should not been seen as a merely
technical issue. High memory us-
age and processing time directly
affect the usability of a model or
map, and too much detail can
often detract from its intended
message.
51: http://www.kadaster.nl

most communication tools, good maps need to have content that
has an appropriate level of precision and detail for the good con-
veyance of their intended message [Hardy and Field, 2012].

In the digital realm, where models and maps both become data
and the direct meaning of geographic scale as a ratio between a
model/map and reality disappears, scale preserves only its indirect
meaning as the level of detail that is present in a model or map, and
accordingly the term ‘level of detail’ is more appropriate [Biljecki
et al., 2014b]. An increase in the detail of a model enables more
applications, but means that its representations occupy larger sizes
and their processing involves higher computational costs52. When
the term ‘scale’ is used instead, the level of detail that is expected
is often presented in relation to its physical predecessor, such as
in the map fragments shown in Figure 3.22. In digital models and
maps, having an adequate level of detail also becomes important as a
higher level of detail entails a correspondingly higher memory and
computational requirements [Luebke et al., 2003].

Geographic information at different scales is generally managed as
fully independent datasets at each scale [Meijers, 2011], such as in
the topographic maps shown in Figure 3.22. In 3D, the CityGML
standard [Gröger et al., 2012] defines the five LODs shown in Fig-
ure 3.23, which can be stored jointly but are effectively separate
datasets except when their geometries are linked (cf. Biljecki et al.
[2015]). This is similar to the snapshot model for spatiotempo-
ral information [Basoglu and Morrison, 1978; Langran and Chris-
man, 1988] as presented in §3.3, since these datasets are labelled
with the scale (or range of scales) that they are associated with.
This representation is simple and matches nicely with paper map
series—in which a region is depicted at multiple scales in different
maps. However, many objects are represented several times (once at
each scale in which they are present) [Friis-Christensen and Jensen,
2003], and it is difficult to maintain consistency between these rep-

http://www.kadaster.nl
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Figure 3.23: The CityGML standard
[Gröger et al., 2012] defines five
LODs for 3D city models, which
range from building footprints to
detailed architectural models of
their interior and exterior. From
Biljecki et al. [2014a].

53: Which can be messy in prac-
tice as many times there is not a
one-to-one mapping between the
different representations.

54: In practice, it is a very chal-
lenging process with many engi-
neering stumbling blocks. For
one, fully automated surface re-
construction requires a certain
density of sampling points (see
Cheng et al. [2012, Ch. 13]), which
is hard to guarantee. The gener-
alisation of real-world 3D objects
is also very challenging in practice
due to a variety of reasons, such
as the errors caused by the acqui-
sition of data at different times,
from different angles, from dif-
ferent sources, or using different
methods.

resentations [Buttenfield and DeLotto, 1989], as the different rep-
resentations of an object are unlinked or linked only by common
identifiers53.

In order to achieve consistency and complete coverage of a region
at a given scale, it becomes important to be able to create a map
of that scale using a more detailed map of the same region as in-
put, resulting in maps at different scales covering the same region.
This is achieved by the process of cartographic (or map) generalisa-
tion. In it, the amount of information in a map is reduced [Töfper
and Pillerwizer, 1966], abstracting objects for a given scale using a
set of well-defined cartographic rules [SGK, 1975]. Many of these
rules can be automated in the form of algorithms (e.g. line simplifi-
cation [Douglas and Peucker, 1973]), resulting in several automatic
map generalisation algorithms [Weibel, 1997], and their (much more
recent) resulting software implementations [Jones and Ware, 2005;
Stoter et al., 2009]. In fact, it is nowpossible to generalisemaps fully
automatically in certain cases and with good results [Stoter et al.,
2014].

In 3D modelling, similar algorithms are widely used to create sim-
plified versions of complex 3D models [Meng and Forberg, 2007;
Kada, 2007; Zhu et al., 2009; Zhao et al., 2012]—using visual or geo-
metric criteria rather than cartographic—based on techniques such
asmesh simplification [Garland andHeckbert, 1997; Lindstromand
Turk, 1998]. Considering that these techniques can be applied to
the very detailed 3D models that are generated using surface recon-
struction [Amenta and Bern, 1998; Kazhdan et al., 2006] from laser-
scanned point clouds, or those resulting from the reuse of detailed
architectural models [Geiger et al., 2015], they allow the generation
of entire series of progressively simpler models up to an arbitrary
level of detail in a process that is largely automatic—at least in the-
ory54.

Using automatic map generalisation, it becomes possible to create
digital objects of any given scale, and thus to create and populate
structures where an object at many scales is represented as a sin-
gle entity, usually as a tree where detail is added progressively. For
polygonal curves, this is accomplished by structures such as: strip
trees [Ballard, 1981], the multi-scale line tree [Jones and Abraham,
1986], the arc tree [Günther, 1988] and the binary line generalisa-
tion tree [vanOosterom, 1990]. For planar partitions, it can be done
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structures such as: hierarchical planar subdivisions [Filho et al.,
1995], multi-scale partitions [Rigaux and Scholl, 1995], nestedmaps
[Plümer and Gröger, 1997] and topological generalised area parti-
tioning trees [van Oosterom, 2005].

3.5 Key characteristics and shortcomings of current
approaches

As shown in this chapter, there is great variety among the tech-
niques used tomodel different aspects of 2D and 3D space, time and
geographic scale. Considering all the possible ways in which these
techniques can be combined together into a completemodelling ap-
proach, many different feasible approaches can be devised, which
can be further fine-tuned for a particular application or use case.
These vary in fundamental aspects, such as their explicitness, their
use of geometry and topology, and the class of objects that they are
able to handle efficiently.

However, despite these very real and substantial differences, the rep-
resentation approaches in 2D GIS have become largely interchange-
able in practice. There is a myriad of well-known topological data
structures that can be used, such as theDCEL [Muller and Preparata,
1978] and the quad-edge [Guibas and Stolfi, 1985], and even when
certain objects are not directly supported in them (e.g. those with a
non-manifold shape orwith holes), they can usually be nevertheless
stored using various simple ‘tricks’, such as repeated combinatorial
primitives (as shown previously in Figure 3.10), special kinds of at-
tributes or external data structures such as indices.

Moreover, many 2D GIS applications do not even require the ex-
plicit topology of a topological data structure. Visualisation and
simple computations can just as easily do without it, and conse-
quently use data structures with very little or no topology, opting
for a Simple Features-like representation [OGC, 2011]. Also, con-
sidering that the computation of topological relationships between
2D objects is relatively simple, it can be done on-the-fly only when
it is needed [ESRI, 2005]—something that is especially true for the
relatively small size of most 2D datasets, which often pale in com-
parison to the computing power that is now readily available. All
of these reasons point towards a similar conclusion: objects of up
to two dimensions (i.e. points, line segments and polygons) can be
represented using either topological or non-topological approaches
with little difference in practice.

In 3D, the situation is more complex and topology brings more sig-
nificant advantages, even as storing topological relationships comes
at a significantly increased cost in terms of memory. Compared to
the circumstances in 2D, there are more topological relationships
between 3D objects, and these are more difficult and expensive to
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55: i.e. topological relationships
involving 3D primitives, such as
the adjacencies between two vol-
umes or the incidences between a
volume and a vertex/edge/face

compute, so their storage becomes highly desirable in many in-
stances. At the same time, datasets are usually much larger, which
makes topological relationships more valuable in order to traverse
them efficiently. More complex applications such as simulations
greatly benefit from 3D topological representations as well—or at
least from data that is known to be valid, for which 3D topological
data structures are used [Ledoux, 2013].

Moreover, many of the strong properties that allow for simple but
powerful data structures and quick computations in 2D do not work
in 3D. For instance, there is a natural order for the vertices or line
segments around a polygon—used e.g. to efficiently store a polygon
as a sequence of vertices—but there is no similar natural order for
the faces around a polyhedron. Similarly, storing a complete planar
partition as a set of edge primitives where every edge records the
polygons that lie on each of its two sides [Peucker and Chrisman,
1975] is straightforward and efficient, but a 3D space partition stored
as a set of faces where every face only knows the volumes that lie
on both of its sides is very cumbersome to navigate—even a simple
operation such as extracting the volumes in the partition is difficult
without the adjacency relationships between the faces.

Partly because of this, as well as the general increase in complex-
ity that comes with an increase in the number of dimensions, the
topological data structures that are capable of storing topological re-
lationships between sets of 3D objects are less used in practice. The
third spatial dimension, time, and scale are mainly implemented
using ad hoc adaptations to 2D data structures, effectively limiting
the capabilities of GIS software. 3D GIS often mimic the third di-
mension by using a so-called 2.5D structure [Raper, 1989], essen-
tially treating the third dimension as an attribute and restricting
the geometries that can be represented; or represent 3D objects indi-
vidually and only implicitly through their 2D boundary, using a 2D
data structure with no 3D topological relationships55. This implies
thatmany operations are only possible using expensive searches in-
volving many more objects than otherwise needed.

Time and scale are considered to be inseparable in the represen-
tational process by theorists, since events have an intrinsic place
in space and time, as well as specific spatial and temporal resolu-
tions [Raper, 2000]. However, spatiotemporal GIS keep multiple
representations of 2D [Armstrong, 1988] or 3D [Hamre et al., 1997]
structures, or a list of changes per object [Worboys, 1992a; Peuquet,
1994], limiting combined spatio-temporal analysis of such objects.
Multi-scale datasets generally consist of independent datasets for
each scale, which are either unconnected or connected only at the
object level (e.g. through the use of IDs). This means that complex
relationships between objects, such as collapses, aggregations and
others that are not one-to-one are difficult to store, which causes,
among others, update and maintenance problems as well as incon-
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sistencies. It also complicates the storage of semantic information
about these relationships.



Thehigher-dimensionalspatial
modelling approach 4

As presented in Chapter 3, the most common approaches to model
2D and 3D space are based on ad hoc adaptations of data structures
that were originally meant for 2D data. These have many advan-
tages, but are also necessarily limiting when 3D objects are con-
cerned, constraining the class of objects that they are capable of
representing efficiently and the operations that can be efficiently
performed on them. Even data structures specifically defined for
sets of 3D objects have significant limitations, such as not being able
to store the incidence and adjacency relationships between objects.
Moreover, when the data has to be integrated with non-spatial char-
acteristics (e.g. time and scale), similar ad hoc adaptations to 2D
structures are alsoused. Therefore, the problemof adequately repre-
senting 3D, spatio-temporal and multi-scale data is not fully solved
even by the most advanced 3D structures as they are currently used
in GIS.

This chapter presents the higher-dimensional spatial information
modelling approach—the main theme of this thesis—as a solution
to all these problems, as well as the higher-dimensional datamodels
and data structures that can be used to realise it. §4.1 introduces the
topic by showing the strong theoretical foundations behind higher-
dimensionalmodelling. Howhigher-dimensionalmodellingworks
in general is then explained in §4.2, relating to relevant concepts of
2D/3D GIS whenever possible, as well as importing useful notions
fromotherfields. §4.3 thendescribes thedatamodels anddata struc-
tures that can be used to realise the higher-dimensional modelling
approach. §4.4 finalises the chapter by presenting some of the new
possibilities provided by this approach.

Significant parts of §4.3 and §4.4 and minor parts of the other sec-
tions are based on the paper:

► An evaluation and classification of 𝑛D topological data
structures for the representation of objects in a higher-
dimensional GIS. Ken Arroyo Ohori, Hugo Ledoux and
Jantien Stoter. International Journal of Geographical Information
Science 29(5), May 2015, pp. 825–849.
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57: That is, as long as such objects
exist along intervals along these
other dimensions. If they only ex-
ist at a point along these dimen-
sions (e.g. a moment in time), they
are of the same dimension as the
original object.

58: Orthogonal and point-like
with respect to the higher
dimensions.

4.1 Foundations of higher-dimensionalmodelling

Aradical departure from the traditional approaches tomodel 2D/3D
space, time and scale in GIS, as presented in Chapter 3, consists in
the representation of any number of parametrisable characteristics
(e.g. the third spatial dimension, time and scale) as additional di-
mensions in a geometric sense. These dimensions are modelled
so as to be orthogonal to each other, such that real-world 0D–3D
entities are modelled as higher-dimensional objects57 embedded
in higher-dimensional space, which are consequently stored using
higher-dimensional data structures.

Higher-dimensional modelling is well grounded in long-standing
mathematical theories. Descartes [1637] already laid the founda-
tion for 𝑛D geometry by putting coordinates to space, allowing the
numerical description of geometric primitives and the use of alge-
braic methods on them, theories of 𝑛D geometry were developed by
Riemann [1868] amongothers, andPoincaré [1895] developed alge-
braic topology with a dimension-independent formulation, stating
that even if 𝑛D objects could not be [then] represented, they do have
a precise topological definition, and consequently properties that
can be studied.

This approach opens the door to new possibilities. From an applica-
tion point of view and as will be discussed in §4.2.3, 4D topological
relationships between 4D objects provide insights that 3D topologi-
cal relationships cannot. Also, McKenzie et al. [2001] contends that
weather and groundwater phenomena cannot be adequately studied
in less than four dimensions, and van Oosterom and Stoter [2010]
argue that the integration of space, time and scale into a 5D model
for GIS can be used to ease data maintenance and improve consis-
tency, as algorithms could detect if the 5D representation of an ob-
ject is self-consistent and does not conflict with other objects.

It is important to note that the higher-dimensional modelling
approach—as presented in this thesis—bears no relation to themost
common usage of 4D, 5D, 6D, …, 𝑛D GIS/BIM in both GIS prod-
uct descriptions and the scientific literature. There, such terms are
generally used as buzzwords that refer to any kind of support for
the storage of time information, costs, project life cycles, or any
other kind of non-spatial information. In most cases, this infor-
mation is simply stored as a tuple of attributes that are appended
to 2D/3D objects (e.g. timestamps), or as external structures that
are unlinked to any objects with a geometric description (e.g. IFC
scheduling information). If one were to interpret these objects geo-
metrically, they would result in 2D/3D objects embedded in higher-
dimensional space58, and not in higher-dimensional objects embedded
in higher-dimensional space.
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59: Minkowski space is non-
Euclidean, but similar representa-
tions and techniques can be used
with it. For instance, Hanson and
Weiskopf [2001] show how com-
puter graphics techniques can
be used to visualise it. General
relativity is instead described by
Riemann space [Riemann, 1868].

60: The use of the term ‘cube’ is
useful for clarity of explanation
but not strictly correct since it
implies that the analysed region
has the same length along every
axis. This term is thus not used
elsewhere in this thesis. By con-
trast, Hägerstrand [1970], who is
largely credited with popularising
the concept, refers to it as the
space-time prism.

61: A similar objection could be
made to it being called a cube
though.

However, it is worth noting that real strides towards higher-
dimensional GIS have been made in various forms. Research in
multidimensional GIS aims at the integrated storage and analysis of
heterogeneous objects of different dimensions [Raper, 2000; Gold,
2005], usually limited to 0D–3D objects but sometimes conceptually
extended to higher dimensions. Storing and manipulating hetero-
geneous objects and their semantics is a difficult challenge and is a
notable weak point of current GIS tools.

The concept of time as a dimension is an established concept with
proven applications. As Couclelis [1999] states, time has histori-
cally been linked to space and often considered as another dimen-
sion, and the 4D spatiotemporal manifold known as the Minkowski
space [Minkowski, 1908] is used in the description of special rela-
tivity in mathematics and physics59. The ISO 19108 standard also
states that ‘time is a dimension analogous to any of the spatial di-
mensions’ [ISO, 2005b] A representation where time is modelled as
one more spatial dimension has been moreover used in several ap-
plications, mostly in the form of 2D space+time, such as to analyse
paths [Hägerstrand, 1970], to analyse motion in computer vision
[Blank et al., 2005] and to visualise geographic information [Kraak,
2003]. 3D+time systems have also been frequently proposed, albeit
this usually is meant only at a conceptual (rather than implementa-
tion) level [Galton, 2004]. In GIS and other fields, a 2D space+time
representation is often called a space-time cube60.

Scale as a dimension has a shorter history, only recently being pro-
posed as way to integrate 2D/3D space, time and scale [van Oost-
erom and Stoter, 2010]. Döllner and Buchholz [2005] consider the
notion of the LOD of a model as a conceptual dimension. Grasset-
Simon et al. [2006] discuss generalised map pyramids, which use
𝑛-dimensional generalised maps in order to create a hierarchical
data structure of 2D/3D/𝑛D images of different resolutions. Untere-
iner et al. [2015] introduce the Compact Primal Hierarchy, an also
hierarchical representation of manifold meshes in any dimension
which are generated through successive refinement operations. Fi-
nally, van Oosterom and Meijers [2014] discuss the integration of
2D maps at different scales in one 2D+scale model that is con-
ceptually 3D—but is represented instead as a series of linked 2D
structures—and is known as the space-scale cube61.

4.2 The higher-dimensionalmodelling paradigm

Considering the strong foundations of higher-dimensional mod-
elling explained in §4.1, the higher-dimensional modelling of ge-
ographic information has great potential to integrate space (of any
dimension) with any number of non-spatial characteristics. Such
a representation is extremely powerful, capable of handling even
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Figure 4.1: A tesseract or 4-cube is
the four-dimensional analogue of
a square (in 2D) or cube (in 3D). It
consists of 16 vertices, 32 edges, 24
faces, 8 volumes and one 4-cell.

complex situations like objects that are both changing shape (i.e.
morphing) and moving in time, but it is also complex in several
ways.

This section serves as a broad overview of the higher-dimensional
modelling paradigm, covering the main conceptual difficulties in
how these models work and describing intuitively what they look
like. The first fundamental aspect, deciding which characteris-
tics can and should be modelled as dimensions, is described in
§4.2.1. Afterwards, considering that understanding how objects in
more than three dimensions are hard to visualise, §4.2.2 explains
intuitively what these objects look like based on 3D models using
2D+time and 2D+scale, as well as making analogies between the
properties of higher-dimensional models and 2D/3D ones.

§4.2.3 discusses the key distinguishing feature of the higher-
dimensional approach—the possibility to store and use topologi-
cal relationships in arbitrary dimensions. Finally, §4.2.4 explains
how the standard topological approach in GIS, creating a functional
space partition from a set of objects, can also be used in higher di-
mensions to store these topological relationships in the data struc-
tures presented in §4.3.

4.2.1 Defining the characteristics to bemodelled as
dimensions

As powerful as higher-dimensional representations are, their ad-
vantages need to be balanced with the fact that higher-dimensional
representations are large and complex. The size of such amodel can
be expected to increase roughly exponentiallywith thedimension—
although the exact values are highly dependent on the model used
and the data being represented. For example, consider the total
number of cells of all dimensions in the family of hypercubes. A
point has 1 cell, a line segment 3 (2+1) cells, a square 9 (4+4+1) cells,
a cube 27 (8 + 12 + 6 + 1) cells and a tesseract, shown in Figure 4.1, 81
(16 + 32 + 24 + 8 + 1) cells.

Because of this, while many characteristics can be used as a dimen-
sion, only those characteristics where such modelling would bring
significant benefits should be modelled in this manner. In fact,
while there is no theoretical limit to the number of dimensions that
can beused, the increasing space requirements ofmodelswithmore
dimensions generally limit the practical number of dimensions to
6–8.

There are various requirements and desirable properties in the
characteristics that are to be modelled as additional dimensions. At
minimum, such characteristics should be parametrisable (i.e. there
should be a way to express them in terms of a parameter or pa-
rameters), so that these parameters can be entered into a computer,
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62: Measurements might not be
the best term here considering
that much data is modelled with-
out any measurements taking
place, but this is the original
terminology in Stevens [1946].

(a) Original

(b) Extrusion

Figure 4.2: In a 2D+time setting,
(a) a 2D object remaining station-
ary becomes (b) a volume where
the original object is extruded
along the time dimension.

and preferably parametrised as numbers that determine the object’s
position along the axes of the dimensions. Many other properties
are not strictly necessary but are still very desirable, including that
there is a parametric function that models the characteristic in a
natural way, and that this function is invertible so that the object’s
properties can be known from the inverse function. These are prop-
erties that are fulfilled by data that is quantitative in nature, which
is related to measurements of an interval or ratio scale [Stevens,
1946]62.

In addition, there are certainproperties of the data to be represented
that determine if the higher-dimensional modelling approach is
worth the added complexity and size. For this, it is possible to evalu-
ate it by considering whether more compact alternatives are able to
depict the situations that are present in the data. For instance, if the
value of one of the characteristics can be determined from the oth-
ers without added knowledge, the former can be simply obtained
from the latter. Also, when a given characteristic has a bounded
number of values for every possible combination of the other char-
acteristics, the former can be stored more efficiently as an attribute.
A typical example of this latter case is a 2.5D terrain model, where
there is only one height (𝑧) value for any given combination of (𝑥, 𝑦)
coordinates. Caves, tunnels, overhangs and arches are thus prob-
lematic.

Time and scale—the examples used throughout this thesis—comply
with most of the properties mentioned above. They are both intu-
itively quantifiable in a meaningful way. For instance, a point along
a temporal axis defines a moment in time such that points on one
side of it occur before it and points on the other side of it occur after
it. Similarly, an object at a given LOD is finer than those at a lower
LOD and coarser than those at a higher LOD. Moreover, in the gen-
eral case, an object’s position in time or its geographic scale cannot
be known based solely on its position in 2D or 3D space, and an ob-
ject can be at the same position at different moments in time (e.g.
by not moving) or at different scales.

4.2.2 Howhigher-dimensional data looks

To understand how data modelled using the higher-dimensional
modelling paradigm looks, it is easier to first consider a case with
a two-dimensional space plane (𝑥, 𝑦) where time is added as a third
dimension. In this configuration, a set of 2D objects, each of which
exists for one ormore intervals of time, can be represented as a set of
volumes. The simplest case is when these objects remain stationary,
which is shown in Figure 4.2. In this case, the shape of the resulting
volume is an extrusion of the original 2D shape along the time axis.
Such a volume has a prismatic shape and can be generated using the
methods that will be described in Chapter 6. As shown in Figure 4.3,
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(a) Original (b) Translation (c) Rotation (d) Scaling

Figure 4.3: In a 2D+time setting, applying certain transformations to (a) a polygon during a time interval results in: (b) a
parallelepiped in the case of a translation, (c) a screw shape with curved surfaces similar to a twisted prism in the case of a
rotation, and (d) a frustum in the case of scaling.

Figure 4.4: A 2D space (𝑥, 𝑦) + time
(the vertical axis 𝑡) view of the
footprint of two buildings. These
buildings were separate at 𝑡 = 𝑡􏷩,
were then connected by a corridor
(red) at 𝑡 = 𝑡􏷪, then became dis-
connected again when the corri-
dor was removed at time 𝑡􏷫. This
configuration remains unchanged
until time 𝑡 = 𝑡􏷬. The times 𝑡􏷩,
𝑡􏷪, 𝑡􏷫 and 𝑡􏷬 are shown as points
along the thick line representing
the front right corner of the build-
ing on the left.

63: A polychoron is the 4D ana-
logue of a 2D polygon or 3D poly-
hedron.

applying translation, rotation or scale transformations to the 2Dob-
ject during a time interval yield other volumes that have an intuitive
shape.

In the context of geographic information, where many kids of fea-
tures are represented as planar partitions of polygons, the resulting
2D space+timepolyhedra forma 3D spacepartition—if thepolygons
do not overlap, the resulting polyhedra do not overlap either. This
property is later exploited by the extrusion algorithm in Chapter 6.
Moreover, as shown in Figure 4.4, such a representation can rep-
resent the state of the partition at any point in time. At any one
moment in time (i.e. a slice perpendicular to the 2D space plane),
a polygon is still represented as a polygon but one that is embed-
ded in 3D space, parallel to the 2D space plane (𝑥, 𝑦) and orthogonal
to the time axis. Every object existing (and not moving or chang-
ing shape) during a time period would then be prism shaped, with
identical base and top faces that are parallel to the 2D space plane
and the other faces being orthogonal to it.

Extending this to a 4D representation of 3D space and time, a set
of polyhedra can be represented as a set of polychora63. At any one
moment in time, a polyhedron is still represented as a polyhedron
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Figure 4.5: A 3D representation of
2D space (horizontal plane) and
scale (vertical axis). The vertical
edges connecting corresponding
features are omitted for legibility.
From Meijers [2011].

representation (Vermeij et al., 2003; Meijers and van Oosterom, 2011). Fig-
ure 2(a) shows this 3d representation for the example scene of Figure 1.

(a) ssc for the classic tGAP structure (b) ssc for the smooth tGAP structure

Figure 2: The space-scale cube (ssc) representation in 3d

Though many small steps (from most detailed to most coarse repre-
sentation — in the classic tGAP, n� 1 steps exist, if the base map contains
n objects), this could still be considered as many discrete generalization
actions approaching vario-scale, but not true vario-scale. Split and merge
operations do cause a sudden local ‘shock’: a small scale change results
in a not so small geometry change; e. g. leading to complete objects dis-
appearing; see Figure 3. In the space-scale cube this is represented by a
horizontal face; a sudden end or start of corresponding object. Further-
more, polygon boundaries define faces that are all vertical in the cube,
i. e. the geometry does not change at all within the corresponding scale
range (resulting in the collection of fitting prism shapes, a full partition
of the space-scale cube).

In order to obtain more gradual changes when zooming, i.e. in a mor-
phing style (c. f. Sester and Brenner, 2005; Nöllenburg et al., 2008), we
first realised that the line simplification operation could also output non-
vertical faces for the space-scale cube and that this has a more true vario-
scale character; e. g. when replacing two neighbouring line segments by

4
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Figure 4.6: A 2D+scale represen-
tation of four polygons being
smoothly (𝐶􏷩) generalised. From
van Oosterom and Meijers [2011].

but one that is embedded in 4D space. If it is not moving or chang-
ing shape, it would take the form of a prismatic polychoron. As in
the previous cases, if the polyhedra form a 3D space subdivision, the
polychora form also a 4D space subdivision.

In the same fashion as the 2D space+time case, it is possible to create
similar 3D representations where 2D space is combined with scale
as a third dimension. As shown in Figure 4.5, such a representation
of a planar partition of polygons at different scales results in a 3D
space subdivision where at each scale point there is still a planar
partition. As shown in Figure 4.6 and discussed by Meijers [2011],
this approach enables the storage of continuous levels of detail—an
approach that can be extended to higher dimensions as well [Stoter
et al., 2012a,b].

In a general setting, it is then possible to define an 𝑛-dimensional
model where a set of 0D–3D objects are integrated with any
number of additional characteristics and modelled as up-to-𝑛-
dimensional objects embedded in 𝑛-dimensional space. These
higher-dimensional objects can be stored or used for analysis as is,
or 0D–3D objects can be extracted from them by looking at specific
‘slices’ of these objects—intersections of the objects with specific
subsets of space (e.g. a plane parallel to the 2D space plane), pro-
jections to certain planes or regions of 3D space, or more broadly,
transformations to arbitrarily defined 2D/3D coordinate systems.
This is described in more detail in Chapter 9.

4.2.3 Topological relationships in higher dimensions

As described in §3.1.4, spatial data structures often consist of two as-
pects: (i) a combinatorial part, which consists of a set of primitives
and some topological relationships between them, and (ii) an em-
bedding that links these primitives to their geometry and attributes.
This distinction is useful to give a more formal understanding of
what topological relationships in higher dimensions are, as well as
to highlight how the storage of higher-dimensional topological re-
lationships in a combinatorial structure is the main aspect that dif-
ferentiates higher-dimensional structures from 2D/3D ones.

This is clearer when considering the data structures that contain
only 1D topological relationships, which are commonly used inGIS.
For instance, in the Simple Features Specification [OGC, 2011], in-
dependent 2D primitives are defined as sequences of points (with
coordinates) that are connectedusing implicit line segments. When
structures constructed from these 2D primitives are described (e.g.
planar partitions or polyhedra), they are simply considered as sets
of these 2D primitives. Apart from the relations used to define that
a primitive belongs to a set, no other information is stored explicitly
and the 2D primitives are therefore independent from each other.
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64: The number of times a vertex
is repeated in Simple Features can
be up to doubled since represent-
ing a closed polygon involves re-
peating its first vertex at the end.

Since the implicit line segments in every 2D primitive are known to
be adjacent but nothing is known about the relationships between
the 2D primitives themselves, such data structures can be consid-
ered to store up to 1D topological relationships only (adjacencies be-
tween edges and the incidences between edges and vertices). By con-
trast, a data structure without even these topological relationships
could consist of anunordered soupof line segments definedby their
endpoints, which are repeated in every line segment in which they
are present.

Despite their apparent limitations, these types of structures can
be in fact used to store objects of any dimension thanks to the
Jordan-Brouwer theorem [Lebesgue, 1911; Brouwer, 1911] described
in §3.1.2. Just as independent 2Dprimitives are defined as sequences
of points (with coordinates) that are connected using implicit line
segments, 3D primitives can be then represented as sets of such 2D
elements, which are otherwise unlinked, and 𝑛D objects can be rep-
resented as aggregations of their (𝑛 − 1)D-face bounding elements.
This property is later exploited in the incremental construction
scheme proposed in Chapter 7. Since every point in such an object
can have any number of coordinates, an 𝑛D object can be embedded
in 𝑛D space as well.

However, such representations become exponentially more inef-
ficient as the dimension increases: lower-dimensional primitives
need to be encoded multiple times, recursively once for each
time they appear in a higher-dimensional primitive. This means
that they are difficult to navigate and that even simple geometric
and topological queries involve searching many objects [Hazelton,
1998]. As an example, it is possible to consider Simple Features-
like [OGC, 2011] representations of simple objects of various di-
mensions, as shown in Figure 4.7. A Simple Features-like represen-
tation of a square does not repeat most64 vertices, while one of a
cube repeats every vertex at least three times, oneof a tesseract (their
four-dimensional analogue) repeats every vertex at least 12 times
and one of a 5-cube at least 60 times.

Because of this, in a similar vein to the definition of the dimen-
sionality of a GIS in Hazelton et al. [1990], it is possible to consider
that the defining characteristic of a higher-dimensional spatial data
structure is not the ability to be embedded into higher-dimensional
space, but being able to explicitly store topological relationships in
a dimension-independent manner.

Moreover, topological relationships in more than 3D have advan-
tages other than efficiency of representation. For instance, 4D topo-
logical relationships between 4D objects provide insights that 3D
topological relationships cannot, such as by using the dual graph of
such a 4D structure for applications such as space-time wayfinding
and analysis. This will be discussed in more detail in §5.4.
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[[0, 0], [0, 1], [1, 1], [1, 0], [0, 0]]

(a) square

[[[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 1, 0], [0, 1, 1], [0, 0, 1], [0, 0, 0]],
[[0, 1, 0], [1, 1, 0], [1, 1, 1], [0, 1, 1], [0, 1, 0]],
[[1, 1, 0], [1, 0, 0], [1, 0, 1], [1, 1, 1], [1, 1, 0]],
[[1, 0, 0], [0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]],
[[0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1], [0, 0, 1]]]

(b) cube

[[[[0, 0, 0, 0], [0, 1, 0, 0], [1, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]],
[[0, 0, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0]],
[[0, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [0, 1, 1, 0], [0, 1, 0, 0]],
[[1, 1, 0, 0], [1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 1, 0], [1, 1, 0, 0]],
[[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [1, 0, 1, 0], [1, 0, 0, 0]],
[[0, 0, 1, 0], [0, 1, 1, 0], [1, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 0]]],

[[[0, 0, 0, 0], [0, 1, 0, 0], [1, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]],
[[0, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 1], [0, 0, 0, 1], [0, 0, 0, 0]],
[[0, 1, 0, 0], [1, 1, 0, 0], [1, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 0]],
[[1, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 1], [1, 1, 0, 1], [1, 1, 0, 0]],
[[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1], [1, 0, 0, 1], [1, 0, 0, 0]],
[[0, 0, 0, 1], [0, 1, 0, 1], [1, 1, 0, 1], [1, 0, 0, 1], [0, 0, 0, 1]]],

[[[0, 0, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0]],
[[0, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 1], [0, 0, 0, 1], [0, 0, 0, 0]],
[[0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 1, 1], [0, 1, 0, 1], [0, 1, 0, 0]],
[[0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 1, 1], [0, 1, 1, 0]],
[[0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [0, 0, 1, 0]],
[[0, 0, 0, 1], [0, 1, 0, 1], [0, 1, 1, 1], [0, 0, 1, 1], [0, 0, 0, 1]]],

[[[0, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [0, 1, 1, 0], [0, 1, 0, 0]],
[[0, 1, 0, 0], [1, 1, 0, 0], [1, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 0]],
[[1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 0, 1], [1, 1, 0, 0]],
[[1, 1, 1, 0], [0, 1, 1, 0], [0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 0]],
[[0, 1, 1, 0], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 1], [0, 1, 1, 0]],
[[0, 1, 0, 1], [1, 1, 0, 1], [1, 1, 1, 1], [0, 1, 1, 1], [0, 1, 0, 1]]],

[[[1, 1, 0, 0], [1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 1, 0], [1, 1, 0, 0]],
[[1, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 1], [1, 1, 0, 1], [1, 1, 0, 0]],
[[1, 0, 0, 0], [1, 0, 1, 0], [1, 0, 1, 1], [1, 0, 0, 1], [1, 0, 0, 0]],
[[1, 0, 1, 0], [1, 1, 1, 0], [1, 1, 1, 1], [1, 0, 1, 1], [1, 0, 1, 0]],
[[1, 1, 1, 0], [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 1], [1, 1, 1, 0]],
[[1, 1, 0, 1], [1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 1, 1], [1, 1, 0, 1]]],

[[[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [1, 0, 1, 0], [1, 0, 0, 0]],
[[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1], [1, 0, 0, 1], [1, 0, 0, 0]],
[[0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 1], [0, 0, 0, 1], [0, 0, 0, 0]],
[[0, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 1], [0, 0, 1, 1], [0, 0, 1, 0]],
[[1, 0, 1, 0], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 1], [1, 0, 1, 0]],
[[1, 0, 0, 1], [0, 0, 0, 1], [0, 0, 1, 1], [1, 0, 1, 1], [1, 0, 0, 1]]],

[[[0, 0, 1, 0], [0, 1, 1, 0], [1, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 0]],
[[0, 0, 1, 0], [0, 1, 1, 0], [0, 1, 1, 1], [0, 0, 1, 1], [0, 0, 1, 0]],
[[0, 1, 1, 0], [1, 1, 1, 0], [1, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 0]],
[[1, 1, 1, 0], [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 1, 1], [1, 1, 1, 0]],
[[1, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 1], [1, 0, 1, 1], [1, 0, 1, 0]],
[[0, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1], [1, 0, 1, 1], [0, 0, 1, 1]]],

[[[0, 0, 0, 1], [0, 1, 0, 1], [1, 1, 0, 1], [1, 0, 0, 1], [0, 0, 0, 1]],
[[0, 0, 0, 1], [0, 1, 0, 1], [0, 1, 1, 1], [0, 0, 1, 1], [0, 0, 0, 1]],
[[0, 1, 0, 1], [1, 1, 0, 1], [1, 1, 1, 1], [0, 1, 1, 1], [0, 1, 0, 1]],
[[1, 1, 0, 1], [1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 1, 1], [1, 1, 0, 1]],
[[1, 0, 0, 1], [0, 0, 0, 1], [0, 0, 1, 1], [1, 0, 1, 1], [1, 0, 0, 1]],
[[0, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1], [1, 0, 1, 1], [0, 0, 1, 1]]]]

(c) tesseract

Figure 4.7: Simple Features-like representations of a unit square, cube, and tesseract. One face (per volume and per 4-cell)
is shown in each line. Due to the repetition of structures in this type of representation, a 5-cube, which has only 80 faces,
requires 480 lines to be represented, which is 10 times the number of lines and 12.16 times the number of characters used to
represent the tesseract in (c).
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4.2.4 Representing higher-dimensional objects as a space
partition

In order to store the higher-dimensional topological relationships
described in §4.2.3, it is a practical requirement is that the objects
being represented can be made to functionally form a space parti-
tion. For this, it is possible to use the standard topological mod-
elling approach used in GIS—utilising an intermediate type of rep-
resentation where a set of (possibly overlapping) original objects is
transformed into a set of non-overlapping regions, such that each
of these regions represents a set of the original objects [Rossignac
and O’Connor, 1989], which might be the empty set in the case of
the regions that are not covered by any of the original objects (e.g.
some holes). An original geometry can be obtained by performing
a Boolean set union of the regions labelled as belonging to it.

This transformation can be computed in various ways. In 2D and
3D, all objects are generally first overlaid on top of each other, the
intersections between their boundaries are computed, and new re-
gions are obtained by finding closed connected regions uncrossed
by any other boundaries (e.g. cycles in 2D) [de Berg et al., 2008, §2.3].
It is worth noting however that implementing such a procedure ro-
bustly in more than 3D is not a trivial undertaking.

Using this newly created space partition, even complex topological
relationships between the original objects can be reduced to a com-
bination of setmembership, adjacency and incidence. In fact, many
schemes of topology in GIS can be implemented solely on inspect-
ing which objects are in a set [Egenhofer and Franzosa, 1991; Wor-
boys, 1992b; Güting et al., 2000]. These can be very intuitive, as they
often have direct correspondences to natural language equivalents
(e.g. ‘inside’, ‘touches’, ‘equals’, etc.) [Dube and Egenhofer, 2012].

Moreover, it possible to use the data structures presented in §4.3
to store a traversable structure containing the objects, in which the
boundaries of the sets are explicitly represented, and to easily query
the topological relationships that exist between the objects.

The most promising structures for higher-dimensional GIS are
therefore those that starting from a space subdivision, are capable
of storing a well-defined and relatively broad class of objects of ar-
bitrary dimension, embedded into Euclidean space of the same or
higher dimension, attributes attached to such objects, and enough
topological relationships between them to allow for the quick traver-
sal of the structure and for basic operations, such as testing if two
given objects are identical, adjacent or overlapping.
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65: More formally, one whose
symmetry is transitive on its flags.

4.3 Higher-dimensional datamodels and structures

This section presents all the main possibilities to represent
dimension-independent objects, which are presented as a series of
data models, each with related data structures. These are: exhaus-
tive enumeration (e.g. rasters) in §4.3.1, hierarchical space subdivi-
sions using simple tree-like structures (e.g. BSP-trees) in §4.3.2,more
general implicit vector models (e.g. constructive solid geometry) in
§4.3.3, geometric simplicial complexes (i.e. triangulations) in §4.3.4,
cell complexes in §4.3.5, and ordered topological models (e.g. gener-
alised and combinatorial maps) in §4.3.6. Short notes on other, less
relevant vector data structures are discussed in §4.3.7.

4.3.1 Exhaustive enumeration

Exhaustive enumeration in higher dimensions works in a similar
manner as in 2D and 3D. The shape of an 𝑛-dimensional domain is
first specified, generally opting for a simple shape such as an axis-
parallel 𝑛-orthotope, the 𝑛-dimensional analogue of a 2D rectangle
or a 3D box (more formally a cuboid), which can be defined based on
two points in ℝ𝑛 on opposite corners of the orthotope. Afterwards,
a simple deterministic rule is then used in order to partition the
domain directly into 𝑛-cells. A programatic order or path that tra-
verses all cells is defined, and the order of the path along these cells
is used to record whether a cell belongs to the interior of the object
or not, or in the case of multiple objects, which objects are present
inside a cell.

Regular tessellations involve the subdivision of 𝑛-dimensional
space directly into primitive cells forming regular 𝑛-polytopes—the
𝑛-dimensional analogue of regular polygons and regular polyhedra.
A regular 𝑛-polytope is one whose bounding faces are regular (𝑛−1)-
polytopes65. As in 2D and 3D, it is possible to create arbitrary rules
in order to produce cells of any shape and size, which can be used
to create optimal configurations that are related to 𝑛-ball packing or
kissing number problems in geometry [Conway and Sloane, 1992].
For instance, such cells could be arranged in the formof the optimal
24-cell honeycomb in 4D.

However, operations on these optimum configurations can be
rather complex. Axis-aligned regular grids consisting of congruent
orthotopes, such as those taking the form of pixels in 2D and voxels
in 3D, aremuch simpler in practice and offer a good enough approx-
imation for practical purposes.

As in 2D and 3D, semi-regular tessellations, which consist of more
than one type of polytope are also possible but are significantly
more complex in practice. Creating optimal configurations of these
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66: http://video.esri.com/
watch/3653/new-dimensions-
with-arcmap

tessellations is a problem related to the unequal hypersphere pack-
ing, as the general aim is still to create polytopes that are as close to
balls (of appropriate sizes) as possible.

Exhaustive enumeration schemes are relatively straightforward
even in higher dimensions and can be stored and processed us-
ing similar techniques as their 2D and 3D counterparts. How-
ever, these representations suffer from the same problems as 2D/3D
grids: they are incapable of representing precise boundaries, their
contents vary when they are translated, rotated or scaled, and are
cumbersome for the representation of objects [Fisher, 1997], espe-
cially when they are of mixed dimensions. Moreover, they have ex-
tremely high space requirements—increasing exponentiallywith the
dimension in grids with a similar number of divisions along each
dimension.

Nevertheless, up to 4D grids using time as a dimension have been
used in the context of GIS since the 1990s. These are currently used
widely for computer simulations in various fields and have recently
been implemented in standard GIS software66. Much earlier, Ma-
son et al. [1994] implemented a system using a 4D grid of ocean
temperatures with support for interpolation and generalisation op-
erations. Bernard et al. [1998] also implemented a 4D grid of atmo-
spheric variables (e.g. temperature, wind or pollution), which can
be used for simulations.

Also worth noting is that outside the domain of GIS, the use of mag-
netic resonance (MRI) and computer tomography (CT) equipment
has greatly increased the availability of acquired4Draster images on
which computational methods are often applied [Lorenzo-Valdés
et al., 2004]. Similar methods are also applied on numerical sim-
ulations generated in other fields, such as the computation of topo-
logical invariants in metallurgy [Kaczynski et al., 2004].

4.3.2 Hierarchical subdivisions using trees

Higher-dimensional hierarchical subdivisions using trees also
work in a similar fashion as their 2D and 3D counterparts. An
𝑛-dimensional domain is specified, which generally has a simple
shape. It is then subdivided using ‘partition’ primitives, which at-
tempt to split space incrementally in an adaptive manner—each
primitive recursively partitioning the space defined by its parent
so that the shape of the cells in the subdivision is only known af-
ter traversing a path in the tree from its root to a leaf representing
the last relevant partition primitive. Even though this means that it
is necessary to traverse many nodes in order to extract a single cell,
this makes it possible to use a custom partition at every step and so
store cells of varying sizes more efficiently.

http://video.esri.com/watch/3653/new-dimensions-with-arcmap
http://video.esri.com/watch/3653/new-dimensions-with-arcmap
http://video.esri.com/watch/3653/new-dimensions-with-arcmap
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Many different structures with only small variations have been cre-
ated for this purpose, of which hyperoctrees, bintrees and k-d trees
are by far the most widely used. The simplest possibility is to recur-
sively subdivide space along all dimensions homogeneously at their
midpoints at every partition primitive, so that one partition prim-
itive subdivides 𝑛D space into 2𝑛 regions. Hyperoctrees [Yau and
Srihari, 1983] and k-trees [Jackins and Tanimoto, 1983] do this, be-
ing identical dimension-independent generalisations of quadtrees
[Finkel and Bentley, 1974] in 2D and octrees [Meagher, 1980] in 3D.
Bintrees [Samet and Tamminen, 1985] instead split dimensions al-
ternately rather than all at one, while k-d trees split dimensions at
specified points rather than at their midpoints.

Hierarchical subdivisions using trees have also been previously
used in a higher-dimensional GIS setting, usually combined with
exhaustive enumeration approaches. Varma et al. [1990] defined
HHCodes in order to perform efficient topological queries on ab-
stracted 4-orthotopes, such as whether a pair of them overlap both
spatially and temporally. O’Conaill et al. [1992] aggregated 4D
raster images using trees, permitting the efficient storage of large
sparse datasets. Mason et al. [1994] used 4D bintrees in order to in-
dex and perform fast queries and operations (e.g. interpolation and
generalisation) on the aforementioned 4D grid of ocean tempera-
tures.

4.3.3 (Implicit) vectormodels

Vector representations of 𝑛D objects avoid many of the problems
present in exhaustive enumeration and tree-based subdivisions:
they are generally more compact, can describe boundaries more
precisely and can represent objects with their attributes directly.
This makes them particularly interesting for higher-dimensional
GIS, even if they have hardly been explored as the data structures
commonly used in 2D vector GIS do not extend naturally to higher
dimensions.

Among the possible vector-based structures, the ones that most nat-
urally extend to higher dimensions are the more implicit models
consisting of primitives that can be defined using a set of simple pa-
rameters. This includesmanyof themodels discussed in §3.1.2, such
as higher-dimensional versions of primitive instancing, sweep rep-
resentations, constructive solid geometry, Boolean set operations
on half-spaces and Nef polyhedra.

For instance, Paoluzzi et al. [2004] describes a scheme of
dimension-independent Boolean operations on half-spaces. It is
able to do these operations by combining the half-space constraints
of multiple objects. Obtaining such a representation of an object
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67: That is, that none of them are
in the affine space described by
the others. In practical terms: two
points with a different coordinate
in 1D, three non-collinear points
in 2D, four non-coplanar points in
3D, etc.

can be achieved by performing (alternate) decompositions into con-
vex parts [Bulbul and Frank, 2009; Lien and Amato, 2006].

This type of implicit approach might be especially useful in cer-
tain contexts, such as production processes and the computation of
homologies [Damiand et al., 2008]. However, these are less capa-
ble of storing objects and their attributes directly, especially those of
lower dimensionality, and therefore have to be generally ‘evaluated’
into another, more explicit model in order for them to be visualised
[Mäntylä, 1988] or to perform the type of computations expected in
GIS, such as geometric intersection operations. They are therefore
less interesting for a higher-dimensional GIS.

Nevertheless, a possible future implementation of Nef polyhedra in
arbitrary dimensions deserves an additional mention. As shown in
§3.1.2, a set of Nef polygons can be reduced to a structure of sets of
circular intervals and a set of Nef polyhedra to a structure of sets
of faces on a sphere. This approach extends naturally to higher
dimensions as the method can be recursively repeated in decreas-
ing dimension in order to have a complete description of a higher-
dimensional Nef polytope. However, the practical benefits of doing
do decrease as the dimension increases and the navigation becomes
more cumbersome. It is also very complex to implement this in
a fully dimension-independent manner, requiring a hyperspheri-
cal projective kernel capable of representing cells of any dimension
embedded on higher-dimensional spheres which is also capable of
computing point-set intersections in any dimension. To the best of
my knowledge, no such system has every been implemented, and it
is unlikely to be implemented in the near future.

4.3.4 Geometric simplicial complexes

As described in §2.3.2, an 𝑖-dimensional simplex (𝑖-simplex) is a
combinatorial primitive made from a set of 𝑖 + 1 vertices, and an
𝑗-simplex, 𝑗 ≤ 𝑖, made from a subset of these is an 𝑗-dimensional
face (𝑗-face) of it. An 𝑛-dimensional geometric simplicial complex,
also known as a Euclidean simplicial complex, is a subdivision of
𝑛-dimensional space into a structure of closed 𝑛-simplices directly
embedded in space by attaching a tuple of coordinates to each ver-
tex, in a manner that their interiors are non-overlapping geometri-
cally (pairwise disjoint). In an 𝑛-dimensional simplicial complex,
an 𝑖-dimensional object, 𝑖 ≤ 𝑛, can be represented as a set of 𝑖-
simplices. This allows the representation of objects of any dimen-
sion in a geometric simplicial complex.

An 𝑖-simplex is easily described by an (𝑖+1)-tuple of 𝑖+1 affinely inde-
pendent67 vertices (𝑣􏷟, 𝑣􏷠, … , 𝑣𝑖). Since they are affinely independent,
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Figure 4.8: Two views of the
Schönhardt polyhedron [Schön-
hardt, 1928]—the archetype of a
polyhedron that cannot be tetra-
hedralised without the addition
of Steiner vertices. Starting from a
triangular prism whose rectangu-
lar faces have been triangulated, it
can be created by rotating the tri-
angular faces with respect to each
other. Note how any tetrahedron
built from the 3 vertices of any
of its faces plus any other vertex
of the polyhedron necessarily
passes through the outside of the
Schönhardt polyhedron.

the geometric realisation of a simplex is the convex hull of its ver-
tices. A vertex in an 𝑛-dimensional simplicial complex can be de-
scribed by an 𝑛-tuple of coordinates (𝑥􏷟, 𝑥􏷠, … , 𝑥𝑛−􏷠), representing its
embedding into 𝑛-dimensional Euclidean space. In a subdivision
of 𝑛-dimensional space, every simplex in the simplicial complex is
a face of at least one 𝑛-simplex.

Simplicial complexes have a simple but powerful structure and are
easy to navigate. Two 𝑖-simplices are adjacent if they have a com-
mon face, and an 𝑖-simplex and a 𝑗-simplex, 𝑖 ≠ 𝑗, are incident if ei-
ther is a face of the other. In an 𝑛-dimensional simplicial complex,
each 𝑛-simplex is adjacent to at most 𝑛+1 other 𝑛-simplices and has
exactly 𝑛 + 1 (𝑛 − 1)-faces on its boundary. To each 𝑛-simplex it is
therefore possible to apply 𝑛 + 1 different boundary and neighbour
operators, where the 𝑛-th boundary operator returns the (𝑛 − 1)-face
of the 𝑛-simplex on the opposite side of the 𝑛-th vertex—obtained
by removing the 𝑛-th element of the tuple of vertices—, and the 𝑛-th
neighbour operator returns the adjacent 𝑛-simplex on the opposite
side of the 𝑛-th vertex, if any, which is also incident to the face given
by the 𝑛-th boundary operator.

The biggest challenge of using a geometric simplicial complex for
the representation of 𝑛D objects is the difficulty of triangulating the
possibly complex 𝑛D objects being modelled, i.e. algorithmically di-
viding them into non-overlapping geometric simplices so that the
unionof the simplices representing anobject corresponds exactly to
its original geometry. While triangulations of sets of points in 𝑛D
have been studied extensively and there is robust software to com-
pute them, e.g. Quickhull [Barber et al., 1996], such triangulations
are generally not applicable to 𝑛Dobjects since a triangulationof the
vertices of an object usually results in simplices that do not conform
to the object’s boundary, i.e. that are partially inside and partially
outside the object.

However, it is possible to make sure that the boundaries are part
of the triangulation through the use of a constrained or conform-
ing triangulation. Both of these force the triangulation to include
certain simplices as part of the triangulation in the form of con-
straints, which in this case would be the objects’ boundaries. In
a constrained triangulation, the constraints are directly part of the
structure of the simplicial complex. While the properties of 𝑛Dcon-
strained triangulations have been described [Shewchuk, 2008] and
algorithms to construct them in some cases have been developed
[Shewchuk, 2000], their construction in the general case is very dif-
ficult in practice, having to deal with robustness issues and possi-
bly requiring the addition of a large number of additional vertices
(Steiner points) and subsequently additional simplices, as not ev-
ery object of dimension three or higher is triangulable without ad-
ditional vertices [Ruppert and Seidel, 1992], such as the Schönhardt
polyhedron shown in Figure 4.8. In fact, it is already an NP-hard
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68: In the opinion of Jonathan
Shewchuk.

69: Note that triangulating ob-
jects deterministically is not so
simple. If the triangulations are
not deterministic, such a compar-
ison could possibly require geo-
metric operations.

problem to determine whether a polyhedron is tetrahedralisable
without adding Steiner points [Ruppert and Seidel, 1992]. Decid-
ing where to best add these additional simplices in 𝑛D seems to be
the hardest part of this problem68.

A conforming triangulation forces the triangulation to contain some
constraints as well, but instead of adding them directly as simplices
of the triangulation, it allows them to be split into multiple smaller
simplices. This allows a conforming triangulation to fulfil other
geometric criteria such as the Delaunay property (i.e. the circum-
sphere of a simplex does not contain any other vertex).

Unfortunately, while there are robust and reliable constrained and
conforming triangulation libraries existing in 2D and 3D, such as
Triangle in 2D [Shewchuk, 1996a], CGAL in 2D [Boissonnat et al.,
2002], and Tetgen in 3D [Si and Gärtner, 2005], there seems to be
no software capable of performing a constrained or conforming tri-
angulation in more than 3D.

Assuming that the objects have been triangulated successfully, man-
aging holes and disconnected components in a simplicial complex
becomes trivial since these become integrated into the combina-
torial structure of the triangulation, as will be discussed in §10.2.
Generally, a triangulation algorithm works initially on the basis of
a set of points and ensures that the entire convex hull of all of the
points is triangulated, something that canbedoneusing the concept
of a ‘big triangle’ or faraway point [Liu and Snoeyink, 2008], and
therefore connects formerly disconnected components or compo-
nents that were not connected by using new simplices (𝑛-simplices
in an 𝑛D simplicial complex). Similarly, as the interiors of poly-
topes with holes are triangulated, additional simplices connect the
void regions representing holeswith the rest of the structure. In this
manner, 2D holes can be represented as sets of triangles labelled as
being empty, 3D holes as similar sets of tetrahedra, and so on for
higher (and lower) dimensions. This ensures that it is always possi-
ble to navigate between all the simplices in the complex.

Another advantage of simplicial complexes is that many operations
on them are efficient and easy. For instance, a simplicial com-
plex can be traversed efficiently without any external data structure.
Starting from any simplex, it is possible to ‘walk’ the simplicial com-
plex in the desired direction in order to find any given simplex, e.g.
inside which simplex a point is located [Devillers, 2002], with each
walking step taking only constant time. Comparing objects com-
posed of sets of simplices is also trivial, assuming that they have
been triangulated in a deterministic way69, since they can be com-
pared one by one (in order) after finding a common simplex, which
can be done by walking the respective simplicial complexes. Check-
ing if two objects are adjacent or intersect geometrically are exam-
ples of other operations that can be done simply and efficiently sim-
plex by simplex.

http://www.cs.berkeley.edu/~jrs/
http://www.cs.berkeley.edu/~jrs/
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Some of the possi-
ble relationships between primi-
tives and the storage of a geom-
etry using a 2-simplex (triangle)
based data structure. (a) Adja-
cency relationships of a 2-simplex.
(b) Boundary relationships of a
2-simplex. (c) Vertices of a 2-
simplex. (d) Star (co-boundary)
relationships of a 1-simplex. (e)
Boundary relationships of a 1-
simplex. (f) Embedding of a 0-
simplex. In addition to these, it is
also possible to store attributes for
the 0-, 1-, and 2-simplices in em-
bedding structures. The adjacency
model uses at least (a), (c) and (f),
while the incidence model uses at
least (b), (e) and (f), plus usually
(a) to navigate the structure. Many
other combinations are possible.

Since the number of incident vertices, bounding (𝑛 − 1)-faces and
adjacent simplices of an 𝑛-simplex in an 𝑛-dimensional simplicial
complex is fixed and known, it is easily represented in a computer
using simple arrays, rather than linked lists or other variable-length
data structures. This can be done through an 𝑛-simplex-based data
structure, shown in Figure 4.9 for 2D, where 𝑛-simplices are the
main primitives. Related data structures are often said to to fol-
low the adjacency or incidence model, depending on the dimen-
sions of the simplices that are represented in the structure—only
the highest-dimensional ones in the adjacency model, but possibly
all in the incidence model.

An 𝑛-dimensional simplicial complex is thus represented as a col-
lection of primitive 𝑛-simplices, each containing 𝑛+1 links to its ad-
jacent 𝑛-simplices. For the models described above, it also includes
information containing:

Adjacency model For every 𝑛-simplex, 𝑛 + 1 links to vertex primi-
tives containing the coordinates and attributes of its 𝑛 + 1 ver-
tices, or alternatively this information stored directly in the
𝑛-simplex. The simplices of dimensions 1 to (𝑛 − 1) and the
incidence relationships between them, are therefore not rep-
resented explicitly.

Incidence model For every 𝑖-simplex, ∀0 < 𝑖 ≤ 𝑛, 𝑖 + 1 links to prim-
itives containing the geometry and attributes for its (𝑖 − 1)-
faces, or alternatively this information stored directly in the
𝑖-simplex. All simplices of every dimension, together with all
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70: Or at some similarly complex
recursive representation, such as
with Nef polyhedra [Bieri and
Nef, 1988].

their incidence relationships, can therefore be represented ex-
plicitly, or as part of a simplex of a higher-dimension.

The adjacency model thus forms an (𝑛 + 1)-regular graph with the 𝑛-
simplices as nodes, i.e. a graph where every vertex has degree 𝑛 + 1.
The incidencemodel is a graphwith amaximumdegree 𝑛+1, where
the degree of a node representing an 𝑖-simplex is 𝑖 + 1. Note that
the adjacency model is therefore more compact, but only allows for
the explicit representation of 𝑛-dimensional objects, while the in-
cidence model is more verbose but supports the representation of
objects of any dimension. This is done using the embedding in-
formation for the simplices of dimension lower than 𝑛. Note that
non-linear geometries (e.g. NURBS) can be represented as well us-
ing the embedding structures for the simplices of dimensions one
and higher.

Additionally, since a simplex is also a cell, it is possible to use any
data structure meant for more general cell complexes, such as those
described in §4.3.5 and §4.3.6. This is commonly used in practice
during the process of triangulating a cell complex (since at that
point the structure is not a simplicial complex and cannot by def-
inition be stored in a data structure for simplicial complexes only),
but it is a very inefficient approach when it has already been trian-
gulated.

Simplicial complexes in more than 3D are commonly described in
theory but rarely put in practice. Paoluzzi et al. [1993] described
the winged scheme in order to describe arbitrary polytopes as sim-
plicial complexes, and Karimipour et al. [2010] uses lists of vertices
to store simplices of any dimension in order to do spatial analysis
using Delaunay triangulations as an example.

4.3.5 Cell complexes

For the purposes of a higher-dimensional data structure, cell com-
plexes differ from simplicial complexes in twomain related aspects:
(i) there is a variable number of facets on the boundary of a cell,
each of which has also a different number of facets, continuing re-
cursively down to the vertex level; and (ii) obtaining a geometric
interpretation of a cell requires looking recursively at its facets70.
This causes cell complexes to have a much more complex represen-
tation and algebra tomanipulate them compared to simplicial com-
plexes. For instance, simplicial complexes can be easily constructed
by adding and removing simplices expressed by sets of vertices, or
by splitting and merging existing ones, but cell complexes require
much more complex operations in order to add or remove cells—
something that will be described in detail in Chapter 7. Traversing
a cell complex (e.g. to find in which cell a point lies or to see which
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cells intersect a given geometry) is alsomuchmore difficult [deBerg
et al., 1997].

However, the flexible structure of a cell complex allows it to repre-
sent objects either directly or with minimal preprocessing. As long
as an 𝑖-dimensional object is homeomorphic to an 𝑖-ball—or can be
modified so that it is functionally so by using simple ‘tricks’ at the
combinatorial level—, it can be modelled as an 𝑖-cell in the com-
plex with attached attributes. Also, the lower number of cells in a
cell complex compared to the simplices in a simplicial complex rep-
resenting the same set of objects means that they can store objects
more efficiently, as long as an adequate data structure is used.

Cell complexes are usually modelled based on techniques that rep-
resent thembased on their (𝑛−1)-dimensional boundary (i.e. bound-
ary representation), unlike simplicial complexes in which objects
are usually modelled using mainly primitives of the same dimen-
sion (i.e. object representation, but better known by its 3D name as
solid or volume representation). This is a subtle distinction, but
it implies that cells are described (and stored) in a more implicit
manner based on a recursive definition, unlike simplices which can
be stored explicitly as a tuple of vertices. Since this can slow down
many operations, access to cells can be improved by adding index-
ing structures storing links to all the cells of a given dimension
and/or to all the cells in a given spatial extent. On the other hand,
the use of data structures for the cells of every dimension mean that
these can be easily used to store attributes.

The most common data structures for arbitrary cell complexes
are incidence graphs and other related structures [Rossignac and
O’Connor, 1989; Masuda, 1993; Sohanpanah, 1989], which store all
the cells (of every dimension) in a complex as individual embed-
ding primitives containing geometric information and attributes.
Just as with simplicial complexes, if only linear geometries are re-
quired, the only geometric information needed is the coordinates
of the points for the 0-cells. However, since a set of vertices is not
enough to describe a cell, all the embedding structures of every di-
mension need to exist (albeit they can be as simple as a unique ID
ormemory address per cell). As shown in Figure 4.10, these are con-
nected through a combinatorial structure containing the incidence
relationships between the cells, such as an 𝑖-cell having an (𝑖 − 1)-cell
on its boundary, vice versa (known as the co-boundary or star), or
both. Since the number of these incidences is generally not fixed or
bounded, unlike in a simplicial complex, they are more difficult to
integrate into the cell primitives. One solution involves using vari-
able length data structures (e.g. a linked list of the facets of a cell).
Another would be to store instead combinatorial primitives consist-
ing of pairs of an 𝑖-cell and an (𝑖 − 1)-cell—an approach well-suited
to a database implementation.
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(a) (b) (c) (d)

(e) (f) (g)

( , , . . .)

(h)

Figure 4.10: The cells in a cell complex, the most common relationships that are be stored in an incidence graph and similar
data structures up to 2D, and the embedding of the 0-cells so as to support a geometry. (a) Three adjacent polygons. (b) The
0-, 1- and 2-cells in the cell complex. (c) Boundary relationships of a 2-cell. (d) Co-boundary relationships of a 1-cell. (e)
Boundary relationships of a 1-cell. (f) Double co-boundary relationships of a 0-cell. (g) Co-boundary relationships of a 0-cell.
(h) Embedding of a 0-cell. Note that (c), (e) and (h) correspond to the incidence graph, a minimal structure where every 𝑖-cell
is linked to the (𝑖 − 􏷠)-cells on its boundary.

71: This is the definition of a
quasi-manifold, a combinatorial
interpretation of the topological
concept of a manifold. Quasi-
manifolds are the same as man-
ifolds in up to two dimensions,
but this is not necessarily true in
higher dimensions.

While incidence graphs are efficient in terms of space, they are dif-
ficult to navigate and manipulate because of the limited topological
information contained in them. This greatly complicates many rel-
atively simple queries that are trivial in simplicial complexes, such
as: obtaining the order of a sequence of 0- and 1-cells around a 2-
cell; or checking if two 𝑛-cells have the same geometry (since their
facets, each represented implicitly by its own facets, might be stored
in any order).

One more possibility involves limiting the representation to cell
complexes with stronger algebraic properties, such as those with a
manifold domain. Most importantly for a spatial data model, man-
ifolds have two very useful properties:

► An 𝑛-manifold with boundary has the property that its bound-
ary is a (𝑛 − 1)-manifold, ensuring that an 𝑛-dimensional ob-
ject can be represented recursively by its (𝑛 − 1)-dimensional
boundary using a manifold data structure.

► An (𝑖 − 1)-cell is incident to at most two 𝑖-cells within an (𝑖 + 1)-
cell71, limiting the number of links required between primi-
tives in a boundary representation based model of the com-
plex.
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(a)

(b)

(c)

(d)

Figure 4.11: Two different tech-
niques to handle holes in (a) a 3D
cell complex representing a torus:
(b) splitting the 3-cell into two
parts and (c) using a bridge edge.
(d) Note how these techniques al-
low for a hole to be representing
while the combinatorial structure
forms a single connected compo-
nent (i.e. all cells form a single in-
terlinked group).

Some data structures for cell complexes in 2D and 3D are thus re-
stricted to manifolds, or split objects into manifold sections [Pesco
et al., 2004; Lopes and Tavares, 1997], which allows such data struc-
tures to be more efficient as they need to handle simpler configura-
tions [Aguila and Ramírez, 2003]. These are subsequently linked in
a special structure that allows one to navigate around these ‘non-
manifold parts’ [Weiler, 1988; Gursoz et al., 1990; Lee and Lee,
2001]. In higher dimensions, if the representation is restricted to
a 𝑛-dimensional cell complex to manifold domains for each cell, an
(𝑛−2)-cell is incident to at most two (𝑛−1)-cells, and thus (𝑛−2)-cells
can be used as primitives or pointed to while being able to navigate
around them.

One major difficulty with data structures based on cell complexes is
dealing with holes and disconnected objects, both of which would
ordinarily result in a disconnected graphusing anyof the data struc-
tures as described above. Since 𝑛-cells in a cell complex are assumed
to be homeomorphic to open 𝑛-balls, holes violate themathematical
definition of a cell complex. However, an 𝑛-dimensional hole that
is homeomorphic to an 𝑛-ball in an 𝑛-dimensional cell can be gen-
erally handled in an ad hoc manner using any of techniques shown
in Figure 4.11 and described as follows:

Splitting cells The 𝑖-cell containing an 𝑖-dimensional hole is subdi-
vided into multiple 𝑖-cells, all of which are adjacent to it. This
solution is conceptually simple and is effectively equivalent
to what is done with simplicial complexes. This also best re-
spects the mathematical definition of a cell, since the subdi-
vided 𝑖-cells can be homeomorphic to 𝑖-balls and the hole is ei-
ther non represented (when the dimension of the complex is
higher than 𝑖 and the hole is not completely bounded by other
𝑖-cells) or is represented as a cell like any other but labelled as
being empty. However, finding a way to split a cell accordingly
requires geometric operations and can be difficult in practice,
especially in dimensions 3 and higher.

Bridge cells A hole is connected to the rest of the combinatorial
structure using a ‘bridge’ cell of lower dimensionality than the
hole. This bridge cell usually takes the form of an edge con-
necting the hole with the cell where it is contained. This solu-
tion is generally simpler to implement, usually requiring only
the finding of an appropriate bridge (e.g. an edge that lies en-
tirely in the interior of the cell). While the cell containing
the hole is no longer homeomorphic to a ball, most compu-
tations work with few or no changes [Bryant and Singerman,
1985]. However, some queries might need the addition of spe-
cial cases to handle it (e.g. not displaying such an edge when
visualising the cell or accounting for the fact the bridge will
have the same cell on all sides in topological computations).
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Holes as attributes Holes can be stored as fully independent cells,
linked as special attributes of the objects inside of which they
are, or vice versa, something that can be extended so as to have
full hierarchies of objects in a tree [Worboys, 2012]. This solu-
tion might be the simplest to implement in terms of storage,
but it goes against the mathematical definition of a cell com-
plex and will break or require a complex special treatment for
geometric and topological computations. It is also very sim-
ple to inadvertently create invalid holes in this manner, such
as holes lying (partially) outside the cell that is supposed to
contain them.

The latter two described methods can be applied for disconnected
components as well. Two disconnected components can be con-
nected by a bridge cell, or all components can be considered as holes
of the (empty) universe cell.

It is worth noticing that complex holes that are not homeomorphic
to 𝑛-balls can exist, e.g. tori-shaped holes inside a volume, and find-
ing a good subdivision that can be used to deal with such a hole
might be very complex.

In terms of applications, cell complexes in more than 3D have been
rarely described or implemented. Hazelton et al. [1990] described
how incidence graphs can be put into a relational database schema
in order to store 4D polytopes, on which 4D topological relation-
ships can be queried [Hazelton et al., 1992]. However, to the best of
my knowledge, this has never been put into practice in a working
system.

4.3.6 Ordered topologicalmodels

Ordered topological models are a representation method that com-
bines characteristics of both simplicial complexes and cell com-
plexes, and are therefore commonly grouped with either of them
[de Floriani andHui, 2005; Čomić andde Floriani, 2012]. Theywork
on the basis of a cell complex, but subdivide each cell into abstract
simplices using a purely combinatorial operation, a concept derived
from what is known as an abstract simplicial complex in algebraic
topology.

The exact subdivision that is used depends on the data structure,
but as shown in Figures 4.12 and 4.13, it is similar to a barycentric
triangulation of a convex polytope, consisting of abstract vertices
representing cells of different dimensions (i.e. the vertices of such a
simplicial complex are not equivalent to only 0-cells), and simplices
that connect these vertices in a specific (ordered) manner. The ver-
tices representing the cells of dimensions higher than zero do not
have a well-defined location in space (although they are usually de-
picted lying somewhere in the cells they are supposed to represent),
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(a) (b)

0

(c)

Figure 4.12: The simplicial decomposition applied in order to obtain the simplices for a 2D: (a) generalised map and (b)
combinatorial map. (c) All cells are represented as sets of 2-simplices, such as the vertex shown here, which is formed of a set
of 4 triangles. Note that the locations of the vertices for the 1- and 2-cells are arbitrary, those for the 1-cells has been defined
as the midpoint of the edge, and those for the 2-cells have been set so that the resulting simplices lie entirely in the interior
of their corresponding 2-cell.

(a) (b) (c)

Figure 4.13: (a) A cube is repre-
sented as (b) a set of simplices in
a 3D combinatorial map. (c) Each
simplex has two vertices at two of
the original vertices of the cube, as
well as two other symbolic vertices
that respectively represent the face
and volume that they belong to.

but the simplices nevertheless form a combinatorially correct sub-
division of the space.

Adjacency and incidence do have a meaning, albeit not the same as
in a geometric simplicial complex, even if their mathematical defi-
nition is just as in a geometric simplicial complex. Considering that
a 𝑗-face of an 𝑖-simplex, 𝑗 ≤ 𝑖, is a 𝑗-simplex made from a subset of the
vertices of the 𝑖-simplex, two 𝑖-simplices are adjacent if they have a
common face, and an 𝑖-simplex and a 𝑗-simplex, 𝑖 ≠ 𝑗, are incident if
either is a face of the other.

In an ordered topological model, objects are represented by sets of
simplices, similar to how they are represented in a geometric sim-
plicial complex. However, unlike in a geometric simplicial or cell
complex, where an 𝑖-dimensional object is represented as a set of 𝑖-
simplices or 𝑖-cells, in an 𝑛-dimensional ordered topological model
an object of any dimension is represented as a set of 𝑛-simplices.
More concretely, a cell is represented as the set of simplices that
have a symbolic vertex at that cell. In this manner, even vertices
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72: Geometrically, this set would
consist of all the 𝑛-simplices inci-
dent to the vertex.

are represented as (possibly large) sets of simplices72.

Attributes and geometry can be attached to the simplicial complex
in an ordered topological model in a similar way as in a geomet-
ric simplicial complex. Since the symbolic vertices of each simplex
have a known order, and each vertex of each simplex represents a
cell, it is possible to link each simplex in an ordered topological
model to a tuple of attributes and geometric information for the
cells that its vertices represent. Many operations that are possible
on a geometric simplicial complex are also possible in an ordered
topologicalmodel, even considering thatmany of its vertices do not
have a specific location in space. Topological queries can behandled
in an identical way, and some geometric operations require mini-
mal changes. For instance, the length, area, volume, etc. of a cell,
can be computed using the inclusion-exclusion principle, which
works similarly to the computation of the area of a polygon using
the ‘shoelace formula’ [Meister, 1771]. Comparing objects can also
be done simplex by simplex [Gosselin et al., 2011] taking advantage
of the ordering properties of ordered topological models.

Since this simplicial decomposition performed in an ordered topo-
logical model is done only combinatorially, it is not necessary to
build a constrained or conforming triangulation of the input, which
as stated in §4.3.4, might be very difficult to accomplish. How-
ever, using an ordered topological model still allows one to use the
stronger algebraic properties present in a simplicial complex, which
are used in order to traverse and manipulate a cell complex in a
more efficient manner than it would otherwise possible be. The re-
sulting simplicial complex might have a larger number of simplices
compared to one triangulated geometrically, but it also has the ad-
vantage that the number of vertices and simplices in it is known in
advance and does not depend on the geometry.

There are two different simplicial decomposition schemes used in
ordered topological models, one for the cell-tuple structure [Bris-
son, 1989] and generalised maps [Lienhardt, 1994], and another
for 𝑛-dimensional combinatorial maps [Lienhardt, 1994]. Starting
from an input 𝑛-dimensional cell complex that is in the form of an
incidence graph containing: (i) all the cells (of every dimension)
as nodes and (ii) the incidence relationships from each 𝑖-cell to the
(𝑖 − 1)-faces on its boundary as directed edges, the simplicial decom-
positions are shown in Figure 4.12 and explained as follows:

Cell-tuple / generalised maps Each possible path in the graph
from an 𝑛-cell to a 0-cell directly yields the vertices of one
simplex. Each 𝑛-simplex can be thus defined by a unique 𝑛-
tuple (𝑐􏷟, 𝑐􏷠, … , 𝑐𝑛), where 𝑐𝑖 is a vertex representation of an 𝑖-
dimensional cell in the cell complex, all of which are incident
to each other. Such an 𝑛-tuple is in fact equivalent to an 𝑛-
simplex. It can be seen as a generalisation of the lath-based
structures [Joy et al., 2003] sometimes used in 2D and 3D GIS.
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(a)

(b)

Figure 4.14: There are two possible
consistent orientations that can
be set for each connected compo-
nent in a combinatorial map.

𝑛-dimensional combinatorial maps Each possible path in the
graph from an 𝑛-cell to a 1-cell yields one simplex, with the
vertices for the cells from dimension 𝑛 to 2 used directly,
prepended with the two vertices corresponding to the two
0-cells incident to the 1-cell (i.e. the vertices at the endpoints
of the edge). Each 𝑛-simplex can be thus defined by an 𝑛-tuple
(𝑐􏷟, 𝑐′􏷟, … , 𝑐𝑛), where 𝑐􏷟 and 𝑐′􏷟 are the two 0-cells incident to
the 1-cell, and for 𝑖 > 0, 𝑐𝑖 is a vertex representation of an
𝑖-dimensional cell in the cell complex, all of which are inci-
dent to each other and to the two 0-cells. As the two 0-cells
could be given in any order, the order is set by specifying an
orientation for the entire cell complex (or for each connected
component when there are more than one) by specifying
which vertices are respectively 𝑐􏷟 and 𝑐′􏷟 in one simplex, and
then building the 𝑛-tuples for the other simplices so that adja-
cent simplices have them in the opposite order. As Figure 4.14
shows, this can result in two possible orientations for each cell
in a combinatorial map (or connected component). While not
shown here, this orientation determination scheme works in
any dimension. In practice, this means that if one considers
the edges bounded by 𝑐􏷟 and 𝑐′􏷟 as being directed (from 𝑐􏷟 to 𝑐′􏷟),
surfaces form loops of directed edges, and opposite surfaces
have opposite orientations, just as in most 2D/3D structures
that are based on half-edges, e.g. DCEL [Muller and Preparata,
1978].

The cell-tuple structure [Brisson, 1989], and generalised maps and
𝑛-dimensional combinatorial maps [Lienhardt, 1994], support this
model directly. The cell-tuple structure was developed as a gen-
eralisation of the quad-edge [Guibas and Stolfi, 1985] data struc-
ture in 2D and the facet-edge data structure [Dobkin and Laszlo,
1987] in 3D. In it, an 𝑛-simplex is called a cell-tuple, the neighbour
operator is called switch, and the set of cell-tuples that represent a
cell 𝑐 is called the set of associated cell-tuples of 𝑐. Generalised maps
and 𝑛-dimensional combinatorial maps [Lienhardt, 1994] evolved
instead as a generalisation of 2D combinatorial maps [Edmonds,
1960]. They were extended to support open (topologically closed)
maps in Poudret et al. [2007], so as to support empty space around
objects without representing it explicitly. An 𝑛-simplex is called a
dart, the neighbour operator is called 𝛼 (for generalised maps) or 𝛽
(for combinatorial maps), and the set of darts that represent a cell
is called its orbit. These were developed independently, with gener-
alised maps being mathematically shown to be able to represent a
wider class of objects than the cell-tuple, but both work out to very
similar or identical implementations in practice. Chains of maps
[Elter and Lienhardt, 1994] supplement the approach followed by
generalised maps with an incidence graph in order to support non-
manifolds, but they are rarely used because of their extremely high
space requirements.
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Figure 4.15: (a) A polygon with a
hole is represented using a bridge
edge to connect the hole with the
exterior boundary. (b) The sim-
plices in the combinatorial maps
representation of the situation in
(a). There are two simplices with
the same vertices representing
each side of the bridge edge. As
in Figure 4.12, the location of the
vertex for the 2-cell shown in (b)
is arbitrary but chosen so as to lie
in the interior of the polygon. The
combinatorial triangles are shown
with curved lines so as to form a
planar embedding to show that
they effectively form a partition of
the space.

(a) (b)

73: http://www.cgal.org
74: http://moka-modeller.
sourceforge.net
75: http://cgogn.unistra.fr

It is worth mentioning that ordered topological models are not sig-
nificantlymore efficient in terms of space than the Simple Features-
like [OGC, 2011] approach shown in §4.2.3 and Figure 4.7. Every
dart in a combinatorial map is equivalent to a consecutive pair of
vertices in the Simple Features approach, while a dart in a combina-
torial map is equivalent to two darts in a generalised map or to two
cell-tuples. However, ordered topological models consist of combi-
natorial primitives that can be traversed efficiently, unlike the Sim-
ple Features approach inwhichmanyoperations involve brute force
comparisons.

Holes and disconnected components in an ordered topological
model can be dealt with any of the techniques described for cell
complexes in §4.3.5, with bridge edges modelled as a pair of sim-
plices with the same vertices but opposite orientations as shown in
Figure 4.15. Attributes can be handled using an attributes tuple that
links each cell of the vertices tuple to a corresponding structure to
store an attribute for it, such that if the 𝑖-th element of the vertices
tuple represents a cell, the 𝑖-th element of the attributes tuple can
link to a structure storing the attributes of the cell.

While ordered topological models are relatively difficult to im-
plement, they have nevertheless been implemented in several
open source libraries and software, including CGAL73, Moka74, and
CGoGN75 [Kraemer et al., 2014]. Although not discussed further
here, I showed in Arroyo Ohori et al. [2013] in more detail how gen-
eralised maps can be implemented to support various characteris-
tics of real-world data, such as such as markers, locks (for parallel
algorithms), simple construction operations and indexing of darts
and attributes for the objects of all dimensions.

However, even as all of the aforementioned implementations are
stable, and the implementation of CGALCombinatorialMaps is im-
pressively sophisticated in many respects (such as the customisable
constant time iterators through darts implemented using C++11

http://www.cgal.org
http://moka-modeller.sourceforge.net
http://moka-modeller.sourceforge.net
http://cgogn.unistra.fr
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76: http://www.gocad.org/

variadic templates), it is important to note that they are limited
to providing basic navigation and construction functions at the
dart/simplex level. The contribution of this thesis thus lies in show-
ing how touse this type of libraries in practice, how to build on them
to create higher-dimensional representations of real-world objects,
and how one can create more complex algorithms on top of these
basic operations in order to implement higher-level (and possibly
user-facing) functions.

In terms of applications, Fradin et al. [2002] used generalised maps
in architecture building models such that the level of detail is mod-
elledusing the samekindof relations that are used tomodel geomet-
ric dimensions. Thomsen et al. [2008] used generalised maps in or-
der to manage topology in 2D/3D GIS in a unified (and dimension-
independent) manner. Le [2013] used Gocad76 (which internally
uses generalised maps) to create 4D geological models by interpo-
lating separate 3D models at various points in time.

4.3.7 Other possible vectormodels

While this thesis attempts to comprehensively cover the ways in
which higher-dimensional objects might be modelled, its princi-
pal aim is to realise one of these models up to its implementation
and basic operations. Because of this—and especially considering
the great number of possible models developed in different fields—
, there are interesting possibilities that it has not been possible to
study in depth within the context of the PhD project corresponding
to this thesis. Nevertheless, as a documentation of these prelimi-
nary observations, some other representation possibilities are pre-
sented in brief in this section.

Models containing only points in 𝑛D space [Pasko and Adzhiev,
2001] are widely used in the context of remote sensing and data
mining, and are particularly relevant in the representation of 𝑛D
fields. These can be used together with an appropriate interpolation
function [Miller, 1997] or a geometric construction that generates
𝑛D cells from the points (e.g. Voronoi diagrams [Ledoux, 2006] and
their weighted generalisations [Edelsbrunner, 2014]).

Apart from the hierarchical subdivision approaches presented in
§4.3.2, there are other types of hierarchical representations that do
not recursively partition space starting fromℝ𝑛. Čomić et al. [2014]
discusses how objects can be described as sequences of operations
in the form of hierarchical cell complexes, which moreover preserve
the homology of the objects. Bulbul and Frank [2009] decomposes
objects into simplices using alternate decompositions using convex
hulls—an especially interesting approach considering that 𝑛D con-
vex hull computations have been extensively described in scientific

http://www.gocad.org/
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literature and implemented in software [Lawson, 1986; Seidel, 1986;
Barber et al., 1996].

Algebraic models, such as the function representation (F-rep)
scheme [Pasko et al., 1995] described in §3.1.2, also extend well to
higher dimensions. For instance, geometric algebra [Artin, 2011]
can be used to describe objects directly as vector spaces, eschewing
separate combinatorial/embedding structures for a single represen-
tation where the geometry and topology of an object is jointly ma-
nipulated and queried.

4.4 Conclusions and possibilities

Using higher-dimensional representations of objects offers a solu-
tion to the integration of parametrisable characteristics, such as
time and scale, into GIS in a generic manner. This makes it pos-
sible to store all the topological relationships and the correspon-
dences between objects across (discrete or continuous) time or scale
by modelling them as if they were continuous, and can be used for
several applications, such as for guaranteeing the internal consis-
tency of a model, for the definition of dimension-independent con-
straints, or for the automatic update of datasets [van Oosterom and
Stoter, 2010].

The approach is well-founded upon long-standing mathematical
theories, and so is able to deal with complex cases and with the
special requirements of each dimension more robustly than solu-
tions in which parametrisable characteristics are handled in an ad
hoc fashion. For instance, if moving objects were to be added to an
existing representation (with only static objects), arbitrary motions
could be supported rather than those that can be deduced from sim-
ple parameters stored in attributes.

While higher-dimensional representations are space intensive, this
factor ameliorated by the fact that many GIS applications use rela-
tively sparse data [McKenzie et al., 2001; Mason et al., 1994]. How-
ever, analysing the properties of the non-spatial characteristics to be
modelled as dimensions is crucial, as there is no advantage in mod-
elling such characteristics as dimensions when attributes clearly
suffice.

There are many different data models and data structures that can
be used to implement this higher-dimensional spatial modelling ap-
proach. However, just as in 2D and 3D, there is not a single data
structure thatworks best for all purposes and applications, so choos-
ing an appropriate one is critical.

4D rasters andhierarchies of trees havebeenused successfully in the
past in a GIS context [Mason et al., 1994; Varma et al., 1990; Bernard
et al., 1998; O’Conaill et al., 1992]. These can use similar structures
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77: The exact number of primi-
tives might not be the same since
a discretised element in themodel
might be implemented as one or
as multiple separate structures.

and algorithms as their 2D/3D counterparts and are therefore easy
to implement, but they are only capable of achieving rough approx-
imations of the objects’ boundaries [Blaschke, 2010] and can grow
in size exponentially as the dimension increases. Vector data struc-
tures with limited topological information, such as Simple Features
[OGC, 2011], possibly combined with the computation of topology
on the fly [ESRI, 2005], also explode in terms of size in higher di-
mensions and are difficult to efficiently traverse. The most promis-
ing option is therefore a topological vector approach that allows for
the representation of real-world objects of heterogeneous dimen-
sions with holes and attributes, which moreover should be efficient
to traverse. This requires the use of higher-dimensional topological
vector data structures.

The dimension-independent vector data structures that are able to
support this approach can be classified into three broad data mod-
els: geometric simplicial complexes, cell complexes and ordered
topological models. The data structures belonging to each of these
tend to have similar properties in terms of space complexity since
they contain a number of primitives of the same order77. Opera-
tions performed on them also tend to have the same computational
complexity since they can have similar topological relationships,
and when they do not, their cost is bounded by the conversion cost
fromone to the other, which is often easy and can be done primitive
by primitive.

Since algorithms operate on primitives, which are defined by a data
model, this analysis also serves to know which fundamental opera-
tions can be applied on a data structure. For instance, Euler oper-
ations are defined in terms of cell complexes [Mäntylä, 1988] and
stellar operators in terms of simplicial complexes [Velho, 2003].
Therefore, in general terms, any data structure that represents cell
complexes can implement Euler operations, and the same for stellar
operators and simplicial complexes.

Regarding the three broad data models identified in this thesis, on
one end it is possible to recognise geometric simplicial complexes,
which have the most powerful algebra and are the easiest to manip-
ulate, but require the subdivision of each object into simplices us-
ing a constrained or conforming triangulation, which is very hard
to do in more than 3D and for which there is no known available
software. Cell complexes are on the other end, as they are trivial to
construct but only support a much weaker set of fundamental oper-
ations, which increases the complexity of many computations. Or-
dered topological models, such as the cell-tuple/generalised maps
and combinatorial maps, combine characteristics of the previous
two and have both a relatively powerful algebra and are easy to con-
struct, although they are also the most space-intensive and the most
complex to implement. However, this last point is easily overcome
in practice since there are good implementations of them in sev-
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eral open source libraries and software, including CGAL, Moka, and
CGoGN—although special handling for holes andnon-manifold ge-
ometries might still be required. Because of this, ordered topologi-
cal models are deemed to be the most promising alternatives for higher-
dimensional spatial modelling and are used as a base for further opera-
tions in the following chapters of this thesis.

Using a higher-dimensional representation of objects enables com-
bined geometric and topological queries across all dimensions. For
instance, applied to 4D BIM78 models that include the construction
process of a building, it is possible to efficiently do safety checks (e.g.
dangerous work is not being performed concurrently and close to
other activities, or ensuring that all building components are con-
nected properly at all times) by performing well-defined 4D queries
rather than by doing many 3D tests that might not encompass all
possible undesirable cases. As more higher-dimensional compu-
tational geometry and topology algorithms and libraries become
available, such as the recent additions in CGAL and Gudhi79, this
approach also makes it possible to utilise them directly, taking ad-
vantage of new developments.

http://enr.construction.com/technology/bim/2014/0602-Dynamic-Models-for-Safer-Sites.asp?page=2
http://enr.construction.com/technology/bim/2014/0602-Dynamic-Models-for-Safer-Sites.asp?page=2
http://enr.construction.com/technology/bim/2014/0602-Dynamic-Models-for-Safer-Sites.asp?page=2
http://enr.construction.com/technology/bim/2014/0602-Dynamic-Models-for-Safer-Sites.asp?page=2
https://project.inria.fr/gudhi/
https://project.inria.fr/gudhi/
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Constructing andmanipulating objects





Basic dimension-independent operations 5
Chapter 4 identified the most promising data structures in the con-
text of a higher-dimensional GIS and explained how certain funda-
mental operations are intimately related to the data structures for
which they are defined. This chapter therefore covers a number of
basic dimension-independent operations, some of which need to
be defined in the context of a specific data structure. These opera-
tions are by themselves useful, as they correspond to common sim-
ple queries and modification. In addition, some of them are used as
building blocks for the more complex operations described in latter
chapters of this thesis.

§5.1 introduces basic properties and operations on generalised/-
combinatorial maps and on Nef polyhedra, which are later re-
spectively used for more complex higher-dimensional operations
(Chapters 6, 7 & 8) and for cleaning 2D and 3D data (Chapter 10).
§5.2 describes how to apply basic transformations to an 𝑛D simpli-
cial/cell complex, which can be used to manipulate 𝑛D objects and
to move around an 𝑛D scene (Chapter 9).

§5.3 describes some spatial indexing methods which can be ap-
plied to higher-dimensional objects, allowing a system to solve two
common problems: keeping track of disconnected objects and effi-
ciently obtaining the objects in a particular region. §5.4 discusses
how the concept of duality works in higher dimensions, which can
be used to characterise the relationships between objects of any di-
mension. §5.5 puts the concepts of this chapter into practice by pro-
viding a few concrete examples of simple dimension-independent
operations, including a technique to quickly compare objects in any
dimension, which is itself used as the basis of the incremental con-
struction operation in Chapter 7. These examples showcase how op-
erations on an ordered topological model are remarkably efficient
compared to the same operations on a Simple Features-like repre-
sentation.

Most of §5.4 is based on the paper:

► Representing the dual of objects in a four-dimensional GIS.
KenArroyoOhori, Pawel Boguslawski andHugo Ledoux. In A.
Abdul Rahman, P. Boguslawski, C. Gold and M. N. Said (eds.),
Developments in Multidimensional Spatial Data Models, Lecture
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http://dx.doi.org/10.1007/978-3-642-36379-5_2
http://dx.doi.org/10.1007/978-3-642-36379-5_2
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Figure 5.1: (a) A 2D cell complex
represented as (b) a 2D generalised
map in a simplicial complex-based
depiction as used in §4.3.6, and (c)
in a simpler depiction using half-
edges and showing explicitly the
relations between the darts. As
involutions are pairwise relations
between darts, they are their own
inverse, i.e. applying them twice al-
ways means returning to the origi-
nal dart.

(a)

0 0

0

0 0

1 1

1

1 1 1

1

2

2
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(b) (c)

Notes in Geoinformation and Cartography, Springer Berlin
Heidelberg, Johor Bahru, Malaysia, May 2013, pp. 17–31.

5.1 Basic operations on certain data structures

5.1.1 Generalised and combinatorialmaps

As described in §4.3.6, an object in an ordered topological model is
described as a set of combinatorial simplices, which are connected
by a set of predefined relations. These relations and the operations
that use themare described inmore detail below, partly based on the
definitions used in Damiand and Lienhardt [2014]. Note however
that some of the definitions presented here are somewhat simpli-
fied, as they are meant only to handle the types of representations
and further operations used in this thesis.

In the case of a generalised map, which is shown in Figure 5.1, all
the relations between darts take the form of involutions—bijective
functions that are their own inverse. That is, they are functions 𝑓
such that 𝑓􏿴𝑓(𝑥)􏿷 = 𝑥, or equivalently 𝑓 = 𝑓−􏷠. In addition, certain
darts are 𝑖-free, which means that for a given dart 𝑑, 𝛼𝑖(𝑑) = 𝑑. These
darts represent the boundary of the map.

More formally, a 𝑛-dimensional generalised map is defined as a (𝑛 +
2)-tuple 𝐺 = (𝐷, 𝛼􏷟, … , 𝛼𝑛), where:

► 𝐷 is a finite set of darts;

► ∀0 ≤ 𝑖 ≤ 𝑛, 𝛼𝑖 is an involution on 𝐷;

► ∀0 ≤ 𝑖 ≤ 𝑛 − 2, ∀𝑖 + 2 ≤ 𝑗 ≤ 𝑛, 𝛼𝑖 ∘ 𝛼𝑗 is an involution on 𝐷.
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Figure 5.2: The 𝛽􏷪 relations in a
1D combinatorial map are partial
permutations. Whereas 𝛽􏷪(𝑑􏷪) =
𝑑􏷫, 𝛽􏷪(𝑑􏷫) = 𝑑􏷬 and 𝛽􏷪(𝑑􏷬) = ∅.

Figure 5.3: The 𝛽􏷪 relations in a
2D combinatorial map are partial
permutations, the 𝛽􏷫 relations are
partial involutions.

In a combinatorial map, the relations between the darts are some-
what different. As shown in Figure 5.2, polygonal curves in a combi-
natorialmap result in somedarts that have an undefined 𝛽􏷠 relation.
For a given dart 𝑑 with an undefined relation 𝛽􏷠, this is encoded as
𝛽􏷠(𝑑) = ∅ and the dart is said to be 1-free. Because of this, the 𝛽􏷠 rela-
tions in a combinatorial map do not form involutions, but instead
form only partial permutations. In addition, as shown in Figure 5.3,
in a combinatorial map of any dimension, the darts that lie on the
boundary of the map have certain undefined 𝛽 relations, which are
set to the special value ∅. If a given 𝛽𝑖(𝑑) = ∅, the dart 𝑑 is said to be
𝑖-free. Because of the existence of these relations, the 𝛽 relations of
a combinatorial map other than 𝛽􏷠 form partial involutions.

More formally, an 𝑛-dimensional combinatorial map is defined as
an (𝑛 + 1)-tuple 𝐶 = (𝐷, 𝛽􏷠, … , 𝛽𝑛) where:

► 𝐷 is a finite set of darts;

► 𝛽􏷠 is a partial permutation on 𝐷;

► ∀2 ≤ 𝑖 ≤ 𝑛, 𝛽𝑖 is a partial involution on 𝐷;

► ∀0 ≤ 𝑖 ≤ 𝑛 − 2, ∀3 ≤ 𝑗 ≤ 𝑛, 𝑖 + 2 ≤ 𝑗, 𝛽𝑖 ∘ 𝛽𝑗 is a partial involution on
𝐷.

The properties of generalised and combinatorial maps are crucial,
as when they are enforced, they ensure that darts form a valid com-
binatorial structure. They also allow the definition of various oper-
ations that operate on the combinatorial structures induced by the
darts and their relations. Many of these operations are based on the
concept of an orbit, a subset of the darts of a generalised/combina-
torial map that are connected by certain relations. Starting from a
given dart 𝑑 and a set of relations Α, the orbit ⟨Α⟩(𝑑) obtains all the
darts that can be reached by recursively following all relations in
Α.

Darts of a cell Considering that every cell in a generalised or com-
binatorialmap is represented by a set of darts, an important ba-
sic operation is obtaining all the darts that represent a given
cell (of any dimension). In a generalised map, from a given
dart 𝑑 known to be part of an 𝑖-cell, the darts of the 𝑖-cells are
those that can be reached by recursively following all relations
except for 𝛼𝑖. As shown in Figure 5.4, this is given by the orbit
⟨𝛼􏷟, … , 𝛼𝑖−􏷠, 𝛼𝑖+􏷠, … , 𝛼𝑛⟩(𝑑). In a combinatorial map, due to the
oriented nature of the 𝛽􏷠 relations, in order to obtain the darts
of a 0-cell it is instead necessary to follow a composition of re-
lations given by ⟨{𝛽𝑗 ∘ 𝛽𝑘 ∣ ∀1 ≤ 𝑘 ≤ 𝑛, ∀1 ≤ 𝑗 ≤ 𝑘}⟩(𝑑). The cells of
dimension two and higher are obtained in a similar manner
as in a generalised map, by following all relations except for 𝛽𝑖,
i.e. ⟨𝛽􏷠, … , 𝛽𝑖−􏷠, 𝛽𝑖+􏷠, … , 𝛽𝑛⟩(𝑑).
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Figure 5.4: Starting from (a) a 2D
generalised map representation of
a cube, all the darts representing
an 𝑖-cell of themap canbeobtained
by starting from any dart known to
be part of the 𝑖-cell, then using the
orbit that contains all relations but
𝛼𝑖. (b) Here, the orbits of a specific
0-cell, 1-cell and 2-cell.

(a) (b)

81: This last condition enforces
the last criterion in the definition
of a generalised map given above.

82: Similarly, this last condition
enforces the last criterion in the
definition of a combinatorial map
given above.

Isomorphism It is possible to check if two maps are isomorphic by
finding whether there is a one-to-one mapping between the
darts in the maps that also preserves the relations between
them. That is, given two generalised maps (𝐷, 𝛼􏷟, … , 𝛼𝑛) and
(𝐷′, 𝛼′􏷟, … , 𝛼′𝑛), an isomorphism is a function 𝑓 ∶ 𝐷 → 𝐷′ such
that ∀𝑑 ∈ 𝐷, ∀0 ≤ 𝑖 ≤ 𝑛, 𝑓􏿴𝛼𝑖 (𝑑) 􏿷 = 𝛼′𝑖 􏿴𝑓 (𝑑)􏿷. Similarly, given two
combinatorial maps (𝐷, 𝛽􏷠, … , 𝛽𝑛) and (𝐷′, 𝛽′􏷠, … , 𝛽′𝑛), an isomor-
phism is a function 𝑓 ∶ 𝐷 ∪ {∅} → 𝐷′ ∪ {∅} such that 𝑓(∅) = ∅,
and else ∀𝑑 ∈ 𝐷, ∀1 ≤ 𝑖 ≤ 𝑛, 𝑓 􏿴𝛽𝑖 (𝑑)􏿷 = 𝛽′𝑖 􏿴𝑓 (𝑑)􏿷.

Sewable darts Starting from isolated darts, these can be assembled
together via the sewing operation, described below. How-
ever, it is important to first determine if they can be sewed
together along a given dimension. Given a generalised map
(𝐷, 𝛼􏷟, … , 𝛼𝑛) and two darts from the map 𝑑, 𝑑′ ∈ 𝐷, 𝑑 and 𝑑′
are 𝑖-sewable if and only if 𝑑 ≠ 𝑑′, 𝑑 and 𝑑′ are 𝑖-free, and
there is an isomorphism between ⟨𝛼􏷟, … , 𝛼𝑖−􏷡, 𝛼𝑖+􏷡, … , 𝛼𝑛⟩(𝑑) and
⟨𝛼􏷟, … , 𝛼𝑖−􏷡, 𝛼𝑖+􏷡, … , 𝛼𝑛⟩(𝑑′) such that 𝑓(𝑑) = 𝑑′81. Similarly, given
a combinatorial map (𝐷, 𝛽􏷠, … , 𝛽𝑛) and two darts from the map
𝑑, 𝑑′ ∈ 𝐷, 𝑑 and 𝑑′ are 𝑖-sewable if and only if 𝑑 ≠ 𝑑′, 𝑑 and the
inverse of 𝑑′ are 𝑖-free, and there is an isomorphism between
⟨𝛽􏷠, … , 𝛽𝑖−􏷡, 𝛽𝑖+􏷡, … , 𝛽𝑛⟩(𝑑) and ⟨𝛽􏷠, … , 𝛽𝑖−􏷡, 𝛽𝑖+􏷡, … , 𝛽𝑛⟩(𝑑′) such that
𝑓(𝑑) = 𝑑′82.

Sewing The sewing operation is the basic construction method
used to link isolated darts in a map in order to form cell com-
plexes. Intuitively, it is possible to link two 𝑖-cells along a com-
mon (𝑖 −1)-cell by sewing corresponding darts on the common
bounding (𝑖 − 1)-cell around each 𝑖-cell. This operation is thus
equivalent to a parallel traversal of two maps that links its cor-
responding darts along an (𝑖 − 1)-cell. Given a generalised map
(𝐷, 𝛼􏷟, … , 𝛼𝑛) and two darts 𝑑, 𝑑′ ∈ 𝐷 that are 𝑖-sewable using the
isomorphism 𝑓, 𝑖-sewing 𝑑 and 𝑑′ means that ∀𝑒 ∈ ⟨𝛼􏷟, … , 𝛼𝑛⟩(𝑑),
𝛼𝑖(𝑒) should be set to 𝑓(𝑒) and 𝛼𝑖􏿴𝑓(𝑒)􏿷 should be set to 𝑒. Given a
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sew

Figure 5.5: Two cubes in a 3Dgener-
alised map can be linked together
by 3-sewing corresponding darts
on the common face (highlighted)
on each cube. This operation uses
the orbits of each face on each cube
in order to link all corresponding
darts on both orbits.

combinatorial map (𝐷, 𝛽􏷠, … , 𝛽𝑛) and two darts 𝑑, 𝑑′ ∈ 𝐷 that are
1-sewable using the isomorphism 𝑓, 1-sewing 𝑑 and 𝑑′ means
that ∀𝑒 ∈ ⟨{𝛽𝑖 ∘ 𝛽𝑗 ∣ ∀3 ≤ 𝑘 ≤ 𝑛, ∀3 ≤ 𝑗 ≤ 𝑘}⟩(𝑑), 𝛽􏷠(𝑒) should
be set to 𝑓(𝑒) and ∀𝑒′ ∈ ⟨{𝛽𝑖 ∘ 𝛽𝑗 ∣ ∀3 ≤ 𝑘 ≤ 𝑛, ∀3 ≤ 𝑗 ≤ 𝑘}⟩(𝑑′),
𝛽􏷠(𝑓(𝑒′)) should be set to 𝑒′. For the cells of dimension two and
higher, if 𝑑 and 𝑑′ are 𝑖-sewable (𝑖 ≥ 2), 𝑖-sewing them means
that ∀𝑒 ∈ ⟨𝛽􏷠, … , 𝛽𝑛⟩(𝑑), 𝛽𝑖(𝑒) should be set to 𝑓(𝑒) and 𝛽𝑖􏿴𝑓(𝑒)􏿷
should be set to 𝑒.

5.1.2 Nef polyhedra

As discussed in §4.3.3, Nef polyhedra [Nef, 1978; Bieri and Nef,
1988] are able to represent polytopes of any dimension based on
a set of local pyramids, which contain the neighbourhood informa-
tion around each vertex. Despite the fact that—to the best of my
knowledge—there is no available implementation of Nef polyhedra
in more than three dimensions, their dimension-independent for-
mulation and the relative ease of implementing robust operations
on Nef polyhedra nevertheless make them valuable in a higher-
dimensional setting.

In particular, Boolean set operations on 2D Nef polygons and 3D
Nef polyhedra are very useful to obtain valid 2D and 3D datasets—
something that will be shown in §10.3. These clean datasets can
then be used as a base for higher-dimensional ones, either by
extruding them (Chapter 6), by using them to define parts of a
higher-dimensional object’s boundary (Chapter 7), or by linking
corresponding datasets that represent other points in scale or time
(Chapter 8), among other possibilities.

The key advantage of operations on Nef polyhedra is the fact that
manyof themcanbe largely implemented at the local pyramid level.
As shown by Seel [2001] in 2D and Hachenberger [2006] in 3D,
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Figure 5.6: Various Boolean set op-
erations on (a) the Nef polygons
𝐴 (red) and 𝐵 (blue) that can be
performed on (b) their local pyra-
mids: complement (¬), union (∪),
intersection (∩) and difference (−).

(a) (b)

83: Note how this essentially re-
duces the dimensionality of the
problem by one.

Boolean set operations are one such case. Based on the approach
advocated by Rossignac and O’Connor [1989], it is possible to com-
pute these type of binary (or 𝑛-ary) operations in three steps: sub-
division, selection and simplification. The subdivision is the most
complex of these. It consists of computing an overlay of the in-
put polyhedra, creating the overall structure where the result will
be put (e.g. the vertices, edges, faces and volumes of a cell com-
plex). This can be computed with the methods used for arrange-
ments of line segments in 2D [de Berg et al., 2008, §8.3], or by com-
puting line-segment-to-line-segment and line-segment-to-polygon
intersections in 3D [Hachenberger, 2006], which give the locations
of the new vertices and thus the new local pyramids.

After this, the selection step computes whether the individual cells
are to be considered as part of the output or not (i.e. whether they
are in the interior or exterior of the Nef polygons/polyhedra). The
simplification removes unnecessary structures in way that does not
alter the point set that is represented, akin to the dissolving opera-
tions common in GIS.

Figure 5.6 shows an example of how this works in practice in 2D.
A 2D Boolean set operation kernel starts from two Nef polygons 𝐴
and 𝐵—each of which is stored as a set of local pyramids at its corre-
sponding vertices. As shown previously in Figure 3.3 on page 29,
each of these 2D local pyramids can be stored as a list of 1D in-
tervals83. The kernel first computes the intersections between the
line segments (as an overlay problem). The vertices of each polygon
and the intersection points between the line segments yield the lo-
cal pyramids to be considered. The local pyramid intervals for both
polygons at all of these locations are computed. A Boolean set oper-
ation is then computed by applying it to the local pyramids (i.e. to
the intervals). Finally, unnecessary local pyramids can be removed
from the output (e.g. in Figure 5.6: 𝑓 in 𝐴 ∪ 𝐵; 𝑎, 𝑏, 𝑐, 𝑔, 𝑖, 𝑗 and 𝑘 in
𝐴 ∩ 𝐵; and 𝑎, 𝑐, 𝑗 and 𝑘 in 𝐴 − 𝐵).



5.2 Basic transformations of an 𝑛D scene 91

5.2 Basic transformations of an 𝑛D scene

Starting from an 𝑛-dimensional simplicial complex or cell complex
with linear geometry, where every vertex is embedded in a location
in ℝ𝑛, it is possible to define a set of basic transformations to ma-
nipulate 𝑛D objects simply by applying them to the coordinates of
every vertex. This section thus describes dimension-independent
versions of the threemost important transformations to anℝ𝑛 point
set: translation, rotation and scaling. In addition, it explains how to
compute the cross-product in higher dimensions, which is later used
to compute a vector that is orthogonal to all of a set of other vec-
tors.

Translating of a set of points in ℝ𝑛 can be easy expressed as a sum
with a vector 𝑡 = [𝑡􏷟, … , 𝑡𝑛], or alternatively as a multiplication with a
matrix using homogeneous coordinates, which is defined as:

𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 𝑡􏷟
0 1 ⋯ 0 𝑡􏷠
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 𝑡𝑛
0 0 ⋯ 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In particular, it is oftenuseful to apply amultiplicationwith a center-
ing matrix [Marden, 1996, §3.2], which moves a dataset to a position
around the origin. Such a matrix would be defined as 𝕀𝑛 − 􏷠

𝑛𝟙, where
𝕀 is the identity matrix and 𝟙 is a matrix where all entries are set to
1.

Scaling is similarly simple. Given a vector 𝑠 = [𝑠􏷟, 𝑠􏷠, … , 𝑠𝑛] that de-
fines a scale factor per axis (which in the simplest case can be the
same for all axes), it is possible to define a matrix to scale an object
as:

𝑆 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠􏷟 0 ⋯ 0
0 𝑠􏷠 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑠𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rotation is somewhatmore complex. Rotations in 3D are often con-
ceptualised intuitively as rotations around an axis. As there are three
degrees of rotational freedom in 3D, combining three such elemen-
tal rotations can be used to describe any rotation in 3D space. Most
conveniently, these three rotations can be performed respectively
around the 𝑥, 𝑦 and 𝑧 axes, such that a point’s coordinate on the axis
being rotated remains unchanged. This is a very elegant formula-
tion, but this view of the matter is only valid in 3D.



92 5 Basic dimension-independent operations

84: Note the order of the three ro-
tation planes givenhere, which re-
sults from omitting the axes 𝑥, 𝑦
and 𝑧 (in that order). Note also the
order of the two axes in 𝑧𝑥, which
follows the right hand rule and de-
fines the signs of the sines in the
rotation matrices.

Amore correct way to conceptualise rotations is to consider them as
rotations parallel to a given plane [Hollasch, 1991], such that a point
that is continuously rotated (without changing rotation direction)
will form a circle that is parallel to that plane. This view is valid in
2D (where there is only one such plane), in 3D (where a plane is or-
thogonal to the usually defined axis of rotation) and in any higher
dimension. Incidentally, this shows that the degree of rotational
freedom in 𝑛D is given by the number of possible combinations of
two axes (which define a plane) on that dimension [Hanson, 1994],
i.e. (𝑛􏷡). A general rotation in any dimension can also be seen as a se-
quence of elementary rotations, although the total number of these
rotations that need to be performed increases significantly.

Consider the 2D rotationmatrix𝑅𝑥𝑦 that rotates points inℝ􏷡 parallel
to the 𝑥𝑦 plane:

𝑅𝑥𝑦 = 􏿰
cos𝜃 − sin𝜃
sin𝜃 cos𝜃 􏿳

Based on it, it is possible to obtain the three 3D rotation matrices
to rotate points in ℝ􏷢 around the 𝑥, 𝑦 and 𝑧 axes, which correspond
to the rotations parallel to the 𝑦𝑧, 𝑧𝑥 and 𝑥𝑦 planes84. These would
consist of an identity row and column that preserves the coordinate
of a particular axis and rotates the coordinates of the other two, re-
sulting in the following three 3D rotation matrices:

𝑅𝑦𝑧 =

⎡
⎢⎢⎢⎢⎢⎣
1 0 0
0 cos𝜃 − sin𝜃
0 sin𝜃 cos𝜃

⎤
⎥⎥⎥⎥⎥⎦ 𝑅𝑧𝑥 =

⎡
⎢⎢⎢⎢⎢⎣
cos𝜃 0 sin𝜃
0 1 0

− sin𝜃 0 cos𝜃

⎤
⎥⎥⎥⎥⎥⎦ 𝑅𝑥𝑦 =

⎡
⎢⎢⎢⎢⎢⎣
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎦

Similarly, in a 4D coordinate system defined by the axes 𝑥, 𝑦, 𝑧 and𝑤,
it is possible to define six 4D rotationmatrices, which correspond to
the six rotational degrees of freedom in 4D [Hanson, 1994]. These
respectively rotate points in ℝ􏷣 parallel to the 𝑥𝑦, 𝑥𝑧, 𝑥𝑤, 𝑦𝑧, 𝑦𝑤 and
𝑧𝑤 planes:

𝑅𝑥𝑦 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos𝜃 − sin𝜃 0 0
sin𝜃 cos𝜃 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅𝑥𝑧 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos𝜃 0 − sin𝜃 0
0 1 0 0

sin𝜃 0 cos𝜃 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅𝑥𝑤 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos𝜃 0 0 − sin𝜃
0 1 0 0
0 0 1 0

sin𝜃 0 0 cos𝜃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅𝑦𝑧 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 cos𝜃 − sin𝜃 0
0 sin𝜃 cos𝜃 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅𝑦𝑤 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 cos𝜃 0 − sin𝜃
0 0 1 0
0 sin𝜃 0 cos𝜃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅𝑧𝑤 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 cos𝜃 − sin𝜃
0 0 sin𝜃 cos𝜃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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85: probably easier to picture as
an (𝑛 − 􏷠)-simplex

This scheme of a set of elementary rotations can be easily extended
to any dimension, always considering a rotation matrix as a trans-
formation that rotates two coordinates of every point andmaintains
all other coordinates. An alternative to this could be to apply more
than one rotation at a time [van Elfrinkhof, 1897]. However, for an
application expecting user interaction, it might be more intuitive
to rely on an arbitrarily defined rotation plane that does not corre-
spond to specific axes, e.g. by defining such a plane through a triplet
of points [Hanson, 1994].

Finally, the cross-product is also easier to understand by first con-
sidering the lower-dimensional cases. In 2D, it is possible to obtain
a normal vector to a 1D line as defined by two (different) points 𝑝􏷟
and 𝑝􏷠, or equivalently a normal vector to a vector from 𝑝􏷟 to 𝑝􏷠. In
3D, it is possible to obtain anormal vector to a 2Dplane as definedby
three (non-collinear) points 𝑝􏷟, 𝑝􏷠 and 𝑝􏷡, or equivalently a normal
vector to a pair of vectors from 𝑝􏷟 to 𝑝􏷠 and from 𝑝􏷟 to 𝑝􏷡. Similarly,
in 𝑛D it is possible to obtain a normal vector to a (𝑛− 1)D subspace85

as defined by 𝑛 linearly independent points 𝑝􏷟, 𝑝􏷠, … , 𝑝𝑛−􏷠, or equiva-
lently a normal vector to a set of 𝑛 − 1 vectors from 𝑝􏷟 to every other
point (i.e. 𝑝􏷠, 𝑝􏷡, … , 𝑝𝑛−􏷠) [Massey, 1983; Elduque, 2004].

Hanson [1994] follows the latter explanation using a set of 𝑛 − 1
vectors all starting from the first point to give an intuitive defini-
tion of the 𝑛-dimensional cross-product. Assuming that a point 𝑝𝑖
in ℝ𝑛 is defined by a tuple of coordinates denoted as (𝑝𝑖􏷟, 𝑝𝑖􏷠, … , 𝑝𝑖𝑛−􏷠)
and a unit vector along the 𝑖-th dimension is denoted as 𝑥̂𝑖, the 𝑛-
dimensional cross-product 𝑁⃗ of a set of points 𝑝􏷟, 𝑝􏷠, … , 𝑝𝑛−􏷠 can be
expressed compactly as the cofactors of the last column in the follow-
ing determinant:

𝑁⃗ =
|

|

(𝑝􏷠􏷟 − 𝑝􏷟􏷟) (𝑝􏷡􏷟 − 𝑝􏷟􏷟) ⋯ (𝑝𝑛−􏷠􏷟 ) 𝑥̂􏷟
(𝑝􏷠􏷠 − 𝑝􏷟􏷠) (𝑝􏷡􏷠 − 𝑝􏷟􏷠) ⋯ (𝑝𝑛−􏷠􏷠 ) 𝑥̂􏷠

⋮ ⋮ ⋱ ⋮ ⋮
(𝑝􏷠𝑛−􏷠 − 𝑝􏷟𝑛−􏷠) (𝑝􏷡𝑛−􏷠 − 𝑝􏷟𝑛−􏷠) ⋯ (𝑝𝑛−􏷠𝑛−􏷠) 𝑥̂𝑛−􏷠

|

|

The components of the normal vector 𝑁⃗ are thus given by the mi-
nors of the unit vectors 𝑥̂􏷟, 𝑥̂􏷠, … , 𝑥̂𝑛−􏷠. This vector 𝑁⃗—like all other
vectors—can be normalised into a unit vector by dividing it by its
norm 􏿎𝑁⃗􏿎.

5.3 Spatial indexing

As discussed in §4.4, a topological vector approach seems most
promising for a higher-dimensional GIS, as it enables the compact
storage of precise object shapes of any dimension together with
their attributes. However, vector data structures by themselves lack
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86: The generalisation of 1D
length, 2D area, 3D volume, etc.

a fast access method to access the objects at a certain location or
in a certain region (e.g. a bounding box). In addition, in many in-
stances datasets are composed of multiple combinatorially uncon-
nected components, between which it is not possible to navigate us-
ing topological relationships. As many algorithms are defined as
recursive traversals from a given combinatorial primitive, this lack
of connectivity often causes wrong results.

Both of these issues are typically solved in GIS by keeping a spatial
index—an ancillary data structure that contains links to every object
can be efficiently queried [van Oosterom, 1999]. These links can
point to embedding structures or to combinatorial primitives.

Some of these spatial indices use the same exhaustive enumeration
(i.e. raster) and hierarchical subdivision representations described
respectively in §4.3.1 and §4.3.2. Rather than describing objects as a
regionof a spacepartition, they store links to theobjects that arepar-
tially or fully contained in the region. Commonly used structures of
this type include: grids, quad/oc/k-trees [Finkel and Bentley, 1974;
Meagher, 1980; Yau and Srihari, 1983; Jackins and Tanimoto, 1983]
and 𝑘-d trees [Bentley, 1975].

Other data structures are also based on hierarchical subdivisions,
but they do not contemplate a space partition. Instead, the regions
represented by the children of a node can overlap. Data structures
of this type include: R-trees [Guttman, 1984], R+-trees [Sellis et al.,
1987] and R*-trees [Beckmann et al., 1990].

With simple adaptations, these data structures can also be used
to index objects in higher dimensions. However, it is important
to note that space-partitioning indexing approaches are not faster
than brute force searches on a list of objects on high-dimensional
spaces [Weber et al., 1998], and so the dimension of the data needs
to be taken into account. Objects of heterogeneous dimension are
also a frequent source of problems, as lower-dimensional objects of-
ten result in undesirable edge cases in the heuristics used to keep
well-shapedhierarchical subdivisions. For instance, an axis-aligned
lower-dimensional object can result in its bounding box having a
Lebesgue measure86 of zero, resulting in long thin boxes that over-
lap many possible queries.

Hashing techniques are an interesting alternative, as they allowcon-
stant time (or at least low complexity) access to objects. While most
forms of hashing are not suitable for spatial objects, there are two
relevant exceptions. Geometric hashing [Wolfson and Rigoutsos,
1997] defines a hashing function that is invariant to the (geometric)
properties that are required for a particular application, ensuring
that objects with a similar shape have similar hash codes. Locality-
sensitive hashing [Andoni and Indyk, 2008] instead ensures that
objects that are close together also have hash codes that are close
together.
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Figure 5.7: (a) Six map objects and
their boundaries. (b) The same
map stored as a graph and its dual
(dotted lines). (c) The dual graph is
used to describe the relationships
between adjacent polygons. From
Ledoux [2006, Ch. 6], itself based
on Gold [1991].

87: An idea suggested by Guil-
laume Damiand.

88: Stricter and more efficient
(for a given problem) ordering cri-
teria to choose between all the
darts embedded at this vertex
could be followed here, but they
likely lead to significantly more
complex implementations.

A simple indexing approach, which is often used for the work pre-
sented in this thesis is to maintain an index on objects based on
their lexicographically smallest vertex87. While this approach is not
very useful when trying to obtaining the objects in a region, it is
easy to implement and very efficient for many simple operations,
such as when objects need to be compared. In fact, by linking di-
rectly an index entry to one of a cell’s darts which is embedded at the
lexicographically smallest vertex (as opposed to an arbitrary dart of
the cell), it is possible to significantly limit certain types of search
comparisons to a small set of possible starting darts88. An extensive
example of the use of such an index for comparisons is shown later
in §5.5.

5.4 Duality in higher dimensions

The concept of Poincaré duality (§2.3.2) is used in conjunction with
spatial information to understand and represent how things are
connected. In two dimensions, one application is qualifying the
spatial relationships between adjacent objects: as shown in Fig-
ure 5.7, Gold [1991] uses the quad-edge data structure [Guibas and
Stolfi, 1985] to store simultaneously a map (where each polygon in
the map can have certain attributes) and its dual (the boundaries
between two adjacent map objects, which can also have certain at-
tributes, e.g. the boundary type or the flow direction).

In three dimensions, duality characterises how volumes are related
(e.g. stating that two neighbouring rooms in a building are con-
nected or adjacent). A typical example involves the Delaunay tri-
angulation and the Voronoi diagram, which are dual to each other.
Dakowicz and Gold [2003] use them for terrain modelling, Lee
and Gahegan [2002] for interactive analysis, and Ledoux and Gold
[2008] for three-dimensional fields in the geosciences. In GIS, it is
most commonly used tomodel paths inside 3Dbuildings, which can
be used for navigation computations. Lee and Zlatanova [2008] and
Lee and Kwan [2005] extract from a 3D building a graph that can be

http://liris.cnrs.fr/guillaume.damiand/
http://liris.cnrs.fr/guillaume.damiand/
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Figure 5.8: The dual of (a) a 2D
generalised map can be obtained
by (b) computing a point location
for the dual 2-cells (e.g. their cen-
troid) and swapping 𝛼􏷩 and 𝛼􏷫, and
(c) considering the 2-cells as 0-
cells with their new point embed-
dings. By extending every the ex-
terior of (a) as an additional un-
bounded face, it is possible to ar-
rive at the alternative dual map in
(d).

(a) (b) (c) (d)

89: However, does not need to ac-
tually swap 𝛼𝑛 and 𝛼𝑛−𝑖, but merely
to consider 𝛼𝑛 as if it were 𝛼𝑛−𝑖.

used in case of emergency, and Boguslawski et al. [2011] and Bogus-
lawski and Gold [2011] perform the same using the dual half-edge
data structure, which simultaneously represents the buildings (the
rooms and their boundaries) and the navigation graph. Liu and Zla-
tanova [2013] is especially interesting, as it attempts to obtain such
a graph frommodels stored in the 3D standardsmost widely used in
GIS, CityGML and IFC.

In higher-dimensional context of this thesis, duality similarly char-
acterises relationships between objects, albeit its exact meaning de-
pends on the characteristics being modelled as dimensions. For in-
stance, in a 3D space+time setting where a 4-cell represents a vol-
ume existing through time, the adjacency relationships between 4-
cells represent volumes that were adjacent or connected during one
or more time intervals. These relationships can thus be used to an-
swer connectivity questions in space-time without the need to add
additional semantics in the model. For instance, it would make
it possible to create a 3D indoor and outdoor way-finding applica-
tion, where a user can select any given start and end points and a
point in time, and be given the shortest 3D route at that time, tak-
ing into account all possible topological changes (e.g. construction
work that closes down parts of the building, the dynamic reconfig-
uration of spaces using plasterboard, or connecting corridors that
are only open during office hours). It is worth noting that such a 4D
representation effectively stores the entire history of connectivity in a
building without any added effort.

In a dimension-independent setting, generalised and combinato-
rial maps are notable because they simultaneously encode a cell
complex and its dual. As shown in Figure 5.8, if an 𝑛-dimensional
cell complex is stored as an 𝑛-dimensional generalised map, swap-
ping 𝛼𝑛 and 𝛼𝑛−𝑖 for every 𝑖 for every dart, the dual of the map is
obtained89. Note however that as shown in Figure 5.8b, in order to
obtain a dual cell complex properly embedded in ℝ𝑛, it is in prac-
tice necessary to compute a new point embedding that lies in the
interior of every 𝑛-cell.



5.5 Comparing two objects with and without signatures 97

(a) (b) (c)

Figure 5.9: A stereographic pro-
jection of three pairs of tesseracts
representing: (a) equality (com-
mon 4-cell), (b) adjacency (a com-
mon 3-cell), and (c) common 2-
cell. Only the edges of each tesser-
act are shown.

5.5 Comparing two objects with andwithout
signatures

In order to showcase the difference between the topological and
non-topological approaches in representing higher-dimensional
spatial information, this section compares how efficient the two
approaches are in terms of size, and how efficiently three funda-
mental operations can be performed in either case. The configura-
tions for these tests are shown in Figure 5.9 and respectively involve
verifying that two tesseracts are: equal (i.e. that they represent the
same 4-cell), adjacent (i.e. that they share a common 3-cell facet),
and sharing a common 2-cell ridge. As an example of the topolog-
ical approach, objects will be represented as a combinatorial map
with indices on the lexicographically smallest vertex of every cell.
Meanwhile, the non-topological approach will be exemplified with
the Simple Features-like [OGC, 2011] representation shown in §4.2.3
and Figure 4.7 on page 61. Indices make little sense in the latter, as
there are no combinatorial primitives to navigate and every lower-
dimensional cell is represented multiple times. Note that the ob-
jects are assumed to have identical coordinates and structure at this
point. If this is not the case, cleaning methods such as those men-
tioned in Chapter 10 or those described by Diakité et al. [2014] need
to be applied first.

The tests involving comparisons of combinatorial maps use the
method of Gosselin et al. [2011], which can be used to compare two
orbits of a map using signatures. This method will also be used ex-
tensively in Chapter 7. Based on the ordering properties of a map,
it is possible to traverse a given orbit from a given dart in a man-
ner that is always consistent, yielding a canonical representation.
By following parallel traversals of this type, an algorithm can verify
that two cells or maps are isomorphic in 𝑂(𝑛􏷡) time on the number
of darts in a cell or cell complex.

Intuitively, the quadratic complexity reflects the fact that two cells or
cell complexes are tested for isomorphism by starting one traversal
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90: e.g. by differing in a specific
cell

91: There is no need for a 4D com-
binatorial map, as there is only
one 4D object.

92: An ASCII equivalent (e.g. us-
ing well-known text) could easily
be an order of magnitude larger.

93: In an implementation of these
lists within lists, it is necessary to
use this extra item to know their
structure. For instance, this item
can be used to terminate a list with
a special character (e.g. the '\0'
null terminator used in C strings)
or to put a list’s size as its first
element. Other implementations
(e.g. a linked list) would be much
less efficient.

always at the same dart in one of the cells or cell complexes, possi-
bly including a comparison of up to 𝑛 darts, while trying all 𝑛 pos-
sible starting darts in the other cell or cell complex. However, it is
worth noting that most of the comparisons will stop as soon as one
test fails90, yielding a much better complexity in all but the most
pathological cases. Interestingly, Gosselin et al. [2011] also provides
a method to verify an isomorphism in 𝑂(𝑛) time on a specially gen-
erated external signature that uses 𝑂(𝑛􏷡) space, but this method is
deemed too space-intensive for the purposes of this thesis.

All tests are described in detail below.

Size comparison

Comparing the size of each structure is rather difficult as it can vary
greatly depending on the specific implementation. The specific
implementations described below should nevertheless be roughly
comparable, as they are relatively tailored to the kind of object be-
ing represented but do not hard-code any of its specific properties
(e.g. the number of its bounding 3- or 2-cells).

Combinatorial map A combinatorial maps representation of a
tesseract (Figure 7.5 on page 130) is represented as 192 darts
and 16point embeddings. Stored in a 3Dcombinatorialmap91,
every dart contains links to 4 other darts (𝛽􏷠 to 𝛽􏷢 plus 𝛽−􏷠􏷠 ) and
to its point embedding. As every point is embedded in 4D, ev-
ery point embedding must store 4 coordinates. Assuming that
dart and point embedding links are stored as indices (e.g. of
an array) using 1 byte and point coordinates are stored using 4
bytes, a tesseract is stored in exactly 1 Kb of memory.

Simple Features A Simple Features-like binary92 representation of
a tesseract (Figure 4.7c on page 61) contains 8 lists represent-
ing its bounding cubes, each of which contains 6 lists repre-
senting the bounding squares of a cube, eachofwhich contains
5 lists representing a cycle of points on its boundary, each of
which contains the 4 coordinates of a point. Assuming that
the first three levels of the lists (i.e. 4D, 3D and 2D) are imple-
mented as arrays that use one more item than their contents93

and the last level (i.e. the point coordinates) as arrays of four el-
ements andpoint coordinates are storedusing 4 bytes, a tesser-
act is stored in 5.9 Kb of memory.

Equality test

Combinatorial map In two equal tesseracts, the lexicographically
smallest vertex is the same for both of them. Using the index,
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94: However, most of these cubes
would not have the same lexi-
cographically smallest vertex, but
as the number of cubes with the
same vertex heavily depends on
the configuration, here we use the
very conservative absolute worst
case of 32.

it is possible to get a dart at the lexicographically smallest ver-
tex in each. As 4 cubes in each contain this vertex, and 3 faces
of each of these cubes contain it, there are 12 darts that are em-
bedded there. Using the isomorphism test using signatures,
this would mean 12 possible starting darts in one tesseract’s
traversal (the other is fixed), each of which can be performed
in 2 orientations. As these traversals can be of up to 192 darts,
and each dart comparison involves 4 𝛽-links and a point em-
bedding with 4 coordinates, the process might include up to
36 864 comparisons.

Simple Features It is possible to test for equality by traversing one
tesseract in order, point by point, while searching for an equiv-
alent point in the other tesseract. As the first two levels of their
lists can be in any order (i.e. 4D and 3D) and the third level
list (i.e. 2D) can have any starting point, there are 240 possi-
ble starting points from which a parallel traversal in the other
tesseract can be started, which can be done in 2 possible ori-
entations (forward and backward in every face cycle). These
traversals can include up to 240 points, each including up to
4 coordinate comparisons, yielding a total of up to 460 800
comparisons.

Adjacency test

Combinatorial map A tesseract has 8 cubical 3-cells, any of which
can be equivalent to a 3-cell in the other tesseract. A worst case
test thus involves 32 cube-to-cube comparisons94. Compar-
ing two cubes involves a similar process as the one described
above for a tesseract. Using indices, it is possible to arrive
at the 3 darts at the lexicographically smallest vertex of each
cube, from which comparisons can be started in 2 orienta-
tions, which involve traversals of up to 24 darts. Each dart
comparison involves 3 𝛽-links (𝛽􏷢 does not need to be tested)
and a point embedding with 4 coordinates, yielding 1 008
comparisons per cube-to-cube test and 32 256 total.

Simple Features There are also 32 possible cube-to-cube compar-
isons to be made, each of which is also analogous to the tesser-
act comparison used above. In a cube (Figure 4.7b on page 61),
there are 30 possible starting points for a parallel traversal in 2
possible orientations, each involving up to 30 points with 4 co-
ordinates. Each cube-to-cube comparison thus involves 7 200
comparisons, for a total of 230 400.
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Table 5.1: The relative sizes and
maximum number of compar-
isons in tests with two tesseracts
(Figure 5.9) using combinatorial
maps (c-maps) and a Simple
Features Specification (SFS)
representation.

Test c-maps SFS factor

size (Kb) 1 Kb 5.9 Kb 5.9
equality (comparisons) 36 864 460 800 12.5

adjacency (comparisons) 32 256 230 400 7.14
common 2-cell (comparisons) 13 824 57 600 4.17

95: As in the adjacency test, most
of these squares would not have
the same lexicographically small-
est vertex, but since the number of
squares with the same vertex de-
pends on the configuration, here
we use the very conservative worst
case of 288.

96: Even if this is a moot point in
practice, as topology seems to be
anathema to Simple Features.

Common 2-cell test

Combinatorial map Each tesseract has 24 square 2-cells, so there
are 288 possible square-to-square comparisons95. There is
only 1 dart at the lexicographically smallest vertex of each
square, from which a comparison can be started in 2 orienta-
tions, involving up to 4 darts with 2 𝛽-links and a point with 4
coordinates. There are thus 48 comparisons per square-square
combination and 13 824 total.

Simple Features There are also 288 possible square-to-square com-
parisons. In a square (Figure 4.7a on page 61), there are 5 pos-
sible starting points for a traversal in 2 orientations, each in-
volving 5 other points with 4 coordinates. A square-to-square
comparison thus involves 200 comparisons, for a total of 57
600.

Conclusions and insights into tests in higher dimensions

Table 5.1 summarises the results of the previous tests. As the table
shows, a topological approach using combinatorial maps is signif-
icantly more efficient than a non-topological Simple Features-like
approach. This is true both in terms of size and the number of com-
parisons involved in basic operations. The difference ranges from a
factor of 4.17 for detecting a common 2-cell ridge to a factor of 12.5
for detecting equality (i.e. a common 4-cell).

This difference only becomesmore pronouncedwithmore complex
objects and those of higher dimensions, as the advantage of having
an index pointing to a well-defined starting point for a traversal is
inversely proportional to the number of possible starting points.

However, it is worth noting that the differences between the two
could be heavily reduced by using a modicum of topology in the
Simple Features-like representation96. If the lowest-level lists repre-
senting the coordinates of a point were exchanged for unique point-
ers to an external array with the coordinates of all points, many
of these searches and the overall storage of the Simple Features ap-
proach could be significantly optimised.



98: This contrasts with the use
of the term ‘extrusion’ in other
fields. For instance, in geomet-
ric modelling, extrusion is a well-
known operation in which all
of the objects in the model are
‘dragged’ along a predefined path
given by a curve, more akin to
an actual (physical) extrusion pro-
cess, but whose output topology
can be computed without any ge-
ometric computations.

Extrusion 6
Extrusion is a commonly used technique in GIS to construct sim-
ple 3D models. Starting from a planar partition of polygons and a
height interval associated to each of them, it generates a set of space-
partitioning box-shaped polyhedra by considering that each poly-
gon exists all along its related interval. For instance, a set of build-
ing footprints and associated heights is extruded into a set of simple
prismatic buildings. Based on the fundamental operations on gen-
eralised and combinatorial maps discussed in Chapter 5, this chap-
ter presents a generalisationof this technique tohigher dimensions:
an (𝑛 − 1)-dimensional cell complex and a set of associated intervals
per (𝑛 − 1)-cell is thus transformed into an 𝑛-dimensional cell com-
plex.

The chapter starts by presenting some background on 2D-to-3D
extrusion and an intuitive description of dimension-independent
extrusion in §6.1. Afterwards, §6.2 describes an dimension-
independent extrusion algorithm. §6.3 describes how this algo-
rithm was implemented based on the implementation of combina-
torial maps in CGAL. §6.4 summarises experiments using this im-
plementation, which created consistent objects in up to 6D by com-
bining publicly available GIS datasets. §6.5 describes how extrusion
can be used not only directly, but as a base to create dimension-
independent generalisation operations. Finally, §6.6 concludes the
chapterwith themainfindings and the possibilities to use extrusion
for higher-dimensional datasets.

Most of this chapter is based on the paper:

► A dimension-independent extrusion algorithm using gener-
alised maps. Ken Arroyo Ohori, Hugo Ledoux and Jantien
Stoter. International Journal of Geographical Information Science
29(7), July 2015, pp. 1166–1186.

6.1 Background

Extrusion is most commonly used in GIS98 in order to create sim-
ple 3D city models with box-shaped buildings. In such a process, a
user takes a set of building footprints, optionally subdivided into
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Figure 6.1: A view of the 3D TOP10NL dataset99 in the area of Valkenburg, the Netherlands.

99: https://www.pdok.
nl/nl/producten/pdok-
downloads/basis-registratie-
topografie/top10nl-3d

100: http://www.openstreetmap.
org/

parts of similar height, and extrudes them using intervals that ex-
tend from the ground level to the building height at the location of
each polygon. This process thus creates simple 3D representations
of each building, where a building is represented by one or more
box-shapedpolyhedra. Figure 6.1 shows an example of such amodel
over a triangulated terrain (i.e. a 2D simplicial complex embedded
in 3D).

Such an extrusion process is appealing largely because of its sim-
plicity. All the information that is required for the previous ex-
ample is notoriously easy to obtain: building footprints are widely
available—including in open datasets such as OpenStreetMap100—
or can be easily obtained from satellite imagery, while the height in-
formation can be acquired with techniques like airborne laser scan-
ning or photogrammetry. Not coincidentally, this type of 3D mod-
els are commonly generated in practice and often appear in stan-
dards such as CityGML [Gröger et al., 2012], where it is defined as
the level of detail (LOD) 1.

Moreover, it is easy to ensure that extruded models are generated in
a topologically consistentmanner [Ledoux andMeijers, 2011]. If the
input forms a planar partition—or is processed to formaplanar par-
tition, e.g. using the method described in §10.2—and the extrusion
direction is orthogonal to the planar partition, the output polyhedra
are guaranteed not to overlap.

While not every possible 3D shape can be generated using
extrusion—the top and bottom faces will always be horizontal, and

https://www.pdok.nl/nl/producten/pdok-downloads/basis-registratie-topografie/top10nl-3d
https://www.pdok.nl/nl/producten/pdok-downloads/basis-registratie-topografie/top10nl-3d
https://www.pdok.nl/nl/producten/pdok-downloads/basis-registratie-topografie/top10nl-3d
https://www.pdok.nl/nl/producten/pdok-downloads/basis-registratie-topografie/top10nl-3d
http://www.openstreetmap.org/
http://www.openstreetmap.org/
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(a) (b)

Figure 6.2: (a) A 2D cell complex,
where each2-cell is associatedwith
aheight, is extruded to generate (b)
a 3D cell complex. Note how the
extrusion of vertex 𝑣 in (a) causes
the generation of several vertices
and edges. In particular, the ver-
tex 𝑣′ in (b), which is at the height
of the top face of the back left poly-
hedron. This vertex needs to be
used in the representation of the
all 4 edges, 5 faces and 3 volumes
that are incident to it, not only
in those that are part of the back
left polyhedron. This ensures that
the cells in (b) are pairwise dis-
joint and have the expected correct
topology.

101: This is equivalent to one or
more edges in Lienhardt et al.
[2004] or 1-dimensional polyhe-
dra in Ferrucci [1993].

Figure 6.3: The Frauenkirche in
Dresden, Germany, was originally
built in 1743, destroyed during the
bombing of Dresden in 1945, and
reconstructed in 2005. A simple
4D model of the building could be
made by extruding a 3D model of
it along the interval (􏷠􏷦􏷣􏷢, 􏷠􏷨􏷣􏷤) ∪
(􏷡􏷟􏷟􏷤,∞). Photograph by David
Müller in Wikimedia Commons.

the side faces connecting them will always be vertical—, a remark-
able number of shapes can be constructed using this type ofmethod
[Ferrucci, 1993]. This is especially true when simple extensions to
the method are considered, such as multiple intervals per 2-cell,
possibly overlapping 2-cells in the input, or an arbitrary extrusion
direction.

Viewed at a more fundamental level, shown in Figure 6.2, extrusion
‘lifts’ a 2D cell complex to form a 3D cell complex. In order to form a
valid cell complex as defined in §2.3.2, cellsmust not overlap, but in-
stead they should form a structure of cells of dimension from 0 to 3,
where 𝑖-cells (∀𝑖 > 0) are bounded by sets of (𝑖−1)-cells. The extruded
cells must therefore take into account the incidence and adjacency
relationships between cells, splitting cells of every dimension at the
places where the common boundaries of higher-dimensional cells
start and end.

Extrusion, in the sense of its GIS definition as exposed in the pre-
vious paragraph, has a natural extension to higher dimensions. A
dimension-independent extrusion operation thus ‘lifts’ an (𝑛 − 1)-
dimensional cell complex, to an 𝑛-dimensional cell complex by as-
signing one or more intervals to each (𝑛 − 1)-cell, i.e. a subset of
1D Euclidean space101, along which this cell is defined. For in-
stance, just as a polygon representing the footprint of a building
is commonly extruded using an interval (0, ℎ𝑒𝑖𝑔ℎ𝑡), a polyhedron
representing a building can be extruded along the time interval
(𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, 𝑑𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛). As Figure 6.3 shows, extrusion using mul-
tiple unconnected intervals is also a possible use case.
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102: I originally referred to these
as ranges and thus used varia-
tions of 𝑅 and 𝜌 (rho). While
a kind anonymous reviewer cor-
rectly suggested that it ismorepre-
cise to refer to them as intervals,
𝜌 is more distinctive than iota (𝜄)
and upsilon (𝜐), and so it remains
as 𝜌 here.

In the related literature, there are two methods that can be used for
a similar purpose. The Cartesian product, a more general operation
defined for generalised maps in Lienhardt et al. [2004], generates a
combinatorial structure equivalent to the extrusion of all the objects
along a single interval by computing the Cartesian product of the
original (unextruded) cell complex with an edge. However, since
such an operation is limited to a single interval (which is the same
for all the input objects), the output cannot be directly applied for
modelling real-world datasets. A related possibility, presented by
Ferrucci [1993], is to first pre-process all the intervals (for all cells),
splitting them into fragments at the other intervals’ endpoints so
that each fragment intersects another one if and only if they have
the same endpoints, and then computing the output purely combi-
natorially for each possible combination of fragment and for each
input cell. While this allows us to model real-world objects, the pro-
cess of splitting the input intervals might greatly increase the num-
ber of output cells since two intersecting intervals are split even if
their corresponding cells are far away from each other. The method
presented in this chapter follows a similar approach, but instead
process the input intervals for each input cell separately based on
the incidence relationships with other cells, thus generating fewer
total intervals, a smaller number of cells and a considerably smaller
combinatorial structure.

6.2 A dimension-independent extrusion algorithm

The dimension-independent extrusion algorithm requires two in-
put arguments: an (𝑛 − 1)-dimensional space partition of (𝑛 − 1)-
polytopes embedded into (𝑛 − 1)-dimensional space, stored as an
(𝑛−1)-dimensional generalisedmap𝐺; and amap of extrusion inter-
vals 𝜌102 that links each (𝑛 − 1)-cell 𝑐 in 𝐺 to a set 𝑅 of 1-dimensional
intervals, where every interval 𝑟 in𝑅 is represented as a pair of values
(𝑟min, 𝑟max)where 𝑐 is extruded along the 𝑛-th dimension. The inter-
vals in 𝜌 for the cells of lower dimension do not need to be given,
since they can be computed by the algorithm based on their inci-
dence relationships to the (𝑛−1)-cells. Note that, as Figure 6.4 shows,
multiple intervals for the same cell are possible.

There are two cases in which a cell has multiple intervals. One of
these is that for an (𝑛−1)-dimensional cell, multiple intervalsmay be
explicitly provided in the input (e.g. the example previously given
in Figure 6.3). The other case is that for a lower-dimensional cell,
multiple extrusion intervals may be passed to it by several adjacent
higher-dimensional cells.

The result of the extrusion algorithm is an 𝑛-dimensional gener-
alised map 𝐺′ representing a 𝑛-dimensional cell complex contain-
ing a set of prismatic 𝑛-polytopes, the 𝑛-dimensional analogue of a
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(a) (b)

Figure 6.4: All the cells are given
extrusion intervals based on the
intervals for the (𝑛 − 􏷠)-cells. Note
how it is possible to have multiple
intervals per cell both in the in-
put, e.g. the purple square on the
right is extruded along two inter-
vals, and in the output, e.g. the two
edges 𝑣(􏷩,􏷪), 𝑣(􏷪.􏷮,􏷫) and 𝑣(􏷫,􏷬) are the
result of the extrusion of a single
vertex 𝑣 whose extrusion interval
was not directly given.

set of prisms, which also form a 𝑛-dimensional space partition. It is
important to note that the output map𝐺′ creates entirely new struc-
tures, i.e. it does not reuse the darts or embeddings of 𝐺, since the
(𝑛 − 1)-simplices in 𝐺 are similar but not identical to the 𝑛-simplices
in the base of 𝐺′. These differ in terms of the highest-dimensional
involution 𝛼𝑛−􏷠 and—importantly for an implementation—in the
total number of involutions per dart.

As Figures 6.5 and 6.6 show, the cells in the new 𝑛-dimensional cell
complex in𝐺′ have a direct relation to and can be expressed in terms
of the (𝑛 − 1)-cells in 𝐺 and their extrusion intervals in 𝜌. This prop-
erty is used in order to define the cells of the output cell complex,
which are equivalent to the embeddings in 𝐺′. These consist of:

► ‘Base’ and ‘top’ (𝑛 − 1)-cells (i.e. facets), which are constructed
from every (𝑛 − 1)-cell 𝑐 in 𝐺 at the 𝑟min and 𝑟max end points of
every interval in 𝜌(𝑐).

► A series of prismatic facets linking corresponding (𝑛 − 2)-cells
(i.e. ridges) 𝑐 of the above mentioned 𝑟min and 𝑟max facets for
every interval, such that every one of these facets corresponds
to the extrusion of the ridge along an interval in 𝜌(𝑐).

For the combinatorial structure, the algorithm takes advantage of
the fact that the darts in the generalised map 𝐺 can be extruded
largely independently based on querying the combinatorial struc-
ture of 𝐺 and simple 1D geometric queries along the 𝑛-th dimen-
sion. Intuitively, the extrusion of a single (𝑛 − 1)-simplex in 𝐺 con-
sists of layers of 𝑛-simplices that are ‘stacked’ so as to form one part
of the prism-shaped output. Each new layer corresponds to a new
𝑛-simplex that shares all but one of the nodes with the 𝑛-simplex
below it.
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Figure 6.5: Extruding the embed-
dings of an 𝑖-cell 𝑐 along a single
interval 𝑟 = (𝑎, 𝑏) such that 𝑎, 𝑏 ∈
ℝ, 𝑎 ≠ 𝑏, generates the embeddings
of three cells: two 𝑖-cells 𝑐𝑎 and 𝑐𝑏,
and an (𝑖 + 􏷠)-cell 𝑐𝑟 = 𝑐(𝑎,𝑏) lying be-
tween them.

(a) (b)

Figure 6.6: Extruding a 2D cell
complex using an interval that is
defined per 2-cell. The facet 𝑓􏷩 is
to be extruded along the interval
𝑟􏷩 = (𝑎, 𝑐) and 𝑓􏷪 along 𝑟􏷪 = (𝑎, 𝑏).
Notehow thevertices andedges in-
cident to multiple facets in the in-
put are extruded along the inter-
vals of these facets, generating a
series of cells connecting the end
points of their intervals. a

b
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The extrusion algorithm is thus divided into three parts that are per-
formed sequentially and explained in detail in the following sec-
tions: (1) propagating the input intervals to all the cells in the input
cell complex, (2) generating the new embeddings (i.e. the attributes
and geometry) for each input cell, and (3) generating the combina-
torial structure (i.e. the darts and involutions) and linking each dart
to its correct embeddings for every dimension.

6.2.1 Propagating the extrusion intervals to all cells

While the extrusion intervals are defined only for the (𝑛 − 1)-cells,
the cells of every dimension need to be extruded, and therefore the
extrusion intervals need to be propagated from the (𝑛 − 1)-cells to
the cells of lower dimension. This is done recursively in decreasing
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Algorithm 1: PropagateRanges
Input : generalised map 𝐺 of the input cell complex,

map 𝜌 with the extrusion intervals of the (𝑛 − 􏷠)-cells in 𝐺
Output:map 𝜌 with the extrusion intervals of all the cells in 𝐺

1 for 𝑖 ← 𝑛 − 􏷠 to 􏷟 do
2 foreach 𝑖-cell 𝑐 in 𝐺 do
3 foreach (𝑖 − 􏷠)-cell 𝑏 on the boundary of 𝑐 do
4 foreach extrusion interval 𝑟 = (𝑟min, 𝑟max) ∈ 𝜌(𝑐) do
5 Find the intervals 𝑅′ ⊆ 𝜌(𝑏) whose interiors intersect with 𝑟
6 if 𝑟min is in the interior of an interval 𝑟′ = (𝑟′min, 𝑟′max) ∈ 𝑅′ then
7 Remove 𝑟′ from 𝜌(𝑏)
8 Add (𝑟′min, 𝑟min) to 𝜌(𝑏)
9 Add (𝑟min, 𝑟′max) to 𝜌(𝑏)
10 if 𝑟min is outside all intervals in 𝑅′ then
11 Add a new interval in 𝑅′ from 𝑟min to the minimum of

the lowest interval in 𝑅′

12 if 𝑟max is in the interior of an interval 𝑟′ = (𝑟′min, 𝑟′max) ∈ 𝑅′ then
13 Remove 𝑟′ from 𝜌(𝑏)
14 Add (𝑟′min, 𝑟max) to 𝜌(𝑏)
15 Add (𝑟max, 𝑟′max) to 𝜌(𝑏)
16 if 𝑟max is outside all intervals in 𝑅′ then
17 Add a new interval in 𝑅′ from the maximum of the

highest interval in 𝑅′ to 𝑟max

18 foreach empty interval (𝑟′min, 𝑟′max) between consecutive intervals
in 𝑅′ do

19 Add (𝑟′min, 𝑟′max) to 𝜌(𝑏)

Figure 6.7: The extrusion intervals
from the cells incident to the mid-
dle vertex of Figure 6.4 in (a), are
passed on to it, resulting in a new
set of non-intersecting intervals
in (b).

dimension, using the incidence relationships between every 𝑖-cell
and the (𝑖−1)-cells on its boundary to pass the intervals of the former
to the latter, using the same map of extrusion intervals 𝜌. Because
incidence is a transitive relation, an interval attached to a particular
lower dimensional cell thus indicates that it is incident to an (𝑛 − 1)-
cell that will be extruded along that interval.

As (𝑖 − 1)-cells can be on the boundary of multiple 𝑖-cells, several in-
tersecting intervals can be passed to the map of extrusion intervals
of a lower dimensional cell. In order to generate non-intersecting
cells, these need to be split into a set of non-intersecting intervals
as shown in Figure 6.7, each of which will represent the incidence
of this cell to an equal set of higher-dimensional cells along the
entirety of the interval. A sketch of a simple process to do this is
shown in Algorithm 1, which assumes that the sets of intervals are
kept sorted. Note that this is essentially a one dimensional analogue
of other operations used in GIS, e.g. vector map overlays [de Berg
et al., 2008, §2.3] and time-composites in spatio-temporalmodelling
[Langran and Chrisman, 1988].

Considering what happens when a single new interval is passed to
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a cell in the incremental process shown in Algorithm 1, the total
number of intervals of that cell can increase from 𝑗 to 2𝑗 + 1 in the
worst case, which happens when the new interval starts before and
ends after all other intervals and these are all not contiguous (i.e.
they are all separated by empty intervals). However, when taking
into account 𝑟 intervals passed to the same cell, the total number
of intervals for the cell can only increase to 2𝑟 − 1. As each extru-
sion interval is bounded by two values, 𝑟 intervals lead to at most 2𝑟
boundary values and thus the number of intervals cannot be higher
than 2𝑟 − 1.

Assuming that a new interval can be added to a cell in 𝑂(log 𝑟) time,
e.g. bymaintaining a sorted list or an augmented red-black treewith
the endpoints of the intervals, the total time to construct the ordered
set of all intervals for a cell 𝑐 is𝑂(𝑟 log 𝑟), where 𝑟 is the number of in-
tervals that are passed onto 𝑐. The overall computational complexity
of this step depends on the incidence relationships between the cells
in the complex.

6.2.2 Generating the new embeddings

Intuitively, when a single 𝑖-cell is extruded along a single interval 𝑟 =
(𝑟min, 𝑟max), three new cells are generated: two 𝑖-cells that correspond
to the end points of the interval 𝑟min and 𝑟max, and a prismatic (𝑖 +
1)-cell along all of 𝑟, i.e. lying between the two 𝑖-cells. For instance,
extruding a polygon results in ‘top’ and ‘bottom’ polygonal faces and
a polyhedron that lies between the two polygons.

Analogously, considering the embedding structures that store the
necessary attributes for each cell, such that an 𝑖-dimensional em-
bedding (𝑖-embedding) structure keeps the attributes of an 𝑖-cell, ex-
truding an 𝑖-dimensional embedding results in two 𝑖-embeddings and one
(𝑖 + 1)-embedding. In the case of linear geometries, extruding a point
entails the creation of two additional points, one with an appended
𝑟min coordinate, and one with an 𝑟max one.

With multiple intervals, this same procedure can then be used by
applying it per embedding and per interval. Notice that some em-
beddings are shared bymultiple intervals (when theminimumof an
interval is equal to the maximum of another), but these only need
to be created once.

The extrusion algorithm for the embeddings receives the set of in-
put embeddings 𝐸 and the map of extruded intervals 𝜌which, being
the output of PropagateRanges (Algorithm 1), now contains a set
of non-intersecting intervals for the cells of every dimension, and
it returns an entirely new set of extruded embeddings 𝐸′, as well a
function 𝑒𝑥(𝑒, 𝑣) → 𝐸′ linking an input embedding 𝑒 ∈ 𝐸 and an inter-
val or end point of an interval 𝑣 to an extruded (output) embedding
𝑒′ ∈ 𝐸′. For instance, given an interval 𝑟 = (𝑟min, 𝑟max) ∈ 𝜌(𝑒), 𝑣 can



6.2 A dimension-independent extrusion algorithm 109

Algorithm 2: EmbeddingsExtrusion
Input : set 𝐸 of the embeddings in the input cell complex,

map 𝜌 of the extrusion intervals for all cells of the input complex
Output: set 𝐸′ of the embeddings for the output cell complex,

map 𝑒𝑥 that links an input embedding to its extruded embeddings
1 foreach 𝑒 ∈ 𝐸 do
2 foreach 𝑟 = (𝑟min, 𝑟max) ∈ 𝜌(𝑒) do
3 if 𝑒𝑥(𝑒, 𝑟min) = ∅ then
4 𝑒𝑥(𝑒, 𝑟min) ← 𝑒
5 if 𝑒.𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 􏷟 then
6 Append 𝑟min to the coordinates of 𝑒𝑥(𝑒, 𝑟min)

7 𝑒𝑥(𝑒, 𝑟) ← 𝑒
8 𝑒𝑥(𝑒, 𝑟).𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← 𝑒𝑥(𝑒, 𝑟).𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 + 􏷠
9 if 𝑒𝑥(𝑒, 𝑟max) = ∅ then
10 𝑒𝑥(𝑒, 𝑟max) ← 𝑒
11 if 𝑒.𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 􏷟 then
12 Append 𝑟max to the coordinates of 𝑒𝑥(𝑒, 𝑟max)

13 Put 𝑒𝑥(𝑒, 𝑟min), 𝑒𝑥(𝑒, 𝑟) and 𝑒𝑥(𝑒, 𝑟max) in 𝐸′

103: This is always true combina-
torially, but it might not be true
geometrically if the (𝑛−􏷠)-simplex
is not embedded so as to lie in the
interior of the cell, as shown in
§4.3.6.

be 𝑟, 𝑟min or 𝑟max, reflecting the fact that extruding an 𝑖-embedding
results in two 𝑖-embeddings (respectively for 𝑟min and 𝑟max) and one
(𝑖 + 1)-embedding (for 𝑟).

The general procedure to generate the new embeddings and their
relation to the old embeddings and the intervals is shown in Al-
gorithm 2. Note that a practical implementation of this algorithm
has to deal with the desired attributes for each of the extruded cells
rather than simply making a copy of the input ones (lines 4, 6
and 10) and appending one more coordinate to the 0-embeddings
(lines 6 and 12).

Since this part of the algorithm iterates through all the cells in the
input cell complex, and it generates at most three new embeddings
per interval for each cell, the computational complexity can be𝑂(𝑟𝑛)
per cell, where 𝑟 is the total number of intervals and 𝑛 is the dimen-
sion, i.e. as long as the map 𝑒𝑥 can be queried and the new embed-
dings can be created in time that is linear on the dimension (which
in practice is a relatively small constant).

6.2.3 Generating the new combinatorial structure and
linking it to its correct embeddings

The extrusion of a single dart in the input map 𝐺 along a
single interval 𝑟 = (𝑟min, 𝑟max) generates a series of con-
nected darts in 𝐺′ connected by a sequence of involutions
𝛼𝑛−􏷠, 𝛼𝑛−􏷡, … , 𝛼􏷠, 𝛼􏷟, 𝛼􏷠, … , 𝛼𝑛−􏷡, 𝛼𝑛−􏷠. Intuitively, these are equivalent
to stacked 𝑛-simplices that together form a prism103. Figure 6.8
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Figure 6.8: The darts in the cell
complexes in Figure 6.5. Note that
one can obtain a dart’s represen-
tation as a simplex by considering
additional nodes at its correspond-
ing facet and one in the interior of
the volume.

(a) (b)

shows a simple extrusion of the cell complex from Figure 6.5 in-
cluding all its darts.

Since two darts connected by an 𝛼𝑖 involution share all but the 𝑖-th
node, and the 𝑖-th node in a generalised map means that a dart be-
longs to a certain 𝑖-cell104, this series of darts represents a succession
of simplices that progressively change from the cells at the ‘base’ (at
𝑟min) to those at the ‘side’ (at the interval (𝑟min, 𝑟max)) to those at the
‘top’ (at 𝑟max). This can be more clearly seen in Figure 6.9. As the
pattern that is followed in each stack of darts in𝐺′ is the same for all
the darts in 𝐺, assuming that their extrusion intervals are the same,
they can also be expressed in terms of the dart in 𝐺 being extruded
and their position in the stack. The darts at a certain level in the
stack are thus called a layer, and various functions will map an in-
put dart in 𝐺 to the equivalent dart at a specific layer in 𝐺′.

An intuitive justification for this is that if one considers the darts
in the base and top facets in the extrusion of a cell 𝑒 along a sin-
gle interval 𝑟 = (𝑟min, 𝑟max), these belong to different cells of every
dimension except for their 𝑛-cell—which is 𝑒𝑥(𝑒, 𝑟). Considering a
function 𝑒𝑖 ∶ 𝐷 → 𝐸 that links a dart 𝑑 ∈ 𝐷 to its 𝑖-embedding in 𝐸, for
every dimension 𝑖 < 𝑛, the darts of the base facet belong to the ex-
truded 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟min) cells, while the top darts belong to the extruded
𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟max) cells. Thedarts of the faces on the sides, which connect
corresponding ridges of the base and top, belong instead to a mix-
ture of cells in 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟min), 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟max) and 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟). The darts
closer to the base face belong to cells in 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟min) and 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟),
while those closer to the top belong to cells in 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟max) and
𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟). This is natural when one considers that 𝛼𝑖-linked darts
differ only in one of their cells (i.e. the 𝑖-cells), all other cells be-
ing the same for both darts. This means that there must be a nat-



6.2 A dimension-independent extrusion algorithm 111

(g)

(f)

(e)

(d)

(c)

(b)

(a)

Figure 6.9: The extrusion of a sin-
gle dart (blue) results in a stack
of simplices that together form
a prism. In order to visualise
it more intuitively, the procedure
here is shown from bottom (a) to
top (g).

104: In this specific case, where
cells have linear geometries.

ural progression of layers of darts: starting from the base, they
change their cells one by one from 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟min) to 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟) from
the highest dimension down, and then change their cells one by one
from 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟) to 𝑒𝑥 (𝑒𝑖 (𝑑) , 𝑟max) from the lowest dimension up until
reaching the top.

The algorithm to generate the extruded combinatorial structure
therefore works by generating layers of darts that follow a pattern
based on the darts in the input cell complex, starting from those for
the base face, moving on to the 2𝑛 − 2 layers for the side faces, and
finishing with the top face. The output darts and the involutions
between them are expressed in terms of the input generalised map
𝐺. For this, a function 𝑐𝑢𝑟 ∶ 𝐺 → 𝐺′ maps a dart in 𝐺 to the corre-
sponding dart in the currently being generated layer of the output
map 𝐺′. Note that this means that the algorithm needs to keep track
of only two layers of darts at any given time, one in 𝐺 and one in
𝐺′, each of which has at most the number of darts in the input map.
This bounds the memory usage of this part of the algorithm, which
is therefore on the order of 𝑂(𝑑), with 𝑑 the number of darts in the
input space partition.

As shown by Ferrucci [1993], when multiple intervals are involved
this procedure can simply be repeated for all intervals, assuming
that these have all been subdivided so as not to intersect one an-
other. However, it is possible to greatly reduce the number of darts
generated by skipping the creation of some of the darts. This is pos-
sible because the extrusion intervals have been independently prop-
agated to each cell of every dimension. Based on the algorithm, the
lower-dimensional cells in the complex have received all the inter-
vals from their incident higher-dimensional cells so that the inter-
vals in the lower-dimensional cells contain all the endpoints of the
intervals of their incidences. However, the same is not true in the
opposite direction: the intervals for the higher-dimensional cells
have not been subdivided so as to contain all the ones of their in-
cident lower-dimensional cells. Nevertheless, as Figure 6.10 shows,
even when an extrusion interval that would be used by the pattern
described above is not in a cell, it is possible to map it to a big-
ger interval that contains it. If one considers the darts that would
be generated using the above mentioned approach for all the non-
intersecting intervals in the cell complex, but at the same timemap-
ping the non-existent extrusion intervals to their immediately big-
ger containing ones, this can result in many darts that are equiva-
lent (i.e. they have nodes at the same cells). These darts are those
that can be skipped during the extrusion process.

Therefore, in order to generate the darts for all intervals of all
cells, this procedure is repeated for all the intervals in 𝜌, after mak-
ing them non-intersecting using the same procedure delineated
in §6.2.1, and skipping all the darts that would be equivalent to
those that have already been created. This is done using a sweep-



112 6 Extrusion

(a)

b

a

c

(b)

Figure6.10: Thedarts in the cell complexes in Figure6.6. Note that thedarts of the right cube in (b), whenviewed as individual
stacks, are similar to the ones in Figures 6.8 and6.9. The darts of the left box are however different: those on the left all involve
an extrusion along the interval (𝑎, 𝑐) due to the fact that there is no vertex, edge or facet extruded to 𝑏. On the other hand,
those in the right do have a vertex and an edge at 𝑏, but not a facet and still belong to the same volume.

105: i.e. a (𝑛 − 􏷠)-dimensional
shape that is unbounded along
𝑛 − 􏷠 dimensions in 𝑛D space, e.g.
a line in ℝ􏷫 or a plane in ℝ􏷬.

hyperplane-like algorithm that generates up to 𝑛 layers of darts at
the events at the beginning or end of an interval, creating darts only
when the sweep-hyperplane105 passes by the beginning or end of
their extrusion intervals (i.e. not while it is in their interior). The
darts are linked to their appropriate embedding according to the
same pattern. The complete procedure to generate the combina-
torial structure is presented in Algorithm 3, which uses the Algo-
rithm 4 when the sweep hyperplane passes by the beginning of an
interval and the similar Algorithm 5 when the sweep hyperplane by
the end of one. If an input dart is denoted as 𝑑, its corresponding
dart in the currently being generated layer of the output is denoted
as 𝑐𝑢𝑟(𝑑), the dart linked to 𝑑 by an 𝑖-involution as 𝛼𝑖(𝑑), and the 𝑖-
embedding of 𝑑 as 𝑒𝑖(𝑑).

For the latter two algorithms, lines 1–8 show the generation of a new
layer of darts and its linking to the previous one, lines 12–17 show
how the darts within the layer are linked based on the pattern of the
input map, and lines 18–21 show how the darts within the layer are
related to their correct embeddings, which are also patterned after
the embeddings in the input.

Notice that this method generates layers of darts in a grid-like fash-
ion, each layer containing at most the number of darts in the input
map, and calling GMapLayerBegin and GMapLayerEnd to create
at most 2𝑛 layers per non-intersecting interval. The time complex-
ity of computing the set of non-intersecting intervals inAlgorithm1
is 𝑂(𝑟 log 𝑟) as before, while the number of darts in the output map
is bounded by 𝑂(𝑛𝑑𝑟), where 𝑛 is the extrusion dimension, 𝑑 is the
total number of darts in the input map and 𝑟 is the total number of
intervals in the input.
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Algorithm 3: GMapExtrusion
Input : generalised map 𝐺 of the input cell complex,

set 𝐸 of the embeddings in the input cell complex,
set 𝐸′ of the embeddings for the output cell complex,
map 𝜌 of the extrusion intervals for all cells of the input complex,
map 𝑒𝑥 that links an input embedding to its extruded embeddings

Output: generalised map 𝐺′ of the output cell complex
1 Compute an ordered set of non-intersecting intervals 𝑟𝑎𝑙𝑙 using all the

intervals for all cells in 𝜌
2 Consider a sweep plane that passes through all the intervals 𝑟𝑎𝑙𝑙 in

increasing order along dimension 𝑛
3 if the sweep plane passes by the beginning of an interval 𝑟 = (𝑟min, 𝑟max) ∈ 𝑟𝑎𝑙𝑙
then

4 for 𝑖 ← 𝑛 to 􏷟 do
5 GMapLayerBegin(𝐺,𝐺′, 𝑖, 𝐸, 𝐸′, 𝜌, 𝑟, 𝑒𝑥)

6 if the sweep plane passes by the end of an interval 𝑟 = (𝑟min, 𝑟max) ∈ 𝑟𝑎𝑙𝑙 then
7 for 𝑖 ← 􏷟 to 𝑛 do
8 GMapLayerEnd(𝐺,𝐺′, 𝑖, 𝐸, 𝐸′, 𝜌, 𝑟, 𝑒𝑥)

106: See Austern [2000] for the
consequences of this.

6.3 Implementation

The extrusion algorithm has been implemented in C++11 and made
available under the open source MIT licence at https://github.
com/kenohori/lcc-tools. It requires and builds upon the CGAL
packages Combinatorial Maps and Linear Cell Complex, among
others. The first package provides data structures and algorithms
to store and to efficiently iterate over the darts of a combinatorial
map, and the second links the 0-embeddings to other CGAL types
in order to store the geometry of a model.

As the algorithm is described on the basis of generalisedmapswhile
the CGAL packages instead use combinatorial maps, all operations
are done through a small wrapper that converts operations for the
former to operations for the latter. Since a combinatorial maps dart
is equivalent to two generalised map darts (see §4.3.6), some redun-
dant operations are ignored in the process, such as requests to cre-
ate darts that already exist or to connect darts that are already con-
nected. These redundant operations are instead used as assertions
to verify the validity of the map during its creation.

Both these packages and the implementation of the extrusion al-
gorithm make heavy use of the traits programming technique
[Myers, 1995] and recursive templates (TMP or template meta-
programming) in order to produce efficient code. These techniques
are described in §A.3. One shortcomingof the current prototype im-
plementation is that it uses the C++ type std::map in order to link
cells to their extrusion intervals, which offers only logarithmic time
access [ISO, 2015, §23.4]106, rather than the constant time thatwould

https://github.com/kenohori/lcc-tools
https://github.com/kenohori/lcc-tools
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Algorithm 4: GMapLayerBegin
Input : generalised map 𝐺 of the input cell complex,

generalised map 𝐺′ of the output cell complex,
dimension 𝑖 of the current layer,
set 𝐸 of the embeddings in the input cell complex,
set 𝐸′ of the embeddings of the output cell complex,
map 𝜌 of the extrusion intervals of all cells of the input complex,
current interval 𝑟,
map 𝑒𝑥 that links an input embedding to its extruded embeddings

Output: generalised map 𝐺′ of the output cell complex
1 foreach dart 𝑑 in 𝐺 do
2 if ∃𝑟′ ∈ 𝜌(𝑒𝑛−􏷠(𝑑)) ∣ 𝑟 ⊆ 𝑟′ then
3 if ∃𝑟′′ ∈ 𝜌(𝑒𝑖(𝑑)) ∣ 𝑟′′min = 𝑟min then
4 𝑙𝑎𝑠𝑡 ← 𝑐𝑢𝑟(𝑑)
5 𝑐𝑢𝑟(𝑑) ← new dart
6 Put 𝑐𝑢𝑟(𝑑) in 𝐺′
7 𝛼𝑖+􏷠(𝑐𝑢𝑟(𝑑)) ← 𝑙𝑎𝑠𝑡
8 𝛼𝑖+􏷠(𝑙𝑎𝑠𝑡) ← 𝑐𝑢𝑟(𝑑)

9 foreach dart 𝑑 in 𝐺 do
10 if ∃𝑟′ ∈ 𝜌(𝑒𝑛−􏷠(𝑑)) ∣ 𝑟 ⊆ 𝑟′ then
11 if ∃𝑟′′ ∈ 𝜌(𝑒𝑖(𝑑)) ∣ 𝑟′′min = 𝑟min then
12 for 𝑖𝑛𝑣 ← 􏷟 to 𝑖 − 􏷠 do
13 𝛼′𝑖𝑛𝑣(𝑐𝑢𝑟(𝑑)) ← 𝑐𝑢𝑟(𝛼𝑖𝑛𝑣(𝑑))
14 𝛼′𝑖𝑛𝑣(𝑐𝑢𝑟(𝛼𝑖𝑛𝑣(𝑑))) ← 𝑐𝑢𝑟(𝑑)
15 for 𝑖𝑛𝑣 ← 𝑖 + 􏷡 to 𝑛 do
16 𝛼′𝑖𝑛𝑣(𝑐𝑢𝑟(𝑑)) ← 𝑐𝑢𝑟(𝛼𝑖𝑛𝑣−􏷠(𝑑))
17 𝛼′𝑖𝑛𝑣(𝑐𝑢𝑟(𝛼𝑖𝑛𝑣−􏷠(𝑑))) ← 𝑐𝑢𝑟(𝑑)
18 for 𝑒𝑚𝑏 ← 􏷟 to 𝑖 do
19 𝑒′𝑒𝑚𝑏(𝑐𝑢𝑟(𝑑)) ← 𝑒𝑥(𝑒𝑒𝑚𝑏(𝑑), 𝑟min)
20 for 𝑒𝑚𝑏 ← 𝑖 + 􏷠 to 𝑛 do
21 𝑒′𝑒𝑚𝑏(𝑐𝑢𝑟(𝑑)) ← 𝑒𝑥(𝑒𝑒𝑚𝑏−􏷠(𝑑), 𝑟)

107: http://gdal.org

108: http://www.martinreddy.
net/gfx/3d/OBJ.spec

be possible by integrating this into the templated structures. This
would involve storing the set of extrusion intervals of a cell directly
in the data structure that is used for its attributes.

In order to input and output data, as well as to visualise the results,
the implementation uses the OGR Simple Feature Library107 to read
standardGIS data formats. It is also able to outputWavefrontOBJ108
files, in which faces or darts can be directly exported for visualisa-
tion. In the latter case, darts are exported as triangles with vertices
at the two 0-cells of a dart, as well as an added vertex at the centroid
of its 2-cell.

6.4 Experiments

The algorithm has been tested by extruding various 2D datasets to
higher dimensions. For this, several free and open datasets in the

http://gdal.org
http://www.martinreddy.net/gfx/3d/OBJ.spec
http://www.martinreddy.net/gfx/3d/OBJ.spec


6.4 Experiments 115

Algorithm 5: GMapLayerEnd
Input : generalised map 𝐺 of the input cell complex,

generalised map 𝐺′ of the output cell complex,
dimension 𝑖 of the current layer,
set 𝐸 of the embeddings in the input cell complex,
set 𝐸′ of the embeddings of the output cell complex,
map 𝜌 of the extrusion intervals of all cells of the input complex,
current interval 𝑟,
map 𝑒𝑥 that links an input embedding to its extruded embeddings

Output: generalised map 𝐺′ of the output cell complex
1 foreach dart 𝑑 in 𝐺 do
2 if ∃𝑟′ ∈ 𝜌(𝑒𝑛−􏷠(𝑑)) ∣ 𝑟 ⊆ 𝑟′ then
3 if ∃𝑟′′ ∈ 𝜌(𝑒𝑖(𝑑)) ∣ 𝑟′′max = 𝑟max then
4 𝑙𝑎𝑠𝑡 ← 𝑐𝑢𝑟(𝑑)
5 𝑐𝑢𝑟(𝑑) ← new dart
6 Put 𝑐𝑢𝑟(𝑑) in 𝐺′
7 𝛼𝑖(𝑐𝑢𝑟(𝑑)) ← 𝑙𝑎𝑠𝑡
8 𝛼𝑖(𝑙𝑎𝑠𝑡) ← 𝑐𝑢𝑟(𝑑)

9 foreach dart 𝑑 in 𝐺 do
10 if ∃𝑟′ ∈ 𝜌(𝑒𝑛−􏷠(𝑑)) ∣ 𝑟 ⊆ 𝑟′ then
11 if ∃𝑟′′ ∈ 𝜌(𝑒𝑖(𝑑)) ∣ 𝑟′′max = 𝑟max then
12 for 𝑖𝑛𝑣 ← 􏷟 to 𝑖 − 􏷠 do
13 𝛼′𝑖𝑛𝑣(𝑐𝑢𝑟(𝑑)) ← 𝑐𝑢𝑟(𝛼𝑖𝑛𝑣(𝑑))
14 𝛼′𝑖𝑛𝑣(𝑐𝑢𝑟(𝛼𝑖𝑛𝑣(𝑑))) ← 𝑐𝑢𝑟(𝑑)
15 for 𝑖𝑛𝑣 ← 𝑖 + 􏷡 to 𝑛 do
16 𝛼′𝑖𝑛𝑣(𝑐𝑢𝑟(𝑑)) ← 𝑐𝑢𝑟(𝛼𝑖𝑛𝑣−􏷠(𝑑))
17 𝛼′𝑖𝑛𝑣(𝑐𝑢𝑟(𝛼𝑖𝑛𝑣−􏷠(𝑑))) ← 𝑐𝑢𝑟(𝑑)
18 for 𝑒𝑚𝑏 ← 􏷟 to 𝑖 do
19 𝑒′𝑒𝑚𝑏(𝑐𝑢𝑟(𝑑)) ← 𝑒𝑥(𝑒𝑒𝑚𝑏(𝑑), 𝑟max)
20 for 𝑒𝑚𝑏 ← 𝑖 + 􏷠 to 𝑛 do
21 𝑒′𝑒𝑚𝑏(𝑐𝑢𝑟(𝑑)) ← 𝑒𝑥(𝑒𝑒𝑚𝑏−􏷠(𝑑), 𝑟)

area of Delft are used, matching the geometries in some with the
attributes present in others so as to obtain new attributes and ap-
propriate extrusion intervals for each geometry. The tests were
performed on a Mac OS X computer with a 2.7 GHz Intel Core 2
Duo processor and 12 GB of RAM. The main characteristics of the
datasets tested are shown in Table 6.1.

Note however that since the implementation uses an std::map to
access the extrusion intervals of each cell, the running time is dom-
inated by the large number of times this query is performed (several
times per interval and per cell). The times provided in Table 6.1 are
therefore not indicative of the theoretical complexity of the algo-
rithm, which is instead dominated by the generation and linking of
the darts in the extruded dataset (§6.2.3). The generation of the non-
intersecting intervals for all cells (§6.2.1) and the generation of the
extruded embeddings (§6.2.2) always ran in under a second, even
for very large datasets.
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Input Output

Test darts cells darts cells time

One GBKN building to 5D 14 29 80 640 783 3 s
370 buildings to 4D 3 268 6 065 123 184 42 552 12 s
TOP10NL to 3D 30 098 48 562 181 640 148 102 2 m 39 s

Table 6.1: Characteristics of the tested datasets. The cell counts represent the total number of cells for all dimensions.

(a)

(b)

Figure 6.11: Extruding the (a) foot-
print of the Aula Congress Centre
in Delft to (b) a 3D representation
showing individual darts.

109: http://www.gbkn.nl
110: http://www.ahn.nl
111: https://www.kadaster.nl/
bag

One test involved the Aula Congress Centre in Delft, a building rep-
resented by a single polygon with 14 vertices extracted from the
GBKN dataset109, as shown in Figure 6.11. It was extruded from 2D
up to 5Dusing somemanually added attributes: its height, construc-
tion date and a specified level of detail for the model. Figure 6.12
shows the extruded model at an intermediate stage in this process,
in 4D. The end result was a generalised map with 80 640 darts, 112
vertices, 280 edges, 260 facets, 110 volumes, 20 4-cells and 1 5-cell.
It was generated in 3 seconds using 15 MB of RAM.

Another test, shown in 2D and 3D in Figure 6.13, involved a pre-
viously generated dataset of the campus of the Delft University of
Technology (see Ledoux andMeijers [2011]), consisting of 2 749 ver-
tices, 2 946 edges, and 370 facets. This dataset, covering 2.3 km􏷡,
was originally built from the GBKN dataset by manually forming
footprint polygons from the lines in the dataset. Building heights
for each polygon were obtained from the AHN dataset110 (airborne
laser altimetry), while building dates were obtained from the BAG
dataset111. This dataset, including the added attributes, is available
together with the source code of the program. It was therefore ex-
truded from its original 2D representation to 4D using building
heights for the third dimension and dates for the fourth dimension.
The result was a generalised map with 123 184 darts, 8 613 vertices,
17 919 edges, 12 471 facets, 3 310 volumes and 239 4-cells. It was gen-
erated in 12 seconds using 46 MB of RAM.

One more test used 1 836 buildings from Delft from the TOP10NL

(a) (b) (c)

Figure 6.12: The footprint of the Aula Congress Centre (Figure 6.11) extruded twice to create a 4D model. It is shown here in
three parts for clarity: (a) the faces in the two end volumes, (b) the lateral faces connecting corresponding vertical edges, and
(c) the top and bottom faces connecting corresponding horizontal edges. Not shown here are the 16 different polyhedra that
bound the polychoron and which are all bounded by different sets of these faces.

http://www.gbkn.nl
http://www.ahn.nl
https://www.kadaster.nl/bag
https://www.kadaster.nl/bag
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(a) (b)

(c)

Figure 6.13: Extruding a dataset of
the campus of the Delft University
of Technology

112: http://www.kadaster.
nl/web/artikel/producten/
TOP10NL.htm

113: i.e. checking that the links be-
tween darts correctly form partial
permutations or involutions, and
all the darts in the orbit of an 𝑖-cell
are linked to its correct 𝑖-attribute
and vice versa.

dataset112, which was extruded to 3D using intervals from building
dates also obtained from the BAG dataset. The result was a gener-
alised map with 181 640 darts, 46 464 vertices, 71 826 edges, 27 975
facets and 1 837 volumes.

An algorithm was used to verify that the constructed datasets con-
form to the definition of a combinatorial map113. Additional tests
were made to ensure that all the darts of an 𝑖-cell correctly point to
it in their 𝑖-embeddings, and to verify that all the darts of an 𝑛-cell
are linked to point embeddings within the extrusion interval given
for the 𝑛-cell, among other tests. The extruded datasets were also in-
spected visually in 2D and 3D by exporting 2-cells as polygons and
verifying that they form a valid cell complex, i.e. that 2-cells inter-
sect only at their common boundaries, forming 1-cells that are also
in the complex. In 2D and 3D, individual darts were also exported
as triangles to visually verify that they form a valid generalised map

http://www.kadaster.nl/web/artikel/producten/TOP10NL.htm
http://www.kadaster.nl/web/artikel/producten/TOP10NL.htm
http://www.kadaster.nl/web/artikel/producten/TOP10NL.htm
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(a)

(b)

Figure 6.14: Cells can be collapsed
by moving all of their vertices to
the same location. Shown here are
the collapse of: (a) a face and (b) an
edge (in red).

(as shown in Figures 6.11b and 6.13c).

6.5 Extrusion-based generalisation operations

Apart from using extrusion to directly create finished higher-
dimensional datasets, it is also interesting to explore the possibility
to use it as a base for further operations. For instance, it can be used
as the basis of a simple set of dimension-independent generalisa-
tion operations.

Starting from a detailed 𝑛-dimensional cell complex, it is possible
to first extrude the complex to create an (𝑛 + 1)-dimensional cell
complex, then to obtain the desired geometry by applying certain
transformations to the vertices of the ‘top’ or ‘bottom’ facet of the
extruded model, even if this procedure results in degenerate cells,
and finally to remove the degenerate cells from the model.

The transformations that can be applied to the model include all
those that can be applied through transformation matrices, such
as those shown in Figure 4.3 on page 58 (translation, rotation and
scale), as well as others such as reflections and shears. Perhapsmore
importantly, it is possible to gradually reduce the complexity of the
model by collapsing cells of any dimension, which is achieved by
simply moving all vertices of a cell to the same location, as is shown
in Figure 6.14.

After such transformations, it is possible to easily detect and remove
degenerate cells, as they can be identified because they have all their
vertices at the same location. In the case of a topologicalmodel, such
as a generalised or combinatorialmap, the topological relationships
around the collapsed cells will have to be recomputed. However, this
is possible to achieve either by finding the changed incidences and
adjacencies, or by regenerating all topological relationships using
the method described in Chapter 7. For the latter, it is simply nec-
essary to ignore all degenerate cells (as defined by having all their
vertices at the same embedding in ℝ𝑛).

6.6 Conclusions

Extrusion in theGIS sensehas anatural extension into adimension-
independent formulation. It can be used to load existing 2D or 3D
data into a higher-dimensional structure, either directly or as a base
for further (dimension-independent) operations, such as the gen-
eralisation operations described in §6.5. The conceptual simplicity
of extrusion makes it particularly suitable for higher-dimensional
data, as the complex problem of its generation can be reduced to the
definition of extrusion intervals per 𝑛-cell in an 𝑛-dimensional cell
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114: In practice a small constant.

complex. By ensuring that the input 𝑛-cells do not overlap—which
is a general precondition in a geometric cell complex—, and the ex-
trusion intervals per cell also do not overlap, it is easy to guarantee
that the output cell complex forms a valid (𝑛+ 1)-dimensional space
partition.

The dimension-independent extrusion formulation has been re-
alised into an algorithm, presented in this chapter, which supports
multiple intervals per input object and it is also memory efficient—
only three layers of darts of the same size as the input map need to
be kept in main memory at the same time. It is also relatively fast,
with a worst case complexity of𝑂(𝑛𝑑𝑟) in the main algorithm, where
𝑛 is the extrusion dimension114, 𝑑 is the total number of darts in the
input map and 𝑟 is the total number of intervals in the input, but
offers better complexity in practice.

Moreover, the algorithm has been implemented using CGAL Com-
binatorial Maps and the source code has been made publicly avail-
able under a permissive licence. It has also been testedwith publicly
available datasets commonly used in GIS. Apart from being applied
cell by cell, it can also be combined with other operations, such as
the generalisation operations described here or building certain 𝑛D
cells incrementally, where more complex models are required only
for a subset of the objects in a model.

While the implementation presented here performs well enough
for typical GIS datasets, it could be made faster by integrating the
extrusion intervals into the embeddings of the cells, allowing for
constant time access to the extrusion intervals. This would make it
possible to supportmuch larger datasets andmake the implementa-
tion match the theoretical complexity of the algorithm. In order to
improve memory usage, another possibility would be implement-
ing the algorithm in a more compact representation of a simplicial
complex, e.g. Boissonnat and Maria [2012].

In the future, it would be interesting to consider other types ofmod-
els that can be generated using extrusion-like algorithms, such as
sweeps and 𝑛-dimensional cells of revolution. These are both sim-
ple extensions either using either non-linear embeddings or dis-
cretised approximations with small cells with linear geometries. A
more complex extension would involve starting from a series of cell
complexes that each formaplanarpartition, such as series of 3Dmod-
els of the same region at different levels of detail. While most of the
algorithm described here should work directly on this latter exam-
ple, managing the differing boundaries of the cells along the 𝑛-th
dimension could be challenging—possibly requiring the computa-
tion of all intersections in an arrangement of (𝑛 − 1)-cells.





Incremental construction 7
One more method to the extrusion of Chapter 6, incremental con-
struction exploits the property that an 𝑛-cell can be defined based
on a set of (𝑛 − 1)-cells known to form its complete (closed) bound-
ary. In practice, defining an 𝑛-cell in this manner is significantly
more complex than doing so based on extrusion. However, unlike
extrusion it permits the creation of cells of an arbitrary shape. It can
also be applied cell by cell in increasing dimension, starting with
the construction of isolated 0-cells (embedded inℝ𝑛) first, and then
constructing 2-cells, 3-cells and further based on their boundary, al-
lowing for the incremental construction of objects of any dimension—
hence the name given here.

This chapter describes an operation that permits the aforemen-
tioned process to be easily applied in practice using a topologi-
cal data structure. Based on combinatorial maps (§4.3.6) and their
fundamental operations (§5.1.1), it connects the separate boundary
(𝑛 − 1)-cells together by computing the appropriate adjacency rela-
tionships between them, encapsulating low-level details such as the
creation of new individual combinatorial elements and setting the
correct orientation for the existing ones.

The chapter begins with some background on the operations and
a description of the overall approach in §7.1. It then explains the
steps needed to create the cells of each dimension in §7.2. §7.3 de-
scribes how the approach was implemented based on the Computa-
tionalGeometryAlgorithms Library (CGAL). §7.4 summarises some
experiments based on this implementation, generating relatively
large objects in up to 4D. Finally, §7.5 concludes the chapter with
the possibilities to use incremental construction to build higher-
dimensional datasets.

Most of this chapter is based on the paper:

► Constructing an 𝑛-dimensional cell complex from a soup
of (𝑛 − 1)-dimensional faces. Ken Arroyo Ohori, Guillaume
Damiand and Hugo Ledoux. In Prosenjit Gupta and Chris-
tos Zaroliagis (eds.), Applied Algorithms. First International Con-
ference, ICAA 2014, Kolkata, India, January 13–15, 2014. Proceed-
ings, Lecture Notes in Computer Science 8321, Springer Inter-
national Publishing Switzerland, Kolkata, India, January 2014,
pp. 37–48.

121

http://dx.doi.org/10.1007/978-3-319-04126-1_4
http://dx.doi.org/10.1007/978-3-319-04126-1_4
http://dx.doi.org/10.1007/978-3-319-04126-1_4
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116: A generalisation of the con-
cept of a sphere in arbitrary di-
mensions. A 0-sphere is the pair
of points, a 1-sphere is a circle, and
a 2-sphere a sphere. As opposed to
disks and balls, circles and spheres
are hollow.

117: This is true in practice. How-
ever, there are fractal-like patho-
logical objects where this is not
the case because their interior
or exterior components are not
homeomorphic to disks [Alexan-
der, 1924]. While they do exist,
this type of objects are certainly
out of scope here.

7.1 Background and overall approach

Based on the Jordan-Brouwer separation theorem [Lebesgue, 1911;
Brouwer, 1911], it is known that a subset of space homeomorphic
to an (𝑛 − 1)-dimensional sphere116 𝑆𝑛−􏷠 in the 𝑛-dimensional Eu-
clidean spaceℝ𝑛 divides the space into two connected components:
the interior, which is the region bounded by the sphere, and the ex-
terior, which is the unbounded region in which the sphere is a hole.
This means that the principles of boundary representation as de-
scribed in §3.1.2 extend to higher dimensions, and so an 𝑛-cell in
a cell complex can be described (and therefore constructed) based a
set of (𝑛−1)-cells that are known to form its complete (closed) bound-
ary117.

The incremental construction method proposed in this chapter ex-
ploits this property by applying this process cell by cell in increas-
ing dimension. Isolated vertices are first constructed, which are em-
bedded in ℝ𝑛 and are uniquely defined based on their coordinates.
These vertices can then be connected to form individual edges, or
instead to directly form cycles of implicit edges representing faces,
as in most of the typical GIS approaches described in §3.2.2. Sets
of faces can be connected to form volumes, sets of volumes to form
4-cells and so on.

In a similar manner as extrusion, presented in Chapter 6, this in-
cremental construction process significantly reduces the conceptual
complexity of defining and creating higher-dimensional objects.
The (𝑛−1)-dimensional boundary of an 𝑛-cell is much easier to con-
ceive than the original 𝑛-cell because it can be subdivided into mul-
tiple simpler (𝑛 − 1)-cells, which can be individually described and
constructed using the same method.

However, applying this incremental construction process using a
topological data structure is not that simple, as it involves many
intricate small problems: finding the topological relationships be-
tween the cells, appropriately connecting them, keeping track of
multiple connected components, avoiding the creation of duplicate
cells (as part of the boundary of independently-described higher-
dimensional cells), changing the orientation of cells on the fly
(since those that have been created separatelywill oftenhave incom-
patible orientations), and detecting non-manifold shapes (which
would result in invalid structures), among others.

The incremental construction operator presented in this chapter
solves all of the aforementioned issues efficiently. It is based on 𝑛-
dimensional combinatorial maps with linear geometries and it is
fully dimension-independent. As it generates all the incidence and
adjacency relationships between (𝑛 − 1)-cells in an 𝑛-dimensional
cell complex, it can also be used to obtain these relationships when
needed, such as when multiple datasets are combined into one or
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(a)

(b)

Figure 7.1: (a) Two adjacent tetra-
hedra and (b) their representation
as a combinatorial map.

when a non-topological representation is instead used (e.g. the Sim-
ple Features-like approach shown in §4.2.3).

In order to be efficient, the algorithm uses two basic techniques:
(i) indexes on the lexicographically smallest vertex (§5.3) of cer-
tain cells, which are used in order to keep track of individual cells
(which might be disconnected) and to access cells efficiently; and
(ii) signature-generating traversals for specific cells [Gosselin et al.,
2011], which are used to efficiently compare whether two cells are
equivalent by checking if it is possible to find an isomorphism 𝑓
that maps corresponding darts with equivalent (𝛽) or reversed (𝛽−􏷠)
relations andwhich are embedded at the same location inℝ𝑛, as was
shown in §5.5.

The incremental construction operation as described in this chap-
ter is applicable only to perfect data. The (𝑛 − 1)-cells bounding an
𝑛-dimensional cell should thus formamanifold andperfectlymatch
each other at their common (𝑛 − 2)-dimensional boundaries. How-
ever, the method can be easily extended to handle some more com-
plex configurations, such as by cleaning the input data using the
methods described in Chapter 10.

7.2 Incremental construction of primitives per
dimension

The idea of the incremental construction algorithm is to construct
cells individually, using lower-dimensional cells that have already
been constructed in order to describe part of the boundary of a
higher-dimensional cell. In terms of the darts of a combinatorial
map, this sometimes implies the reuse of existing darts, and some-
times the creation of new ones which are connected to the existing
ones. There is however no strict requirement that the cells are cre-
ated in strictly increasing dimension, and so new cells can be easily
added to an existing cell complex.

Due to the need to embed 0-cells into a point in space, as well as
the oriented nature of a combinatorial map, the incremental con-
struction method is different for 0-, 1- and 2-cells. 3-cells and those
of higher dimensions follow a unified procedure. These cases are
therefore described separately below, using as an example the cre-
ation of the pair of adjacent tetrahedra shown in Figure 7.1.

7.2.1 Vertices (0-cells)

The aim of the process of 0-cell construction is to create an isolated
dart and an associated point embedding structure for every 0-cell,
while avoiding having duplicate embedding structures having the
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Figure 7.2: Constructing the0-cells
of Figure 7.1 consists of creating
exactly one dart embedded at each
point. These darts are isolated (i.e.
not linked by any 𝛽 relations to the
other darts). The direction of the
arrows shown here is arbitrary.

118: These could be those embed-
ded at the edges’ origin, destina-
tion or a mixture of the two.

same point coordinates. By making point embeddings unique—
as defined by their coordinates—, they can be used to compare 0-
cells without checking an entire tuple of coordinates. Moreover, by
maintaining an index of all point embeddings and links from every
point embedding to a dart there, it is possible to use this index to
access the combinatorial structure at that point. In this manner, it
is possible to find either an already free dart that can be reused, or a
non-free dart that is part of a larger combinatorial structure, which
can be then copied and its copy used instead.

Thus, calling a function make_0_cell(𝑥􏷟, … , 𝑥𝑛)with the coordinates
𝑥􏷟, … , 𝑥𝑛 describing an 𝑛-dimensional point, should use the index of
0-cells to return an existing dart embedded at that location (using
an existing point embedding) if one exists, or a new dart embedded
at that location (using a new point embedding) otherwise. In the
latter case, the new point embedding and its associated dart should
be added to the index. The result of calling this function for all the
point coordinates of the vertices in Figure 7.1 is shown in Figure 7.2.
Note that the result is identical whether the function is called once
for every unique vertex, or multiple times (e.g. once for every vertex
in every face or volume).

7.2.2 Edges (1-cells)

Generally, it is best to skip the generation of 1-cells and proceed di-
rectly to the creation of 2-cells from sequences of points. In order to
represent an isolated edge in a combinatorial map not one but two
darts are required: one embedded at each of the two vertices bound-
ing the edge. More precisely, taking into account the (arbitrary) ori-
entation defined for the edge, the dart embedded at the origin of the
edge is connected to the destination by 𝛽􏷠, and the destination is con-
nected to the origin by 𝛽−􏷠􏷠 . Having two darts per edge is not a major
problem, but it is wasteful as it often creates unnecessary darts and
unnecessary connections between them that would later be deleted.
For instance, if a single face that uses all the edges is created from its
bounding edges, half of the darts lose their original purpose (i.e. to
store a connection to their otherwise unlinked point embeddings)
and will be eliminated118, which is accompanied with having to re-
set the 𝛽 relationships pointing to them.

In addition, as shown in §3.2.2, polygons can be easily described as
anordered sequence of vertices connected by implicit line segments
between each consecutive pair. Therefore, incrementally construct-
ing 1-cells often brings no efficiency gains or practical benefits, and
so it is normally best to skip dimension one, constructing 2D facets
from a sequence of 0D points, 3D volumes from their 2D faces, 4-
cells from their 3-cell faces, and so on.
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Figure 7.3: The construction of the 2-cells of Figure 7.1. (a) Initial configuration: one dart per vertex. (b) After 𝑏 =
make_2_cell(􏷠, 􏷡, 􏷢). (c) After 𝑐 = make_2_cell(􏷡, 􏷣, 􏷢). (d) After 𝑑 = make_2_cell(􏷠, 􏷣, 􏷢). (e) After 𝑒 = make_2_cell(􏷠, 􏷣, 􏷡).
(f) After 𝑓 = make_2_cell(􏷠, 􏷢, 􏷤). (g) After 𝑔 = make_2_cell(􏷤, 􏷢, 􏷣). (h) Final result, after ℎ = make_2_cell(􏷣, 􏷤, 􏷠).

119: This test can also be done
at the end of the process, which
makes it possible to use the
easy cell comparison method
described in §5.5. In that case,
the newly created cells (in the
form of darts) that are found to be
redundant should be deleted and
removed from (or not added to)
the indices.

However, there is an exception to this rule, as isolated edges and
polygonal lines sometimes do need to be explicitly represented. In
these cases, it is possible to simply follow the process described for
2-cells below, omitting sewing the last dart of the line segment or
polygonal line to the first dart (and vice versa), and appropriately
using the 1-cells index to find if a given 1-cell already exists, or oth-
erwise to index the newly created 1-cell or 1-cells (in the case of a
polygonal line).

7.2.3 Faces (2-cells)

Starting from the unique 0-cells obtained from the procedure pre-
sented in §7.2.1, in order to create a 2-cell from a sequence of 0-cells,
three general steps are needed:

1. The procedure first checks if the 2-cell that is being requested
already exists119. Just as in the creation of 0-cells, a 2-cell being
requested might have already been created, either indepen-
dently or as part of a 3-cell. This can be easily checked using
the index of 2-cells with the lexicographically smallest vertex
of the 0-cells being passed, and finding if from a dart starting
at the lexicographically smallest vertex and following the 𝛽􏷠 or
𝛽−􏷠􏷠 relations, one passes through the same point embeddings
as those passed to this construction method.
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120: Here, depending on the kind
of expected input data, it might be
more convenient to index edges at
their origin vertex rather than at
their lexicographically smallest.

2. Each of these 0-cells might be a 1-free dart 𝑑 (i.e. 𝛽􏷠(𝑑) = ∅) and
thus have no dart linked to it by 𝛽􏷠, i.e. 𝛽−􏷠􏷠 (𝑑) = ∅ or ∀𝑑′∄𝛽􏷠(𝑑′) =
𝑑, or if 𝛽−􏷠􏷠 is not stored, ∄𝑑′ ∣ 𝛽􏷠(𝑑′) = 𝑑, in which case it can be used
directly, such as in Figure 7.3b. It can also be a non 1-free dart
or one that has a dart linked by 𝛽􏷠 to it, which means that it is
used as part of a 1-cell (and possibly other higher dimensional
cells).

The darts that are already used as part of 1-cells are more diffi-
cult to handle, as they can be reused only when the 1-cell they are
part of is also part of the boundary of a geometrically identical 2-cell
as the one that will be constructed using this method. This needs
to be tested in both possible orientations for the sequence of
0-cells, possibly resulting in the reversal of the orientation of
some 1-cells. If a given dart cannot be reused (because it is part
of a 1-cell that is not part of the 2-cell to be created), a copy of it
has to be created. The result of this step is thus a list that con-
tains for every 0-cell a reusable existing dart or a newly created
dart.

3. The darts obtained in the previous step are 1-sewn sequentially
(using 𝛽􏷠 and 𝛽−􏷠􏷠 ), and the last is 1-sewn to the first, forming
a closed cycle. During these sewing operations, the function
checks whether every newly created edge (consisting of a pair
of linked darts) is present in the index of 1-cells. If a given 1-
cell is already there, the new edge’s dart is linked to its edge em-
bedding structure. If a 1-cell is not there, the edge is added to
the index120, a new edge embedding is created, and the edge’s
dart is linked to it. Finally, the newly created 2-cell is then
added to the index of 2-cells.

In order to verify that the 2-cell being generated is a quasi-
manifold, it is useful to assert that all darts that are 1-free and
have their 𝛽−􏷠􏷠 relation set to ∅ at the beginning of this third
step, i.e. those that were not copied, should continue to be 1-
free and have a 𝛽−􏷠􏷠 set to∅ until they are sewn. This condition,
which is applied differently to the 1-cell, ensures that a vertex
is not used twice within the same face, and as such, that the
2-cell is a quasi-manifold.

Figure 7.3 shows the incremental construction procedure for all the
2-cells of Figure 7.1, which consists of 7 2-cells and is thus obtained
by 7 calls to the make_2_cell method.

7.2.4 Volumes (3-cells) and higher

The method to create 𝑖-cells from their (𝑖−1)-cell boundaries is iden-
tical for all 𝑖 ≥ 3, allowing for a fully dimension-independent func-
tion to be created. This function consists of four general steps:
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1. First of all, the procedure checks whether each (𝑖 − 1)-cell that
is passed is (𝑖 − 1)-free or not. If it is (𝑖 − 1)-free, it is reused as
part of the 𝑖-cell, such as in Figure 7.4a. If it is not (𝑖 − 1)-free,
then it is already part of a different 𝑖-cell, so a copy of it ismade
with a reversed orientation, as shown in Figure 7.4b. This copy
can then be used for the construction of the 𝑖-cell.

For a given dart 𝑑 that is known to be part of the (𝑖 − 1)-cell,
this copy can be made by taking all the darts in the orbit 𝐶 =
⟨𝛽􏷠, … , 𝛽𝑖−􏷡⟩(𝑑), creating anewset of darts𝐶′, and inserting anew
corresponding dart in 𝐶′ for every dart in 𝐶. Using a function
𝑓 ∶ 𝐶 → 𝐶′ that maps a dart in 𝐶 to its corresponding dart in 𝐶′,
for everydart 𝑐 ∈ 𝐶 the 𝛽􏷠 relations are set as 𝛽−􏷠􏷠 􏿴𝑓 (𝑐)􏿷 = 𝑓 􏿴𝛽􏷠 (𝑐)􏿷
and 𝛽􏷠 􏿴𝑓 (𝑐)􏿷 = 𝑓 􏿴𝛽−􏷠􏷠 (𝑐)􏿷. For the ones of higher dimensions,
they are set such that ∀2 ≤ 𝑗 ≤ 𝑖 − 2, 𝛽𝑗 􏿴𝑓 (𝑐)􏿷 = 𝑓 􏿴𝛽𝑗 (𝑐)􏿷.

Note that the combinatorial structures are copied with re-
versed orientation, as this ensures that the two (old and new)
can be directly 𝑖-sewn together, if necessary.

2. A temporary ridge index of the 𝑖-cell is built, containing all
the (𝑖 − 2)-cells on the boundary of all (𝑖 − 1)-cells that have
been passed to the construction method—not all the (𝑖 − 1)-
cells in the cell complex—using their lexicographically small-
est vertices, such that their index entries link to a usable dart
in the (𝑖 − 2)-cell with a point embedding at the lexicographi-
cally smallest vertex. This dart should be one that is (𝑖 − 1)-free,
either because it was already free as part of the combinatorial
structure of the passed (𝑖 − 1)-cells, or because it is a copy (with
reversed orientation) of one that was not (𝑖 − 1)-free.

3. Using the ridge index, (𝑖 − 1)-cells (i.e. facets) are (𝑖 − 1)-sewn
along their common (𝑖−2)-cell boundaries (i.e. ridges). For this,
for every (𝑖−2)-cell on the boundary of an (𝑖−1)-cell passed to the
function, exactly one matching (𝑖 − 2)-cell should be found in
the index, which should be equivalent as compared using the
method described in §5.5 andmight be of the same or opposite
orientation (but should not be part of the same (𝑖 − 1)-cell or
matched to itself). This criterion ensures that a quasi-(𝑖 − 1)-
manifold will be constructed.

If the two (𝑖−1)-cells are sewable along their common (𝑖−2)-cell
boundaries, i.e. they have compatible orientations, they are di-
rectly sewn together. Otherwise, the orientation of the entire
connected component of either of the two (𝑖−1)-cells should be
reversed. If the two (𝑖 − 1)-cells have incompatible orientations
but are part of the same connected component, the cell that
is being requested is unorientable, and thus cannot be repre-
sentedusing combinatorialmaps. Althoughnot discussed fur-
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Figure 7.4: The construction of the
3-cells of Figure 7.1. (a) After
make_3_cell(𝑏, 𝑐, 𝑑, 𝑒). (b) Final re-
sult, after make_3_cell(𝑒, 𝑓, 𝑔, ℎ).

121: The exact implementation
depends on the library that is
used, but normally they are
red-black trees.

ther here, note that as long as it does forms a quasi-manifold
it can however be represented using generalised maps.

4. Using the index of 𝑖-cells, the newly constructed 𝑖-cell is com-
pared to others to check if it had already been created, which
is also done using the lexicographically smallest vertex of the
cell. If an equivalent 𝑖-cell (with the same or opposite orienta-
tion) is found, the function deletes the newly created darts of
the cell and their corresponding index entries, and instead fi-
nally returns the existing 𝑖-cell. If an equivalent 𝑖-cell is not
found, the newly created cell is added to the index and re-
turned.

Figure 7.4 shows the incremental constructionprocedure for the two
3-cells of Figure 7.1.

7.3 Implementation and complexity analysis

The incremental construction algorithm has been implemented
in C++11 and made available under the open source MIT licence
at https://github.com/kenohori/lcc-tools. As the extrusion re-
lated code (§6.3), it requires and builds upon the CGAL packages
Combinatorial Maps and Linear Cell Complex, among others.

For this prototype implementation, the lexicographically smallest
vertex indices were implemented as C++ Standard Library maps121

for every dimension, using point embeddings as keys and lists of
darts as values. Each dart in a list represents a separate cell (of the
dimension of the index) that has that point as its lexicographically
smallest. A custom comparison function is passed as a template so
that the points are internally sorted in lexicographical order. As a
map has 𝑂(log𝑛) search, insertion and deletion times and 𝑂(𝑛) space
[ISO, 2015, §23.4], all of these operations can be performed effi-
ciently.

If a strictly incremental approach is followed, creating all 𝑖-cells be-
fore proceeding to the (𝑖 + 1)-cells, it is not necessary to maintain
indices for all the cells of all dimensions at the same time. The only
ones that are needed are those for: all 𝑖- and (𝑖 − 1)-cells, as well as a
temporary index for the (𝑖−2)-cells on the boundary of the (𝑖−1)-cells
for the 𝑖-cell that is currently being constructed. This means that
only three indexes—one of which likely covers only a small part of
the dataset—need to be kept at a given time.

Most of these indices can be easily built incrementally, adding new
cells as they are created in𝑂(log 𝑐), with 𝑐 the number of cells of that
dimension, assuming that the smallest vertex and a dart embedded
there are kept during its construction. The complexity of building
any index of cells of any dimension is thus 𝑂(𝑐 log 𝑐) and it uses 𝑂(𝑐)
space.

https://github.com/kenohori/lcc-tools
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122: This is true for the type of
combinatorial maps with linear
geometries that are handled here,
but not necessarily so in the gen-
eral case.

Checking whether a given cell already exists in the cell complex is
more complex. Finding a list of cells that have a certain smallest
vertex is done in 𝑂(log 𝑐). In an unrealistically pathological case,
all existing cells in the complex could have the same smallest ver-
tex, leading to up to 𝑐 quadratic time cell-to-cell comparisons just to
find whether one cell exists. However, every dart is only part of a
single cell of any given dimension122, so while every dart could con-
ceivably be a starting point for the comparison, a single dart can-
not be used as a starting point in more than one comparison, and
thus a maximum of 𝑑complex identity comparisons will be made for
all cells, with 𝑑complex being the total number of darts in the cell com-
plex. From these 𝑑complex darts, two identity comparisons are started,
one assuming that the two cells (new and existing) have the same
orientation, and one assuming opposite orientations. Each of these
involves a number of dart-to-dart comparisons in the canonical rep-
resentations that cannot be higher than the number of darts in the
smallest of the two cells. The number of darts in the existing cell is
unknown, but starting from the number of darts in the newly cre-
ated cell (𝑑cell), it is safe to say that no more than 𝑑cell dart-to-dart
comparisons will be made in each identity test, leading to a worst-
case time complexity of 𝑂(𝑑complex𝑑cell). Note that this is similar to
an isomorphism test starting at every dart of the complex.

Finally, creating an 𝑖-cell from a set of (𝑖 − 1)-cells on its boundary is
more expensive, since the (𝑖 − 2)-cell (ridge) index needs to be com-
puted for every (𝑖 − 1)-cell. Following the same reasoning as above, it
can be created in 𝑂(𝑟 log 𝑟) with 𝑟 the number of ridges in the 𝑖-cell,
and uses 𝑂(𝑟) space. Checking whether a single ridge has a corre-
sponding match in the index is done in 𝑂(𝑑cell𝑑ridge), with 𝑑cell the
number of darts in the 𝑖-cell and 𝑑ridge the number of darts in the
ridge to be tested. Since this is done for all the ridges in an 𝑛-cell,
the total complexity of this step, which dominates the running time
of the algorithm, is

􏾜
ridges

𝑂(𝑑cell𝑑ridge) = 𝑂(𝑑􏷡cell).

The analyses given above give an indication of the computational
and space complexity of the incremental algorithm as a whole.
However, it is worth noting that in realistic cases the algorithm fares
far better than in theseworst-case scenarios: thenumber of cells that
have a certain smallest vertex is normally far lower than the total
number of cells in the complex, most of their darts are not embed-
ded at the smallest vertex, and from these darts most identity com-
parisons will fail long before reaching the end of their canonical
representations.

Finally, one more nuance can affect the performance of this ap-
proach. When two connected components of darts with incompat-
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(a)

(b)

(c)

Figure 7.5: A tesseract as a combi-
natorial map: (a) the darts of its 7
inner cubes, (b) the darts of its 8
cubes, and (c) all of its darts shown
together.

ible orientations have to be joined, the orientation of one of these
has to be reversed. This is easily done by obtaining all the connected
darts of one of the connected components, preferably the one that
is expected to be smaller, and reversing their orientation 2-cell by
2-cell. Every dart 𝑑 in a 2-cell is then 1-sewn to the previous dart
in the polygonal curve of the 2-cell (i.e. 𝛽−􏷠􏷠 (𝑑)). A group of 𝑛 darts
can thus have its orientation reversed in 𝑂(𝑛) time. This is not a
problem inpractice sinceGIS datasets generally storenearby objects
close together, but if a cell complex is incrementally constructed in
the worst possible way, i.e. creating as many disconnected groups as
possible, this could have to be repeated for every cell of every dimen-
sion, creating a very inefficient process.

7.4 Experiments

Simple comparisonswith valid primitives

The CGAL Linear Cell Complex package provides functions to gen-
erate a series of primitives (line segments, triangles, quadrangles,
tetrahedra and hexahedra) which are known to be created with cor-
rect geometry and topology, and can then be sewn together to gener-
ate more complex models. Models constructed in this manner were
thus created independently and compared to those incrementally
constructed using the method presented in this chapter. By using
the approach shown in §5.5, it was possible to validate that they were
equivalent.

A tesseract

In order to present an example in more than three dimensions,
a tesseract was also incrementally constructed using the approach
presented in this chapter, which is shown in Figure 7.5. A tesseract
is a 4-cell bounded by 8 cubical 3-cells, each of which is bounded by
6 square 2-cells. It thus consists of one 4-cell, 8 3-cells, 24 2-cells, 32
1-cells and 16 0-cells.

Using the approach presented here, an empty 0-cell index is first
created. Then, the 16 vertices of the tesseract, each vertex 𝑝𝑖 being
described by a tuple of coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑤𝑖), were created as 𝑝𝑖 =
make_0_cell(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑤𝑖), which returns a unique dart embedded at
each location that is also added to the 0-cell index. At this point, the
algorithm has built an unconnected cell complex consisting solely
of 16 completely free darts.

An empty index of 2-cells is then created. Each of the tesser-
act’s 24 square facets are then built based on their vertices as 𝑓𝑖 =
make_2_cell(𝑝𝑗, 𝑝𝑘, 𝑝𝑙, 𝑝𝑚), which 1-sews (copies of) these darts in a
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123: http://www.bkg.bund.
de/nn_147094/SharedDocs/
Download/Barrierefreie-
Textversionen/EN-
InfoMaterial/EN-Text-Vector-
Data.html

(a)

(b)

Figure 7.6: Simple 2D+scale
datasets from Meijers [2011],
which represent the generali-
sation of a planar partition by
merging areas. The dataset shown
in (a) has realistic scale intervals
such that the generalisation
operations are performed at
scales that depend on the area of
a polygon, while the dataset in (b)
uses equally spaced generalisation
operations.

loop and returns the dart embedded at the smallest vertex of the
facet. These are added to the index of 2-cells. Since every vertex
is used in 6 different 2-cells, each dart would be copied 5 times. The
cell complex at this point thus consists of 24 disconnected groups
of 4 darts each.

Next, an empty index of 3-cells is created and the index of 0-cells
can be deleted. For each of the 8 cubical 3-cells, a function call of the
form 𝑣𝑖 = make_3_cell(𝑓𝑗, 𝑓𝑘, 𝑓𝑙, 𝑓𝑚, 𝑓𝑛, 𝑓𝑜) is made. At this point, an
index of the 1D ridges of each face is built, which is used to find the
12 pairs of corresponding ridges that are then be 2-sewn together.
When a 3-cell is created, it is added to the index. Since every face
bounds two 3-cells, each dart is duplicated once again, resulting in a
cell complex of 8 disconnected groups of 24 darts each.

Finally, the tesseract is created with the function 𝑡 =
make_4_cell(𝑣􏷠, 𝑣􏷡, … , 𝑣􏷧). This can use the index of 2-cells to
find the 24 corresponding pairs of facets that are then 3-sewn to
generate the final cell complex.

The validity of this objectwas tested by checkingwhether it formed a
valid combinatorialmap, testing whether each cube was identical to
a cube created with the Linear Cell Complex package, and manually
verified the 𝛽 links of its 192 darts.

2D+scale data

In order to test the incremental construction algorithm and its ap-
plicability to data incorporating non-spatial characteristics, a few
2D+scale datasets fromMeijers [2011] usingATKIS data123, were also
incrementally constructed. As shown in Figure 7.6, these datasets
model the generalisation of a planar partition as a set of stacked
prisms. Both of the simple datasets of this figure were created suc-
cessfully in under a second.

A larger dataset, shown inFigure 7.7 and consistingof698polyhedra
with a total of 457 185 faces, was used as a benchmark to test the
performance of the algorithm. This dataset was processed without
errors in roughly 30 minutes, including validation tests to ensure
that every face created was a valid combinatorial map and that the
faces of a volume formed a closed quasi-manifold.

In this latter dataset, an additional test was made using its first 250
polyhedra, which lie on the top of Figure 7.7, comparing the time
used for the construction of vertices, faces and volumes with and
without the use of indices. The results of bothmethodswere equiva-
lent using the approach shown in §5.5. On average, using indices re-
sulted in a faster vertex construction time by a factor of 2 200, faster
face construction by a factor of 56 and faster volume construction
by a factor of 38. However, as Figure 7.8 shows, these speed gains

http://www.bkg.bund.de/nn_147094/SharedDocs/Download/Barrierefreie-Textversionen/EN-InfoMaterial/EN-Text-Vector-Data.html
http://www.bkg.bund.de/nn_147094/SharedDocs/Download/Barrierefreie-Textversionen/EN-InfoMaterial/EN-Text-Vector-Data.html
http://www.bkg.bund.de/nn_147094/SharedDocs/Download/Barrierefreie-Textversionen/EN-InfoMaterial/EN-Text-Vector-Data.html
http://www.bkg.bund.de/nn_147094/SharedDocs/Download/Barrierefreie-Textversionen/EN-InfoMaterial/EN-Text-Vector-Data.html
http://www.bkg.bund.de/nn_147094/SharedDocs/Download/Barrierefreie-Textversionen/EN-InfoMaterial/EN-Text-Vector-Data.html
http://www.bkg.bund.de/nn_147094/SharedDocs/Download/Barrierefreie-Textversionen/EN-InfoMaterial/EN-Text-Vector-Data.html
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are not uniform throughout the 250 polyhedra. The speed gained
from using an index on the vertices increases roughly linearly on
the number of constructed vertices, while that gained on from the
faces index remains roughly constant between a factor of 50 and 60,
and that gained from the volumes index tends to slowly increase as
well.

7.5 Conclusions

Creating computer representations of higher-dimensional objects
can be complex. Commonconstructionmethods used in 3D, such as
directlymanipulating combinatorial primitives, or usingprimitive-
level construction operations (e.g. Euler operators [Mäntylä, 1988]),
rely on our intuition of 3D geometry, and thus do not work well in
higher dimensions. It is therefore all too easy to create invalid ob-
jects, which then cannot be easily interpreted or fixed.

The incremental construction method proposed in this section fol-
lows a completely different approach, which has a solid underpin-
ning in the Jordan-Brouwer separation theorem [Lebesgue, 1911;
Brouwer, 1911]. By exploiting the principles of boundary represen-
tation, it constructs an 𝑖-cell based on a set of its bounding (𝑖 − 1)-
cells. Since individual (𝑖 − 1)-cells are easier to describe than the 𝑖-
cell, it thus subdivides a complex representation problem into a set
of simpler, more intuitive ones. The method can moreover be in-
crementally applied to construct cell complexes of any dimension,
starting from a set of vertices in ℝ𝑛 as defined by a 𝑛-tuple of their
coordinates, and continuing with cells of increasing dimension—
optionally creating edges from vertices, then faces from vertices or
edges, volumes from faces and so on.

While a set of (𝑖 − 1)-cells bounding an 𝑖-cell can be said to already
form a complete representation of an 𝑖-cell, this is not sufficient for

Figure 7.7: A large 2D+scale dataset
from Meijers [2011], which uses
equally spaced generalisation op-
erations that merge two adjacent
polygons.
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Figure 7.8: Construction time speed-up from the use of indices on the (a) vertices, (b) faces and (c) volumes.

its representation in a topological data structure, which requires the
topological relationships between the (𝑖 − 1)-cells to be computed.
The incremental construction algorithm proposed in this section
thus computes the relationships that are required for two data struc-
tures: generalised or combinatorial maps. However, these relation-
ships are also applicable to most other data structures.

The algorithm is efficient due to its use of indices using the lexico-
graphically smallest vertex of every cell per dimension, as well as
an added index using the lexicographically smallest vertex of the
bounding ridges of the cell that is being built. It generates an 𝑖-cell
in𝑂(𝑑􏷡) in the worst case, with 𝑑 the total number of darts in the cell.
However, it fares markedly better in real-world datasets, as cells do
not generally share the same lexicographically smallest vertex. By
checking allmatching ridgeswithin a cell’s facets, the algorithm can
optionally verify that the cell being constructed forms a combina-
torially valid quasi-manifold, avoiding the construction of invalid
configurations.

A publicly available implementation of the algorithm has been
made based on CGAL Combinatorial Maps, and its source code
has been released under a permissive licence. It is worth noting
that it is one of very few general-purpose object construction meth-
ods that has been described and implemented for four- or higher-
dimensional cell complexes.

The implementation has been tested with simple 2D–4D objects, as
well as with large 2D+scale datasets from Meijers [2011]. The con-
structed objects were tested to verify that they form valid combina-
torial maps. The small objects were also manually inspected, visu-
alised, and where possible, they were compared with equivalent ob-
jects known to be valid using the method discussed in §5.5.

While the incremental construction operation as described in this
chapter works only with perfect data, small modifications could
make it applicable to additional configurations. For instance, merg-
ing adjacent cells that can be perfectly described by a single cell with
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linear geometry (e.g. collinear edges and coplanar faces) as a prepro-
cessing step can be used to handle cases where cells are subdivided
only on one side of a boundary. Snapping points together can solve
several common invalid configurations, such as those described in
Chapter 10 and in Diakité et al. [2014].

Finally, the logical step forward at this point would be the use of the
incremental construction algorithmfor the creationof largehigher-
dimensional datasets. However, since to the best of my knowledge
there are no large space-filling higher-dimensional datasets cur-
rently available—without even considering any validity criteria—,
such tests could not be conducted within this thesis. The genera-
tion of such a higher-dimensional dataset is thus a necessary first
step in this direction and is considered as a related piece of future
work.



Linking corresponding 3Dmodels 8
Chapters 6 and 7 presented in detail two low-level construction algo-
rithms for 𝑛D objects, both of which operated on level of individual
primitives. These are valuable in their own right, but inorder to ease
the use of higher-dimensional operations in practice, it is necessary
to develop high-level operations based on them which can actually
be used by practitioners. This chapter thus describes at a conceptual
level howone suchhigh-level operator can be defined, which creates
a 4D representation from a series of existing 3D representations at
different levels of detail.

The chapter starts by introducing some background in §8.1, explain-
ing themotivation behind such an operation and covering the prin-
ciples of linking operations with 2D/3D objects. §8.2 describes four
linking schemes that can be used to construct 4D models from a set
of 3D objects, discussing the advantages and disadvantages of each
method in terms of their feasibility in practice and of the proper-
ties that the 4D model would have. §8.3 presents several use cases
to demonstrate how the different schemes result in objects with dif-
ferent characteristics, where the best scheme can be considered to
be application-dependent. §8.4 shows a concrete example in detail,
implementing a use case that combinesmost of the linking schemes
from §8.2. §8.5 concludes the chapter with a discussion of the fur-
ther possibilities of this method.

Most of this chapter is based on the paper:

► Modelling a 3D city model and its levels of detail as a true
4Dmodel. Ken Arroyo Ohori, Hugo Ledoux, Filip Biljecki and
Jantien Stoter. ISPRS International Journal of Geo-Information,
4(3), September 2015, pp. 1055–1075.

8.1 Motivation and background

3D city models of the same region are often created at multiple lev-
els of detail (LODs). For instance, in the CityGML standard [Gröger
et al., 2012] five discrete LODs are defined (Figure 3.23 on page 49),
which range from the 2D footprint of the building up to a represen-
tation where the windows, doors and walls and even indoor objects
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Figure 8.1: Two LODs of a build-
ing footprint. Note that there are
no vertices, edges or faces with the
same geometry in both LODs, and
thatmanyprimitives in thehigher
LOD are equivalent to a single one
in the lower LOD.

are all modelled in detail. This allows a user to choose the most
appropriate LOD for a given application, balancing the better re-
sults that are obtainable usingmore detailedmodelswith the higher
computational requirements that are necessary to obtain them [Bil-
jecki et al., 2014b].

However, the creation of these models is a complex task that needs
to be performed continuously, as 3D city models need to be kept
up to date [Zlatanova and Holweg, 2004; Kolbe et al., 2005]. Given
the large size and complexity of current 3D city models, it can be
very beneficial to have incremental updates to a model which affect
only a building and its immediate surrounding area [Döllner et al.,
2006]. These can take place as buildings and other city objects (e.g.
roads, utility infrastructure, city furniture, etc.) are built, modified
and destroyed.

In order to apply such incremental update processes to 3D city
models at multiple LODs, links between related objects are crucial.
Given an object at a certain LOD, links usually point to its incident
and adjacent objects at the same LOD (i.e. the topological relation-
ships that are most common in GIS), as well as to its corresponding
objects at other LODs, even when these objects are of different di-
mension (e.g. when a thin polyhedron in a higher LOD is collapsed
to a polygon in a lower LOD). These links can then be used to prop-
agate changes to other LODs [van Oosterom and Stoter, 2010] or to
apply consistency checks to new or newly altered objects [Gröger
and Plümer, 2011b], among other operations that are part of a ro-
bust update process.

In theory, a series of LODs might be derived from an automatic
generalisation process [Weibel, 1997] and thus the exact correspon-
dences between objects can be already known, but as discussed in
§3.4, fully automatic 3D generalisation is very complex and has
not yet been achieved in practice. The different LODs of a model
are therefore usually acquired independently, collected with differ-
ent techniques, often for different purposes, and thus the resulting
representations do not necessarily have easy-to-identify correspon-
dences. The same object can be slightly displaced at different LODs,
an object can be an aggregate of other objects (think of a terraced
house: either each house is individually represented as a volume or
one single volume is used for the whole row), or can be modelled in
an entirely different way. In fact, as shown in Figure 8.1, it is pos-
sible that there are no common geometries (i.e. 0-, 1-, 2-, or 3-cells
with the same geometry) across a series ofmodels at different LODs.

In order to join multiple separate representations, stored as inde-
pendent datasets, it is thereforefirst necessary tofind the correspon-
dences between (equivalent) objects at different LODs. As described
in 2DbyHampe et al. [2003], when an automatic generalisationpro-
cess is used, the objects can be directly linked as they are being gen-
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125: Separate polygons might be-
come connected in many differ-
ent situations, the simplest of
which is being joined into a single
polygon at one or more LODs.

eralised. Otherwise, the correspondences must be inferred. In 2D,
they are usually inferred using map matching methods, which can
take into account the geometry [Veltkamp and Hagedoorn, 2001],
topology and semantics of and between the objects [Devogele et al.,
1996]. Devogele et al. [1996] does this in three steps: (1) manu-
ally finding correspondences between semantic classes; (2) resolv-
ing conflicts; and (3) matching objects using geometry, topology
and semantics. Zhang et al. [2014] matches features by computing
a compatibility coefficient, derived from the similarity in their ge-
ometry and that of their neighbours.

After the correspondences have been found, the corresponding rep-
resentations of an object are linked together. These links across
LODs usually take the form of common IDs at the 2D or 3D ob-
ject level. However, more advanced linking structures developed for
this exact purpose do exist and are often used in 2D—some of these
were mentioned in §3.4: hierarchical planar subdivisions [Filho
et al., 1995], multi-scale partitions [Rigaux and Scholl, 1995], nested
maps [Plümer and Gröger, 1997] and topological generalised area
partitioning trees [van Oosterom, 2005].

8.2 Suggestedmethodology and current issues

The methods used to identify correspondences between 2D objects
and the data structures used to store these correspondences, men-
tioned in §8.1, do not readily extend to higher dimensions. While
map matching methods can identify (to a limited extent) the corre-
spondences between 2D or 3D objects, they do not take into account
the lower-dimensional correspondences between the 0D–2D cells
bounding them. Linking corresponding objects using only com-
mon IDs at the 2D or 3D object level is similarly problematic, as it
is difficult to store complex correspondence relationships, such as
an aggregation of multiple objects into one [Biljecki et al., 2014b],
or those connecting the points, line segments and polygons on the
boundary of corresponding 2D or 3D objects.

Based on the higher-dimensional data structures presented
in Chapter 4, this section presents a sketch of a dimension-
independent approach. By considering the LOD of a model as a
fully independent dimension in the geometric sense [van Oost-
erom and Stoter, 2010; Paul et al., 2011; Stoter et al., 2012a], it is
possible to store all topological relationships between any related
objects across all LODs. A set of connected 2D polygons at multiple
LODs are modelled as a single 3D polyhedron125, as is shown in Fig-
ure 8.2, and a set of connected 3D polyhedra at multiple LODs are
modelled as a single 4D polychoron. Notably, the correspondences
between equivalent objects across LODs thus become geometric
primitives, making it possible to perform geometric operations
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Figure 8.2: Two LODs of a building
footprint are stored as a single
polyhedron. Note that the cor-
respondences between vertices,
edges and faces between the
LODs are clearly indicated by the
vertical edges and faces, and that
holes can be similarly handled
with additional edges and faces.

with them (e.g. extracting an intermediate LOD for visualisation
purposes) or to attach attributes to them (e.g. the meaning of these
correspondences), just as is done to other geometric primitives.

In the specific case of a 4D (3D space+LOD) model, a set of 4D ob-
jects is modelled as a 4D cell complex embedded in 4D space, where
there is an additional LOD axis 𝑙 and a point in 4D space is defined
by a tuple of coordinates (𝑥, 𝑦, 𝑧, 𝑙). It is worth noting that this im-
plies that the LOD axis should be properly parametrised, defining
quantifiable values for every fixed LOD in a model, or alternatively
a function that does so.

The 4D space thus defined is filled with a set of non-overlapping
polychora, in which a 3D object (e.g. a building) at all of its different
LODs is represented as a single 4D object. This 4D object is bounded
by a set of volumes, two of them being the object at its lowest and
highest LOD, and several lateral ones formed by filling the space be-
tween corresponding faces across LODs. When a 3D cross-section is
extracted from it (Chapter 9), these respectively correspond to the
volumes and bounding faces of an extracted 3D model.

A 4D model is constructed from a series of existing LODs of a 3D
city model in three steps:

1. identifying corresponding 0D–3D cells;

2. linking them by creating 1D–4D cells connecting them;

3. using the incremental construction algorithm of Chapter 7 to
build a 4D cell complex using all 0D–4D cells.

This section describes various methods to identify corresponding
cells in different LODs of a 3D object (§8.2.1), and then presents four
linking schemes to construct a 4D model (§8.2.2). As §8.3 demon-
strates, the 4D cells created by the linking schemes are used to con-
struct 4D cell complexes with different properties and shapes.

8.2.1 Step 1: Identifying corresponding cells in 3Dmodels

Constructing a 4D model from a sequence of 3D models largely de-
pendson the identificationof the corresponding0-, 1-, 2-, and 3-cells
between these 3Dmodels. The aimof this identification is to create a
mapping between the 3D models that preserves the topological rela-
tionships between the elements in the models so as to create a valid
4D model.

Considering 3D models at different LODs, this identification will
often result in matching cells of different dimensions, commonly
with some cells in the 3D model at the highest LOD being matched
to cells of lower dimension in the 3D model at the lowest LOD. Also,
these correspondences will often not result in a one-to-one map-
ping: groups of adjoining cells in one model, most often in the one
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at the highest LOD, will commonly be matched to a single cell in the
other model.

The identification of matching cells should be done using a combi-
nation of the following, arguably in order of preference:

Attributes Using the semantic information stored in the cells,
when it is available. For instance, matching two cells that are
known to be equivalent through the use of IDs, or if knowledge
is kept during the generalisation process, matching a cell with
one that is known to be a simplified version of it.

Topology When there is an isomorphism between two cells (§5.1.1)
that additionally preserves all the topological relationships
between them (such as the facet/ridge comparisons used in
Chapter 7), the isomorphism between two cells already gives
a matching between them, although it might be important to
check that the isomorphism is compatible with the matching
of the other cells in the model and with some geometric con-
straints (e.g. amaximumdistance betweenmatched cells). Rel-
evantly and as used elsewhere in this thesis, Gosselin et al.
[2011] describe how to whether two cells or maps are isomor-
phic in any dimension. Another more complex possibility is
using subgraph isomorphismonunmatchedportions of a gen-
eralised map [Eppstein, 1999]. The latter option should lead
to partial matches and thus better results, but this problem is
known to be NP-complete and so it is unlikely to be applicable
to large datasets.

Another relevant way to use topology is to use the topological
relationships between cells in order to iteratively infer match-
ings for the cells that remain unmatched after applying some
other algorithm [Hampe et al., 2003]. Such a case is explained
more concretely in the example of Figure 8.5.

Geometry Using geometric computations, such as those based on
computing similarity metrics, simply matching unmatched
cells in one model to their nearest neighbour in another
model, or attempting to minimise the Earth Mover’s Distance
(EMD) [Rubner et al., 1998] between them. It is however im-
portant to compute these matches using constraints that gen-
erally preserve the relative positions and topological relation-
ships between the cells. For instance, a greedy algorithm could
match cells iteratively, cascading these matches to adjacent
cells (in all models) or rejecting matches that would violate a
geometric or topological constraint.

Another possibility to assist when matching cells is to allow split-
ting an 𝑖-cell into multiple 𝑖-cells by adding cells of lower dimen-
sions in a manner that does not alter the geometry of the cell. This
effectively loosens the requirement that two cells be isomorphic by
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126: Similar procedures can be
defined for the cells of any dimen-
sion.

127: If this location is in its inte-
rior, this is essentially equivalent
to a 0D hole.

modifying their topology, creating a one-to-one mapping between
the two cells. For instance, a face can be split into multiple faces by
adding a vertex in its interior and creating edges that link it to some
of the vertices of the face126.

Holes deserve a special mention, as they can also be used to decide
how to match cells. When holes (of any dimension) are present
at a higher LOD but disappear at the immediate lower LOD, they
can be handled appropriately by collapsing them to a nearby vertex
such that theydonot create any geometric intersections between the
cells. Another option would be to create an additional point at an
appropriate location in the lower LOD127 where it can be collapsed.
When holes are present in multiple LODs, they should be handled
essentially as if they were independent cells, either matching them
directly, splitting them, or collapsing parts of them to match each
other.

8.2.2 Step 2: Linking corresponding cells

Based on the matches that were found between cells, which math-
ematically define a map between the 3D cell complexes of the 3D
models, they are then linked to construct a 4D cell complex. For
this, it might be necessary to create or modify 0D–3D cells in the
input cell complexes, as well as to create new 1D–4D cells that lie
between the 0D–3D cell complexes. The resulting 4D cell complex
is then embedded in 4D space by assigning new 4D coordinates for
every point. These 4D points are simply the union of all those in the
input 3D cell complexes with an appended coordinate that refers to
the LOD of their originating model. Four different basic linking
schemes are proposed here, which are shown in Figure 8.3.

Method 1: Simple linking of corresponding cells

Links are constructed between the corresponding cells of an object
at two different LODs, and if a cell has no corresponding cell then
it is ignored. While this makes it possible to easily construct a 4D
cell complex in the cases where all cells in the lower LOD model
have a corresponding cell in the higher LODmodel, when this is not
the case, the result will consist of an incomplete 4D cell complex—
possibly without any 4-cells.

To ensure a complete one, cells oftenneed to be split (e.g. those sepa-
rated by the red dotted line in Figure 8.3a), which can be performed
using geometric intersections. While this is possible in 3D and
tools are readily available (see for instance Granados et al. [2003];
Hachenberger [2006]), the generalisation of this scheme to higher
dimensions is not easy in practice since no robust intersection tools
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(a) Simple linking (b) Unmatched are collapsed

(c) Modification of topology (d) Matching all to existing

Figure 8.3: The four linking
schemes for three LODs of a
house, here depicted in 2D. The
objects that would obtained by
slicing between the LODs can be
seen in dashed green contours;
the red dashed lines reflect the
cells that need to be added and
split in order to ensure a valid 3D
(2D+LOD) cell complex.

128: This might need to be tested
geometrically rather than topo-
logically, as degenerate cells will
often be created with this process.

inmore than 3D are available. Observe that if a 4D cell complex gen-
erated using thismethod is sliced at an intermediate LOD, the result
is exactly that of the lower LOD.

Method 2: Unmatched cells are collapsed to existing ones

No modifications are made to the 3D models, which is in practice a
significant advantage since no complex geometric operations need
to be performed and the size of the cell complexwill be smaller than
that of the one where cells are modified. Instead of geometric op-
erations, unmatched cells in the higher LOD model are linked to
nearby cells of a possibly lower dimension in the lower LOD model
while preserving certain geometric and topological constraints (e.g.
preserving adjacency and incidence between cells128). This implies
that some cells will be collapsed (e.g. an edge can be mapped to a
vertex), and the cells must be linked with care to ensure that a valid
4D cell complex is created (e.g. no two cells should intersect in 4D
space).

For instance, assume that the left eave of the roof of the house in the
middle LOD model in Figure 8.3b has been (arbitrarily) matched to
the roof of the low LOD model, with the right eave remaining un-
matched as no unmatched cells remain in the low LOD model. In
this case, using the knowledge that the roof and right wall are ad-
jacent in the low LOD model but their corresponding cells (respec-
tively the left eave and right wall) are separated by the right eave
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in the middle LOD model, the right eave can be collapsed to the
common vertex lying between the two (upper right). Using such a
mapping, the topological relationships between the cells will be pre-
served, with the exception of those involving the collapsed cells and
those incident or adjacent to them.

When the mapping has faults and the resulting 4D cell complex
thus has geometric problems (e.g. intersecting cells), the slicing op-
eration might not have any geometric meaning, but the resulting
higher-dimensional model can nevertheless offer other benefits,
e.g. database consistency and the knowledge of some of the equiv-
alences between cells. Note that ensuring that cells preserve their
topological relationships and form a partitioning of space in 4D is
challenging and not fully considered in this thesis. Finally, even if
a combinatorially and geometrically valid 4D cell complex is con-
structed, the 3D object obtained by slicing might not be consistent
with those in the real world; notice how the chimney in Figure 8.3b
becomes increasingly smaller and closer to the right eave of the roof
because of the way the cells have been linked.

Method 3: Modifying the topology

To ensure that there is a mapping between all the cells, it is possible
to split or merge cells so that the topology (combinatorial structure)
of the objects is identical. For instance, operations like removal and
contraction [Damiand and Lienhardt, 2003] can be used to simplify
the more complex object(s) to make them match the simpler one(s)
using an iterative process. On the other direction, it is possible to
first identify for every cell in the lower LOD model one or more cor-
responding cells in the higher LOD model, then split cells in the
lower LOD model so that their topology is the same as in the higher
LOD model as the one to which it must be linked.

As an example, considering the lowest LOD in Figure 8.3c, this im-
plies first finding multiple matches for the roof cells of the lower
LOD models, which then need to be split into multiple cells by the
insertion of new vertices. For instance, these can be located at the
closest location that lies on the matched lower LOD cell for every
higher LOD cell. As this example shows, all the representations of
an object where this approach is used will result in the same topol-
ogy. This results in increased storage space and the possibility of
degenerate cells e.g. multiple vertices at one location—something
that however does not cause any topological problems. The geomet-
ric operations necessary to split cells can be rather intricate as well.
Observe that using thismethod, slicing inFigure8.3c results in adif-
ferent representation of the object: one where it smoothly morphs
into the one at lower LOD (e.g. the tip of the roof is slowly lowered
as the LOD decreases).
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Method 4: Matching all cells to existing ones

As is the case with Method 2, this method does not require mod-
ifying the topology of the objects. The main difference with it is
that cells in the higher LOD model are not necessarily collapsed to
a lower dimensional cell in the lower LOD model but are instead
matched to one or more cells of any dimension while also preserving
certain geometric and topological constraints. In Figure 8.3d, ob-
serve that the tip of the roof of the middle LOD model (a point) is
matched to the roof of the lowest LOD (an edge since this is a 2D
representation) and that the 2 edges representing the middle-LOD
roof are matched to the two corners of the lower-LOD roof (points).
Slicing thus creates a truncated roof having 3 edges. This can be
achieved bymatching all cells that have a clear correspondence first,
then attempting to match groups of unmatched cells while preserv-
ing the topological relationships between cells.

For instance, in Figure 8.3d it is possible to first match the base and
walls of the houses in the lower and middle LOD models, as these
have exact equivalences. Then, an algorithm could match the re-
maining vertex and left/right edges in the middle LOD model re-
spectively to the roof edge and left/right vertices. Observe that in
this process, the tip of the roof of the middle LOD model (a point)
is matched to the roof of the lowest LOD (an edge) and that the
two eaves of the roof (edges) are matched to the two corners of the
roof (points) in the lowest LOD. Slicing the resulting 4D cell com-
plex creates a truncated roof having 3 edges. The matches for the
chimney to other elements in Figure 8.3d are achieved by matching
the chimney top to the right eave, and the remaining vertices and
edges on its left and right sides respectively to the roof tip and right
eave/wall vertices. The result is that while the chimney looses re-
semblance to reality, it slowly converges to the roof in the middle
LOD model.

8.3 Use cases

This section presents practical examples that describe thematching
and the linking of cells for a few simple 3D models representing the
same object(s) at different LODs.

8.3.1 UsingMethod 1: Simple linking

Figure 8.4 shows an example where two LODs for a building are
linked in such a way that only matched cells are involved. First
observe that since the two objects are not isomorphic, some cells
are not matched (the ones representing the roof of the higher-LOD
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Figure 8.4: Two LODs of a house
simply linked and the intermedi-
ate LOD obtained.

Figure 8.5: Two LODs of a house
with differing geometry and topol-
ogy are integrated into a 4D model
by collapsing cells in the model at
the highest LOD.

129: Otherwise, there could not
be a 4-cell in the 4D model as the
top of the house would be open
and no subset of ℝ􏷭 would be en-
closed in the model.

130: Combinatorially, this in-
volves a search for a path between
the front and right faces in the
map of the model at the highest
LOD. Such a search would be
limited to the nodes representing
the aforementioned faces and
those representing faces that are
not present in the model at the
lowest LOD.

model). Observe also that the roof of the lower-LOD model has
no match in the higher-LOD model. Thus, to construct a 4D cell
complex, the flat roof geometry has to be added to the higher-LOD
model129. Then, the corresponding cells can be linked. Although
it is possible to generate this 4D model by generating the (𝑖 + 1)-
cells that connect a pair of corresponding 𝑖-cells and linking all
of them together, it is probably easier to extrude one cell complex
along the range between the two LODs using the method described
in Chapter 6. This method already generates the proper combina-
torial structure of the 4D model, and the final cell complex can be
obtained by simply moving the vertices of the face representing the
model at the other LOD so as to match the geometry of the other
model at its LOD. Moreover, when a linear cell complex is used and
thus only the vertices are storing the geometry of the model, it is
onlynecessary tomove someof the vertices: those in the lowest LOD
without a corresponding vertex at the same location in the highest
LOD.

8.3.2 UsingMethod 2: Collapsing

Figure 8.5 shows an example with a 3D model at two LODs with dif-
fering geometry and topology. The 4D model has been obtained
by first matching the 2-cells with known correspondences (the left,
right, front and back large faces) and inferring that the other faces
in the model at the highest LOD (right) should be collapsed based
on their adjacency relationships with the matched faces. For exam-
ple, since the front and right faces are adjacent in the lowest LOD
but not in the highest LOD, the two faces between them130 should
be collapsed to their common boundary (i.e. their intersection: the
edge between them). This example also shows that the topological
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Figure 8.6: Two LODs of two
houses being aggregated are
integrated into a 4D model by
modifying the topology of the
model at the lowest LOD so as to
match the topology of the model
at the highest LOD.

relationships between the cells are nevertheless preserved with the
exception of those that involved collapsed cells. The new topolog-
ical relationships do however connect cells around the former col-
lapsed cells. Note that the 3D model resulting from slicing the 4D
model created in this way at an intermediate LOD (middle) will be
isomorphic to the model at the highest LOD.

8.3.3 UsingMethod 3: Modifying the topology

Figure 8.6 shows an example of two 3D models being aggregated.
In order to create a 4D model from this situation, the topology of
the simpler of the two models is modified, splitting the single vol-
ume into equal two adjacent ones, effectively resulting in a cell com-
plex that also has four more vertices, four more edges, and four of
its faces split into two. Note that the two models are however not
isomorphic since the common face of the two houses in the lowest
LOD becomes two disconnected faces in the model at the highest
LOD, but that if this topological relationship is disregarded, the two
models can be correctly matched independently.

8.3.4 Combination ofMethods 2 and 3

Figure 8.7 shows a more complex example with three LODs which
are linked using a combination of schemes: collapsing and modi-
fying the topology of one of the models. Most of the cells in the
highest LOD can be directly matched to cells in the middle LOD,
with the exception of those that are part of the chimney. As these
comprise a small object, these are simply collapsed to a single point
in themiddle LOD.Matching the roof cells in the lowest andmiddle
LODs is however more complex since collapsing it to a point would
ignore its adjacency with the body of the house and therefore not
preserve its topology. The best solution is therefore to modify the
topology of the lowest LOD in order to split the top face of the cu-
bic house (which can be inferred to be a roof based on its attributes)
into 4 faces, making the model isomorphic to the middle LOD.
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Figure 8.7: Three LODs of a 3D
model of a house are integrated
into a 4D model by modifying the
topology of the model at the lowest
LOD and collapsing a part of the
model in the highest LOD.

Figure 8.8: Two LODs of a 3D
model of a house (left and right)
are linked despite not being iso-
morphic, with an intermediate
LOD that shows the result of slic-
ing the construction at an interme-
diate LOD (centre).

131: Here is a 3D analogue: con-
sidering two arbitrary but paral-
lel ‘top’ and ‘bottom’ polygons, an
equivalent mapping would create
a set of edges and faces connecting
themsoas to formaclosedpolyhe-
dron.

8.3.5 UsingMethod 4: matching to existing cells

Figure 8.8 shows two of the LODs of the previous example, but
matches the cells of the roof of the house to existing cells rather
than modifying their topology. After attempting to match corre-
sponding cells, the top face in the lowest LOD and the top four faces
in the highest LOD remain unmatched. If each top face in the high-
est LOD is collapsed to the closest top edge in the lowest LOD (i.e.
the edge that forms the bottom of the triangular face in the high-
est LOD) and the top vertex in the highest LOD (which lies between
the faces) is linked to the top face in the lowest LOD, a four-sided
pyramid is generated. Slices from it are shown as four trapezoidal
faces in the sliced intermediate LOD. Then, if the top face in the low-
est LOD is collapsed to the top vertex of the highest LOD, another
four-sided pyramid is generated. A slice from this one is shown as a
square face at the top of the sliced intermediate LOD.

This particular mapping is notable because it correctly preserves
all topological relationships between the cells, does not create ad-
ditional cells at either LOD, and shows that cells are not necessarily
only collapsed from higher LODs to lower LODs. Intuitively, the re-
sult of this mapping is a set of cells that bound the model along the
LOD dimension131, so that an 𝑖-cell and a 𝑗-cell that are matched re-
sult in a 𝑘-cell lying between them, where 𝑘 = max(𝑖, 𝑗)+1. Concretely,
if for instance a 0-cell (the tip of the roof) is matched to the flat roof
(a 2-cell), then the resulting links will create a tetrahedron (a 3-cell).
Admittedly, the rules needed to generate such a mapping can be
quite complex, but the cell complex generated is identical in size
to the equivalent model according to the scheme in Figure 8.3b.
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8.4 A concrete example

In order to show how the linking methods presented in this chap-
ter work in practice, this section shows an implementation of the
model from Figure 8.8. It uses CGAL Linear Cell Complexes and
the incremental constructor operator described in Chapter 7. This
model was chosen as it uses most of the linking methods discussed
in the §8.2.2: the body of the house in both LODs is directly linked
(Method 1), the top face of the house in the lower LOD is col-
lapsed to the tip of the roof in the higher LOD (Method 2), and the
roof vertices/edges in the lower LOD are connected to existing roof
edges/vertices in the higher LOD (Method 4).

First of all, the 17 vertices of the two 3D models are created as 4D
points of the form (𝑥, 𝑦, 𝑧, 𝑙). Afterwards, these are first used to de-
fine the 35 faces of the model, the faces are used to define the 12
volumes, and the volumes to define the single 4-cell. Notice that
these cells not only include faces and volumes within each of the
two volumes of the input 3D models, but also include some faces
and volumes that lie between the two, i.e. having bounding vertices,
edges and faces from both input 3D models. Excerpts of the code to
generate the 4D cell complex are shown in Figure 8.9.

The resulting 4D model was then validated by checking the prop-
erties of a valid combinatorial map (§5.1.1). In short, these tests
involved checking whether the darts (combinatorial simplices) in
the map formed correct involutions or partial permutations and
whether any darts remained free after the operations. Individ-
ual parts of the model (the triangular or square faces and the
parallelepiped- or pyramid-shaped volumes) were also validated by
verifying that they were isomorphic to similar objects that were
known to be valid [Gosselin et al., 2011].

8.5 Conclusions

While integrating different LODs of the same 3D object into a single
4D model is generally considered as complex, the linking schemes
proposed in this chapter show that it is possible to define high-
level methods to connect different 3D models in a relatively simple
manner. The linking schemes operate within a framework of three
steps: identifying corresponding elements indifferent LODs, decid-
ing how these should be linked, and finally linking relevant 3-cells
into 4-cells using the incremental construction algorithmdescribed
in Chapter 7.

Using a 4D representation means that it is possible to store not
only the standard topological relationships (e.g. incidence and ad-
jacency) between objects in one LOD, but also all the correspon-
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(a)

// 2: Left of first house (yellow)
faceLists.push_back(...);
faceLists.back().push_back(vertices[0]);
faceLists.back().push_back(vertices[2]);
faceLists.back().push_back(vertices[6]);
faceLists.back().push_back(vertices[4]);

//21: Back right vertical edge (blue)
faceLists.push_back(...);
faceLists.back().push_back(vertices[3]);
faceLists.back().push_back(vertices[7]);
faceLists.back().push_back(vertices[15]);
faceLists.back().push_back(vertices[11]);

for (int i = 0; i < 35; ++i)
faces.push_back(

builder.get_facet_from_vertices(
faceLists[i].begin(),
faceLists[i].end(), false).first);

// 1: Right house (green)
volumeLists.push_back(...);
volumeLists.back().push_back(faces[6]);
volumeLists.back().push_back(faces[7]);
volumeLists.back().push_back(faces[8]);
volumeLists.back().push_back(faces[9]);
volumeLists.back().push_back(faces[10]);
volumeLists.back().push_back(faces[11]);
volumeLists.back().push_back(faces[12]);
volumeLists.back().push_back(faces[13]);
volumeLists.back().push_back(faces[14]);

// 11: Roof from left to right tip (red)
volumeLists.push_back(...);
volumeLists.back().push_back(faces[31]);
volumeLists.back().push_back(faces[32]);
volumeLists.back().push_back(faces[33]);
volumeLists.back().push_back(faces[34]);
volumeLists.back().push_back(faces[5]);

for (int i = 0; i < 12; ++i)
volumes.push_back(builder.get_cell<3>(

volumeLists[i].begin(),
volumeLists[i].end()).first);

LCC::Dart_handle house4d = builder.get_cell<4>(
volumes.begin(), volumes.end()).first;

(b) Constructing other cells

float point_coordinates[][4] = {
// Left house
{0, 0, 0, 0}, // 0
{1, 0, 0, 0}, // 1
{0, 1, 0, 0}, // 2
{1, 1, 0, 0}, // 3
{0, 0, 1, 0}, // 4
{1, 0, 1, 0}, // 5
{0, 1, 1, 0}, // 6
{1, 1, 1, 0}, // 7

// Right house
{0, 0, 0, 1}, // 8
{1, 0, 0, 1}, // 9
{0, 1, 0, 1}, // 10
{1, 1, 0, 1}, // 11
{0, 0, 1, 1}, // 12
{1, 0, 1, 1}, // 13
{0, 1, 1, 1}, // 14
{1, 1, 1, 1}, // 15
{.5, .5, 1.5, 1} // 16

};

for (int i = 0; i < 17; ++i) {
points.push_back(Point(4,

point_coordinates[i],
point_coordinates[i]+4));

vertices.push_back(
builder.get_vertex(points[i]));

}

(c) Coordinates of the 17 vertices

Figure 8.9: Code excerpts that show how vertices are created based on 4D points, faces as cycles of vertices, volumes as sets of
faces, and 4-cells as sets of 3-cells. The colours referred to in (b) correspond to the highlighted faces and volumes in (a).
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dences between equivalent objects of any dimension across LODs,
evenwhen corresponding objects are of different dimensions or the
correspondences between them are not one-to-one. As these corre-
spondences are modelled as geometric primitives, it is easy to per-
form geometric operations with them (e.g. extracting an intermedi-
ate LOD for visualisation purposes) or to attach attributes to them
(e.g. the meaning of these correspondences), just as is done to usual
geometric primitives.

These topological relationships and correspondences can then be
used for multiple applications, such as updating and maintaining
series of 3D models at different LODs, or testing the consistency of
multi-LOD models (e.g. by using similar validity checks as those in
Gröger and Plümer [2011a]).

The different linking schemes presented in §8.2.2 yield 4D mod-
els having different properties, such as objects that suddenly appear
and disappear, gradually change in size or morph into different ob-
jects along the fourth dimension. These different types of 4D mod-
els can then be useful for different applications.

The linking schemes described in this chapter are meant for the
multi-LOD 3D to 4D case. However, they do have a generic formu-
lation, so they can also be applied to other non-spatial character-
istics such as time, enabling them to be used in new applications,
such as identifying the motion or change of objects through time.
In addition, these schemes are fully dimension-independent, so it
is conceivable that they can be applied to linking multiple higher-
dimensional models, such as a series of 4D models that reflect a
building at different periods of time and at different levels of de-
tail.

While the transitions between LODs as shown in this chapter are ex-
clusively linear, it is worth noting that this does not necessarily have
to be the case. Non-linear transformations can be also be defined
(such as by ensuring that a series of LODs forms a 𝐶􏷠 or 𝐶􏷡 continu-
ous shape) and their corresponding geometries can be either stored
inmore complex non-linear embeddings of a combinatorialmap or
discretised as a series of small linear cells that approximate such a
shape up to a given 𝜖 threshold.

Finally, the clearest next step to be followed here is to realise the
method sketched in this chapter by analysing the problem in more
detail and implementing the required low-level algorithms. While
the linking problem has been described here as a monolithic solu-
tion, it ismore likely that thedifferentmethodspresentedwill result
in completely different implementations.





Extracting information from
higher-dimensionalmodels 9

The previous chapters have discussed various aspects of higher-
dimensional representations and operations. As powerful as they
can be, these representations and operations are generally incom-
patible with current 2D/3D software and are also hard to imagine
and visualise. In order for them to be used in practice, it is there-
fore important to have methods to extract meaningful 2D and 3D
subsets from a higher-dimensional model.

While fully developing methods and algorithms to do so is outside
the scope of this thesis, steps towards formalising this problem and
looking for potential solutions were made within the context of this
thesis, and they are thus documented here. The chapter starts by
giving some of the background behind the problem in §9.1, explain-
ing at a high level the process to extract lower-dimensional infor-
mation from a higher-dimensional model. Using a simple cam-
era analogy common in computer graphics, §9.2 explains how a 3D
viewpoint is placed in a 3D scene through the application of differ-
ent transformations, capturing a 2D view of it by applying a given
projection. §9.3 uses this analogy to give an intuitive description of
how this process extends to higher dimensions, later formulating a
simple dimension-independent generalisation of the orthographic
and perspective projection methods and explaining other projec-
tion possibilities. Finally, §9.4 concludes with some ideas on the
value of these methods, what pieces are still missing and how the
overall process could be implemented.

9.1 Background

The process to obtain a lower-dimensional subset of a higher-
dimensional dataset can be regarded as a function that maps a sub-
set of ℝ𝑛 to a subset of ℝ𝑚, 𝑚 < 𝑛, which is obtained by cutting
through the dataset in a geometrically meaningful way. For in-
stance, it is possible to cut orthogonally to an axis for a snapshot
at one point in space/time, or obliquely for a subset that combines
different parametrised characteristics, such as the evolution of dif-
ferent parts of an area in time.

151
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(a) (b) (c) (d)

Figure 9.1: Four types of conic sections: (a) circle, (b) ellipse, (c) parabola and (d) hyperbola. These are obtained by the Boolean
set intersection of a pair of cones with a plane.

The process to extract these slices can be conceived as consisting of
two broad steps: (i) optionally selecting a subset of the objects in
the scene, and (ii) applying a transformation that projects this sub-
set to a lower dimension. In computer graphics, these steps would
normally be followed by rendering the selected and projected objects,
obtaining a raster image as an end-product.

Selecting a subset of a dataset is useful to bring certain parts of the
dataset into view. For instance, this is commonly applied to parts
of a dataset that are normally not visible, such as the interior of an
object. It is also widely used to reduce the difficulty of the overall
problem and avoiding the need tomake unnecessary computations,
such as projecting and rendering parts of the dataset that will be
clearly out of view.

This selection process can be relatively simple, such as using all ob-
jects that arewithin a certain bounding box, that arewithin a certain
distance of a point, or being of a given dimension. For instance, 3D
rendering programs and 3D games will usually only render the 2D
faces of the objects lying (approximately) within a region (e.g. frus-
tum), not their (filled-in) volumes or any 2D faces that are clearly
out of view.

However, more complex selection processes are useful in many in-
stances, often requiring specialised data structures and geometric
algorithms. In particular, a great number of visibility determina-
tion algorithms have been developed [Hughes et al., 2014, Ch. 36],
which solve various approximations of the surfaces that are visible
in a scene. Another example is a selection process is the computa-
tion of cross-sections of volumetric 3D objects, which requires the
computationof aBoolean set intersectionof a point setwith a plane,
such as the typical conic sections shown in Figure 9.1.

Projecting the selected subset yields a givenviewof the scene and re-
duces the actual dimension of the objects being represented. Many
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(a) (b)

Figure 9.2: The (a) orthographic
projection projects objects orthog-
onally to the projection plane. The
(b) perspective projection projects
objects in manner such that those
that are nearby appear compar-
atively larger than farther away.
Note how parallel lines (e.g. wall
edges) remain parallel in the for-
mer but not in the latter.

Figure 9.3: The Equirectangular
projection directly maps angles
to coordinates. A 360˚ view is
here mapped into a rectangular
180˚×360˚ image. Rendered from
a viewpoint inside the IfcOpen-
House dataset133.

133: http://blog.ifcopenshell.
org/2012/11/say-hi-to-
ifcopenhouse.html

134: Even if the movable camera
is implemented by moving the
dataset instead.

types of projections for this purpose can be defined, usually in the
form of a transformation that is applied to the objects. For exam-
ple, orthographic and perspective projections (Figure 9.2) can di-
rectly map an 𝑛D scene to an𝑚D subspace. However, more complex
schemes are also possible, such as projecting first inwards/outwards
to an 𝑚-sphere (for a hypothetical (𝑚 + 1)D Nef polyhedra imple-
mentation), then to an 𝑚D subspace (e.g. using an equiangular pro-
jection as shown in Figure 9.3).

Many of these projections can be done with techniques that are
closely related to computer graphics, which has been dealing with
the case of converting a 3D scene into a 2D image for decades, and
less frequently covering higher-dimensional cases as well. In this
sense, it is useful to consider the same camera analogy that is often
used in computer graphics, where a movable camera134 captures a
scene as seen from a particular viewpoint. In a higher-dimensional
setting, this analogy would consist of an 𝑚D camera capturing an
(𝑚D) view of an 𝑛D scene. While this is somewhat more difficult to
imagine, this analogy emphasises three important aspects that re-

http://blog.ifcopenshell.org/2012/11/say-hi-to-ifcopenhouse.html
http://blog.ifcopenshell.org/2012/11/say-hi-to-ifcopenhouse.html
http://blog.ifcopenshell.org/2012/11/say-hi-to-ifcopenhouse.html
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Figure 9.4: An excerpt of the
map for the Grand Teton National
Park. From Patterson [2002].

main true in any dimension:

► Moving the camera around a scene and orienting it makes it
possible to capture the data from any given viewpoint. Such a
viewpoint can be parametrised—and thus easily defined and
stored—by a set of values containing its location and orienta-
tion.

► It is possible to obtain different views—intuitively corre-
sponding to camera lenses—through various projections.
These can also have their own customisable parameters, such
as their field of view.

► Despite the fact that thedimensionof thedata is reduced (from
𝑛 to𝑚), characteristics thatwould seem tohave been lost in this
process can be preserved in the form of attributes and used for
further computations. For instance, in computer graphics, the
distance from an object to the camera (i.e. the depth) is regu-
larly used for computations of 3D-to-2D projections, either as
a simple computation where the objects that are nearer (along
a line of sight) occlude those that are farther away, or for more
complex effects, such as transparency and reflectivity. In car-
tography, hypsometric tints, shaded relief, contour lines are
all frequently used to encode the height information in a 2D
map (Figure 9.4).

Continuing with the camera analogy, it is useful to consider the 𝑛D
scene as consisting of a set of 0D–𝑛D objects. In the context of this
thesis, these would be represented as an 𝑛-dimensional simplicial
complex or cell complexwith linear geometries, such that every ver-
tex in the map is embedded in a location in ℝ𝑛. The simplices/cells
of the complex can be translated, rotated or scaled, if necessary, us-
ing the operations described in §5.2. They can then be individually
projected by the camera, possibly taking into account occlusion or
other visual effects, in order to obtain the 𝑚D scene.

This projection is simplest when two conditions are met: (i) the ob-
jects have linear geometries that are stored as coordinates attached
to their vertices (as in this thesis), and (ii) the projection transforma-
tion preserves the linearity of the objects. In this case, it is only nec-
essary to apply the transformation to every vertex individually.

However, even when one or both of these conditions are not met,
it is possible to obtain a good approximation by first subdividing a
simplex/cell into small simplices/cells (up to an arbitrary 𝜀 thresh-
old), assuming that linear geometries will remain approximately
linear and projecting only the vertices of the subdivided complex.
This subdivision and approximation method is used for the cover
of this thesis and the example in Figure 9.10 on page 161.

The following sections will therefore assume that the data to be pro-
jected consists only of a set of 𝑘 points with 𝑛 coordinates, which
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(a) (b)

Figure 9.5: The left (𝑙), right (𝑟), bot-
tom (𝑏), top (𝑡), near (𝑛) and far (𝑓)
planes that form (a) a perspective
projection’s frustum and (b) an or-
thographic projection’s box.

is stored as a 𝑘 × 𝑛 matrix. These will be given new coordinates in
ℝ𝑚 by applying one or more operations expressed in terms of linear
algebra.

9.2 3D to 2D projections

Projecting a set of 3D objects into a 2D view is one of the most com-
mon tasks in computer graphics. As such, most computer graphics
books derive their own versions of the transformations required to
apply different types of projections, most of which are interchange-
able but are often parametrised in different ways.

Fromapractical perspective, theOpenGLProgrammingGuide (bet-
ter known as the Red Book) [Shreiner et al., 2013] provides very in-
tuitive forms of 3D-to-2D perspective and orthographic projections,
which are based on defining a viewing frustum or box where the ob-
jects to be viewed should be located/placed. This can be achieved by
translating, rotating and scaling the objects as described in §5.2.

Assuming a setup as shown in Figure 9.5, where a camera is placed at
𝑧 = 0 and pointing towards higher values on the 𝑧 axis, with param-
eters defining the 𝑥 coordinates for the left (𝑙) and right (𝑟), 𝑦 coor-
dinates for the bottom (𝑏) and top (𝑡), and 𝑧 coordinates for the near
(𝑛) and far (𝑓) planes, Shreiner et al. [2013, Ch. 5] define a transfor-
mation that applies a perspective projection 𝑃𝑝 and an orthographic
projection 𝑃𝑜 as:

𝑃𝑝 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

􏷡𝑛
𝑟−𝑙 0 􏷡(𝑙+𝑟)

𝑟−𝑙 0
0 􏷡𝑛

𝑡−𝑏
􏷡(𝑡+𝑏)
𝑡−𝑏 0

0 0 𝑓+𝑛
𝑛−𝑓

−􏷡𝑓𝑛
𝑓−𝑛

0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑃𝑜 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

􏷡
𝑟−𝑙 0 0 𝑙+𝑟

𝑙−𝑟
0 􏷡

𝑡−𝑏 0 𝑏+𝑡
𝑏−𝑡

0 0 −􏷡
𝑓−𝑛

𝑛+𝑓
𝑛−𝑓

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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135: Strictly, it can be defined
pointing toward any direction ex-
cept along the 𝑧 axis.

Figure 9.6: The geometry of an or-
thographic projection for a point
𝑝. The situation of the 𝑦 axis is
identical to that of the 𝑥 axis.

However, as this thesis attempts to obtain a dimension-independent
formulation, it is more interesting to consider a somewhat more
complex method that can be extended more readily to higher di-
mensions. Foley and Nielson [1992] and Hughes et al. [2014,
Ch. 13], among others, start from the definition of a triplet of vectors
𝑥̂, 𝑦̂ and 𝑧̂, which are computed from a point 𝑓𝑟𝑜𝑚 where the camera
is located, a point 𝑡𝑜 that the camera directly points towards, and
an arbitrary vector 􏹎𝑢𝑝 pointing approximately upwards135. The lat-
ter vector is necessary because there is still one degree of rotational
freedom even as the camera is pointing towards 𝑡𝑜. The unit vec-
tors 𝑥̂, 𝑦̂ and 𝑧̂ correspond to the 𝑥, 𝑦 and 𝑧 axes from the camera’s
perspective and are defined as:

𝑥̂ = 𝑧̂ × 􏹎𝑢𝑝
􏿎𝑧̂ × 􏹎𝑢𝑝􏿎

𝑦̂ = 𝑥̂ × 𝑧̂ 𝑧̂ = 𝑡𝑜 − 𝑓𝑟𝑜𝑚
􏿎𝑡𝑜 − 𝑓𝑟𝑜𝑚􏿎

Note that if 􏹎𝑢𝑝 is orthogonal to 𝑧̂, 𝑦̂ defines the up direction as a nor-
malised 􏹎𝑢𝑝. If they are not orthogonal, 𝑦̂ defines the up direction
differently from 􏹎𝑢𝑝.

Based on the three vectors 𝑥̂, 𝑦̂ and 𝑧̂, a 𝑛 × 3 matrix of 𝑛 point coor-
dinates in terms of the scene 𝑃world (world coordinates) can be con-
verted into a matrix of points coordinates in terms of the camera
(eye coordinates). This would be computed as:

𝑃eye = 􏿮𝑃world − 𝑓𝑟𝑜𝑚􏿱 􏿮𝑥̂ 𝑦̂ 𝑧̂􏿱

In a 3D to 2D orthographic projection, the 𝑥 and 𝑦 coordinates of
this matrix, here denoted as 𝑥eye and 𝑦eye, are directly usable as the
coordinates of the points in ℝ􏷡. As shown in Figure 9.6, the 𝑧eye
coordinates represent the distance between the point and the pro-
jection plane, i.e. the camera, and thus define the depth. Points with
positive 𝑧eye values close to zero are thus close to the camera while
points with larger 𝑧eye values are farther away. Note that negative
𝑧eye values mean that the point lies behind the camera, and so these
would be usually omitted.

For visualisation purposes, it is often convenient to normalise the
coordinates so that the range of the 𝑥 and 𝑦 coordinates extend as
much as possible along a given frame, resulting in objects that are
not too small or too large. This can be accomplished by finding the
point that is farthest along the 𝑥̂ and 𝑦̂ compared to the desired as-
pect ratio of the frame in which they should fit. As Foley and Niel-
son [1992] point out, in the case of the square [−1, 1]×[−1, 1], which is
commonly used, point coordinates can be normalised by dividing
them by the longest distance of any point to the 𝑡𝑜 point.

In a 3D to 2D perspective projection, objects are projected towards a
point (the camera viewpoint’s coordinates) rather than a plane. This
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Figure 9.7: The geometry of a per-
spective projection for a point 𝑝.
The situation of the 𝑦 axis is iden-
tical to that of the 𝑥 axis.

results in new 𝑥pers and 𝑦pers coordinates that are scaled inwards in
inverse proportion to the depth, which is here defined as the dis-
tance between a point and the camera viewpoint’s coordinates. In-
tuitively, this means that if an object is 𝑛 times farther than another
identical object, it is depicted 𝑛 times smaller, or 􏷠

𝑛 of its size.

As shown in Figure 9.7, this distance can be easily computed as the
hypotenuse of a right-angled triangle, where the adjacent cathetus of
an angle 𝜗 is given by the (orthogonal) distance of the point to the
projection plane (𝑧eye), the opposite cathetus is given by the point’s
world coordinates (𝑥eye or 𝑦eye), and 𝜗 is the viewing angle between
𝑧̂ (which lies on a line that passes through 𝑓𝑟𝑜𝑚 and 𝑡𝑜) and the line
between the 𝑡𝑜 point and the current point. New 𝑥pers and 𝑦pers coor-
dinates are thus computed using this angle as follows:

𝑥pers =
𝑥eye

𝑧eye tan(𝜗/2) 𝑦pers =
𝑦eye

𝑧eye tan(𝜗/2)

There are many other types of projections that can be defined and
can be interesting in higher dimensions, such as the equirectangu-
lar projection shown in Figure 9.3 where evenly spaced angles along
a rotation plane (§5.2) can be directly converted into evenly spaced
coordinates. However, they will not be discussed here. See Salomon
[2011, Chs. 5–7] for a good reference on how to apply many different
types of linear and non-linear projections.

9.3 Higher-dimensional projections

Based on the 3D to 2D projection methods described by Foley and
Nielson [1992], Hollasch [1991] extends them to perform 4D to
3D orthographic and perspective projections. This section further
extends these methods to describe the 𝑛-dimensional to (𝑛 − 1)-
dimensional case, changing some aspects to better explain the ge-
ometric meaning of each vector.

First, starting from a point 𝑓𝑟𝑜𝑚 ∈ ℝ𝑛 where the camera is located, a
point 𝑡𝑜 ∈ ℝ𝑛 that the camera directly points towards, and a set of 𝑛−2
vectors 𝑣⃗􏷠, … , 𝑣⃗𝑛−􏷡 in ℝ𝑛 that are all linearly independent from each
other and from the vector 𝑡𝑜 − 𝑓𝑟𝑜𝑚, it is possible to define a set of
unit vectors 𝑥̂􏷟, … , 𝑥̂𝑛−􏷠 that define the axes 𝑥􏷟, … , 𝑥𝑛−􏷠 of a coordinate
system in ℝ𝑛 as:
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136: Visual cues can still be
useful in higher dimensions. See
http://eusebeia.dyndns.org/
4d/vis/08-hsr.

𝑥̂􏷟 =
𝑣⃗􏷠 ×⋯× 𝑣⃗𝑛−􏷡 × 𝑥̂𝑛−􏷠
􏿎𝑣⃗􏷠 ×⋯× 𝑣⃗𝑛−􏷡 × 𝑥̂𝑛−􏷠􏿎

𝑥̂𝑖 =
𝑣⃗𝑖+􏷠 ×⋯× 𝑣⃗𝑛−􏷡 × 𝑥̂𝑛−􏷠 × 𝑥̂􏷟 ×⋯× 𝑥̂𝑖−􏷠
􏿎𝑣⃗𝑖+􏷠 ×⋯× 𝑣⃗𝑛−􏷡 × 𝑥̂𝑛−􏷠 × 𝑥̂􏷟 ×⋯× 𝑥̂𝑖−􏷠􏿎

, for 0 < 𝑖 < 𝑛 − 2

𝑥̂𝑛−􏷡 = 𝑥̂𝑛−􏷠 × 𝑥̂􏷟 ×⋯× 𝑥̂𝑛−􏷡

𝑥̂𝑛−􏷠 =
𝑡𝑜 − 𝑓𝑟𝑜𝑚
􏿎𝑡𝑜 − 𝑓𝑟𝑜𝑚􏿎

The vector 𝑥̂𝑛−􏷠 is the first that needs to be computed and is ori-
ented along the line from the camera (𝑓𝑟𝑜𝑚) and the point that it
is oriented towards (𝑡𝑜). Afterwards, the vectors are computed in or-
der from 𝑥̂􏷟 to 𝑥̂𝑛−􏷡 as normalised 𝑛-dimensional cross products of
𝑛 − 1 vectors. These contain a mixture of the input vectors 𝑣⃗􏷠, … , 𝑣⃗𝑛−􏷡
and the computed unit vectors 𝑥̂􏷟, … , 𝑥̂𝑛−􏷠, starting from 𝑛 − 2 input
vectors and one unit vector for 𝑥̂􏷟, and removing one input vector
and adding the previously computed unit vector for the next 𝑥̂𝑖 vec-
tor. Note that if 𝑣⃗􏷠, … , 𝑣⃗𝑛−􏷡 and 𝑥̂𝑛−􏷠 are all orthogonal to each other,
∀0 < 𝑖 < 𝑛 − 1, 𝑥̂𝑖 is simply a normalised 𝑣⃗𝑖.

Similarly to the 3D-to-2D case, the vectors 𝑥̂􏷟, … , 𝑥̂𝑛−􏷠 can be used to
transform an𝑚×𝑛matrix of𝑚𝑛Dpoints inworld coordinates 𝑃 into
an 𝑚× 𝑛matrix of 𝑚 𝑛D points in eye coordinates 𝐸 by applying the
following transformation:

𝐸 = 􏿮𝑃 − 𝑓𝑟𝑜𝑚􏿱 􏿮𝑥̂􏷟 ⋯ 𝑥̂𝑛−􏷠􏿱

As before, if 𝐸 has rows of the form [ 𝑒􏷩 ⋯ 𝑒𝑛−􏷪 ] representing points,
𝑒􏷟, … , 𝑒𝑛−􏷡 are directly usable as the coordinates in ℝ𝑛−􏷠 of the pro-
jected point in an 𝑛-dimensional to (𝑛 − 1)-dimensional ortho-
graphic projection, while 𝑒𝑛−􏷠 represents the distance between the
point and the projection (𝑛 − 1)-dimensional subspace, which can
be used for visual cues136. The coordinates along 𝑒􏷟, … , 𝑒𝑛−􏷡 could
be made to fit within a certain bounding box by computing their
extent along each axis, then scaling appropriately using the extent
that is largest in proportion to the extent of the bounding box’s cor-
responding axis.

For an 𝑛-dimensional to (𝑛−1)-dimensional perspective projection,
it is only necessary to compute the distance between a point and the
camera as the hypotenuse of a right-angled triangle by taking into
account the viewing angle 𝜗 between 𝑥̂𝑛−􏷠 and the line between the 𝑡𝑜
point and every point. This situation is the same as that of the 3D-to-
2D case shown previously in Figure 9.7 and results in new 𝑒′􏷟, … , 𝑒′𝑛−􏷡
coordinates that are shifted inwards. The coordinates are computed
as:

http://eusebeia.dyndns.org/4d/vis/08-hsr
http://eusebeia.dyndns.org/4d/vis/08-hsr
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137: http://www.math.cmu.edu/
~fho/jenn/

138: Intuitively, an unbounded
volume that wraps around itself,
much like a 2-sphere can be seen
as an unbounded surface that
wraps around itself.

𝑒′𝑖 =
𝑒𝑖

𝑒𝑛−􏷠 tan𝜗/2
, for 0 ≤ 𝑖 ≤ 𝑛 − 2

The (𝑛 − 1)-dimensional coordinates generated by this process can
then be recursively projected down to progressively lower dimen-
sions using this method. The objects represented by these coordi-
nates can also be discretised into images of any dimension. For in-
stance, Hanson [1994] describes how to performmany of the opera-
tions that would be required, such as dimension-independent clip-
ping tests and ray-tracing methods.

In addition to orthographic and perspective projections, there are
other interesting projections that can be applied in higher dimen-
sions. In fact, since we lack an intuitive understanding of higher
dimensions, there is little benefit in using projections that work
in similar ways as the ways in which we mentally process 3D in-
formation. For instance, Jenn 3D137 visualises polyhedra and poly-
chora by first projecting them inwards/outwards to the volume of
a 3-sphere138, resulting in curved edges, faces and volumes. In a
dimension-independent setting, this projection can be easily done
by considering the angles 𝜗􏷟, … , 𝜗𝑛−􏷡 in an 𝑛-dimensional spherical co-
ordinate system. Steeb [2011, §12.2] formulates such a system as:

𝑟 = √𝑥
􏷡
􏷟 +⋯+ 𝑥􏷡𝑛−􏷠

𝜗𝑖 = cos−􏷠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑥𝑖

√𝑟
􏷡 − ∑𝑖−􏷠

𝑗=􏷟 𝑥
􏷡
𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, for 0 ≤ 𝑖 < 𝑛 − 2

𝜗𝑛−􏷡 = tan−􏷠 􏿶
𝑥𝑛−􏷠
𝑥𝑛−􏷡

􏿹

It is worth to note that the radius 𝑟 of such a coordinate system is
a measure of the depth with respect to the projection (𝑛 − 1)-sphere
𝑆𝑛−􏷠 and can be used similarly to the previous projection examples.
The points can then be converted back into points on the surface of
an (𝑛−1)-sphere of radius 1 bymaking 𝑟 = 1 and applying the inverse
transformation. Steeb [2011, §12.2] formulates it as:

𝑥𝑖 = 𝑟 cos𝜗𝑖
𝑖−􏷠
􏾟
𝑗=􏷟

sin𝜗𝑗, for 0 ≤ 𝑖 < 𝑛 − 2

𝑥𝑛−􏷠 = 𝑟
𝑛−􏷡
􏾟
𝑗=􏷟

sin𝜗𝑗

http://www.math.cmu.edu/~fho/jenn/
http://www.math.cmu.edu/~fho/jenn/
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Figure 9.8: A 2-sphere to ℝ􏷫 stere-
ographic projection can map the
surface of the Earth to the plane.
Here, every point 𝑝 on the sphere
is projected to the intersection
of the plane with a line passing
through the North pole and 𝑝.
From Leys et al. [2008].

The projections on the 3-sphere used by Jenn 3D are then stereo-
graphically projected to ℝ􏷢, then with a perspective projection (Fig-
ure 9.8) down to 2D. The final result of this 4D-to-2D projection
in multiple stages is shown in Figure 9.9. A stereographic pro-
jection is also easy to apply in higher dimensions, mapping an
(𝑛 + 1)-dimensional point 𝑥 = (𝑥􏷟, … , 𝑥𝑛) on an 𝑛-sphere 𝑆𝑛 to an 𝑛-
dimensional point 𝑥′ = (𝑥􏷟, … , 𝑥𝑛−􏷠) in the 𝑛-dimensional Euclidean
space ℝ𝑛. Chisholm [2000] formulates this projection as:

𝑥′𝑖 =
𝑥𝑖

𝑥𝑛 − 1
, for 0 ≤ 𝑖 < 𝑛

Figure 9.10 shows the application of this method to a 4D model of
a house. For this, all the cells of the model were manually defined
similar to how it was done in §8.4 using their boundary cells and 0-
embeddings set inℝ􏷣. The 1- and 2-cells were first refined into small
line segments and triangles, the 0-, 1- and 2-cellswere thenprojected
inwards/outwards to the volume of a 3-sphere (𝑆􏷢), and then stereo-
graphically projected to ℝ􏷢. The refined 2-cells were exported as to
an .obj file with materials that reflect which 3- and 4-cell they be-
long to. Icospheres with a set radius were generated around every
0-cell and approximations of cylinders were generated around ev-
ery refined 1-cell. All of these geometries were then imported into
Blender 3D and rendered using a perspective projection down to
2D.

9.4 Conclusions and possibilities

Using a combination of data selection and projections, it is possible
to extractmeaningful lower-dimensional information fromhigher-
dimensional datasets, making it possible for these datasets to be
used in standard software and visualised. Selecting an arbitrary
subset of an ℝ𝑛 point set is very challenging, as this process might
require the computation of Boolean set intersection operations in

Figure 9.9: A polyhedron and a
polychoron in Jenn 3D: (a) a cube
and (b) a 24-cell.

(a) (b)
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Figure 9.10: A 4D model of a house
is projected from ℝ􏷭 inwards/out-
wards to the 3-sphere 𝑆􏷬, then stere-
ographically to ℝ􏷬, finally using a
perspective projection down toℝ􏷫.
A𝜋/􏷤 rotation along theplanepass-
ing through the 𝑥􏷩 and 𝑥􏷬 (LOD)
axes makes the bottom and back 2-
cells larger than the rest.

any dimension. However, simple selections of the objects within
a region or selections involving a finite number of discrete points
are relatively straightforward and can be implementedwith existing
techniques [Hanson, 1994].

On the other hand, projecting higher-dimensional datasets into
lower dimensions is simple. As the projection methods explained
and developed in this chapter have shown, many projections have
dimension-independent formulations using linear algebra that are
not that different from their 3D-to-2D versions. They are therefore
relatively easy to implement using similar pipelines as current pro-
cesses [Chu et al., 2009], even if they have not been implemented
for general datasets within this thesis due to time constraints.

As this chapter focused on extracting lower-dimensional informa-
tion fromhigher-dimensionalmodels fromahigh-level perspective
and in a generic way, many interesting techniques covering useful
special cases have not been explored here. For instance, several au-
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thors discuss the visualisationof specific classes of objects, generally
in 4D. Hoffmann and Zhou [1990] describes methods to visualise
surfaces embedded in 4D space. Balsys and Suffern [2007] render
implicit (parametrised) surfaces of 4D objects as evaluated sets of
points.

Also missing from this chapter was any mention of user interaction
and the definitionof good camera parameters, both ofwhich are im-
portant in order to define values for the input variables described in
every projection method. Feiner and Beshers [1990] implemented
a system where a user sets such variables using a glove. Zhang and
Hanson [2007] uses haptic controllers to explore the 3D shadows
casted by 4D objects.

It is good to note that while the techniques mentioned in this chap-
ter are also applicable to different types of objects than those used
in GIS and useful for generic applications. Hanson and Weiskopf
[2001] uses similar techniques to those mentioned here in order
to visualise relativity, Bajaj et al. [1998] does so for 𝑛-dimensional
scalar fields.



Processing real-world datasets into clean
geometricmodels 10

The representations described in Part I and the operations de-
scribed in Part II work well on perfectly valid data. Objects are as-
sumed not to overlap each other, to be properly closed with no de-
generate geometries, and to have perfectly planar faces which are
consistently oriented, among many other validity criteria. Unfor-
tunately, as §10.1 explains, GIS processes often fail to clearly specify
which criteria are expected and real-world data often fails to meet
them, with consequences ranging from the innocuous to a complete
inability to use a desired tool, including instances where software
gives erroneous results unbeknownst to the user. As GIS datasets
can be rather intricate and expensive to acquire, they are not eas-
ily replaceable and must therefore be repaired, i.e. they must be pro-
cessed into geometric models that conform to certain validity spec-
ifications, so as to make them fit for use.

In the context of this thesis, clean geometric models are important
as they are the base for the higher-dimensional models using the
representations and operations described in previous chapters. The
following sections thus describe the background and a particular so-
lution used in this thesis to obtain valid polygons and planar parti-
tions in §10.2, and valid polyhedra and 3D space partitions in §10.3.
The chapter concludes with a generalisation of the definition of va-
lidity in arbitrary dimensions in §10.4, which can be used for both
higher-dimensional objects and space partitions.

§10.2 is largely based on the papers:

► Validation and automatic repair of planar partitions using a
constrained triangulation. Ken Arroyo Ohori, Hugo Ledoux
and Martijn Meijers. Photogrammetrie, Fernerkundung, Geoin-
formation 5, October 2012, pp. 613–630.

► A triangulation-based approach to automatically repair GIS
polygons. Hugo Ledoux, Ken Arroyo Ohori and Martijn Mei-
jers. Computers & Geosciences 66, May 2014, pp. 121–131.
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140: For instance, unlike other
types of datasets, GIS objects of-
ten cannot be stored directly as a
plain list of tuples, but are instead
decomposed into primitives of a
certain shape (§3.1), sometimes re-
cursively, and these have to be
defined in terms of its dimen-
sion and structure, topological re-
lations, geometry and attributes,
sometimes including rich seman-
tics as well.

10.1 Motivation

The representations described in Part I are each able to effectively
represent a particular class of objects. For example, most data struc-
tures are intended for 3D space partitionswhose 3Dobjects have sur-
faces that form2-manifolds, and 𝑛Dcombinatorialmaps are capable
of representing subdivisions of orientable quasi-manifolds, which
within this thesis are generally further limited to having only linear
geometries.

Similarly, the operations described in Part II can only return good
results when the input fulfils certain requirements. For instance,
the extrusion operation from Chapter 6 requires the input data
to form a space partition, the incremental construction algorithm
from Chapter 7 requires the ridges of the facets of an object to form
matching pairs (i.e. a quasi-manifold), and the linking approach
from Chapter 8 will only form a valid 4D cell complex with 4-cells if
a matching scheme that preserves all topological relationships be-
tween cells can be found or is provided. All these operations are also
based on the assumption that the input cells themselves are valid,
and are being completely bounded by valid lower-dimensional cells
(i.e. facets, ridges, etc.) so as to form a valid cell complex.

The representations and operations presented in this thesis are not
special in this sense. Validity assumptions are widely used in all
software, especially when complex data is used as input, and are
used to make many tasks more manageable, such as to interpret a
dataset and load it into a particular data structure for internal us-
age, as well as for further operations that may be performed using
this structure. However, GIS datasets are more complex than most
other data140, and GIS software thus tends to make more assump-
tions than most other software.

Moreover, though making sure that these assumptions are true is
highly desirable, testing for every possible invalid configuration in
a spatial dataset is cumbersome and often unnecessary for a partic-
ular task at hand, while testing for only some invalid configurations
depending on what needs to be done can easily become intractable
and can result in a large number of redundant tests. Running these
validation tests can also be difficult and computationally expensive,
as many tests take longer to execute than some of the common tasks
that a GIS is used for (e.g. visualisation of a dataset, simple statistical
analyses, or checking the attributes of some objects).

At the same time, the datasets found in the GIS world are very di-
verse and their properties vary significantly. They can be generated
using a large variety of GIS, CAD and 3D modelling software based
on different processes, complying to different specifications and
stored in different formats, each of which follows its own internal
logic and structure. Most importantly, GIS datasets are created for
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(a) (b)

Figure 10.1: Different interpreta-
tions of a polygon with a hole that
is partly outside its outer boundary
(𝑝􏷬 in Figure 10.2). (a) ArcGIS141

considers the overlapping region
as a hole, but the non-overlapping
part of the hole as a new poly-
gon (QGIS142 and FME143 do this
as well). (b) GRASS144 removes the
overlapping part from the poly-
gon, becoming a new polygon with
a different shape. No warning is
shown in any software.

108: http://www.esri.com/
software/arcgis/
109: http://www.qgis.org
110: http://www.safe.com/fme/
111: http://grass.osgeo.org/

145: http://blog.safe.
com/2014/11/data-quality-
checklist/
146: http://www.esri.
com/software/arcgis/
extensions/arcgis-data-
reviewer/~/media/Files/Pdfs/
library/fliers/pdfs/arcgis-
data-reviewer-checks.pdf

147: There are many reasons for
this. For instance, CAD soft-
ware makes wider use of topo-
logical data structures, and also
has topology-aware and smart in-
teractive editing tools (e.g. snap-
ping to guide lines and nearby ob-
jects), which help to avoid prob-
lems where objects seem to be
valid but have small errors, such as
sliver polygons and shells that are
not properly closed.

different purposes or meant for general-purpose applications (e.g.
CityGML [Gröger et al., 2012]). As such, a dataset’s specifications
are often only vaguely defined, are defined only with regard for a
particular application, or are not conformed with in practice.

It is thus perhaps unsurprising that invalid GIS datasets are preva-
lent [Panigrahi, 2014, Ch. 7] and a major source of problems for
thosewhoworkwith them. As shown in Figure 10.1, invalid datasets
can be interpreted inconsistently in different software, leading to
inconsistent or erroneous results. They can also make it impossible
to perform a certain operation, either due to a failing precondition
check or due to software crashes. A partial solution to this issue lies
in validating these datasets, i.e. identifying the problematic objects
in the data so that they can be discarded or (manually) fixed. There
are a variety of checklists and (semi) automatic tools for this pur-
pose, such as those provided by SAFE145 and ESRI146.

For example, it is possible to incorporate a set of formal precondi-
tions for every operation, as is done in the design by contract soft-
ware engineering pattern [Meyer, 1986] or the Eiffel programming
language [ISO/IEC, 2007]. However, simply discarding problematic
(subsets of) datasets is not always feasible, as GIS datasets can be ex-
pensive to acquire and thus irreplaceable in practice, and manually
fixing errors can be an extremely time-consuming process. In fact,
according to McKenney [1998], users of 3D CAD models for finite
element analysis—which has similar requirements as certain com-
putations in GIS, such as well-shaped and non-overlapping mesh
elements—spendup to 70%of their timefixing the inputCADmod-
els. While similar figures for GIS are to the best of my knowledge
not available, it is worth noting that CAD software tends to produce
better quality models than GIS software147.

A more complete solution therefore lies in using methods to au-
tomatically repair a dataset, i.e. to make it conform to a particular
set of validity criteria, enabling the full use of many more datasets
than would otherwise be possible. As this requires a rather complex
defensive programming approach, testing for various types of par-

http://www.esri.com/software/arcgis/
http://www.esri.com/software/arcgis/
http://www.qgis.org
http://www.safe.com/fme/
http://grass.osgeo.org/
http://blog.safe.com/2014/11/data-quality-checklist/
http://blog.safe.com/2014/11/data-quality-checklist/
http://blog.safe.com/2014/11/data-quality-checklist/
http://www.esri.com/software/arcgis/extensions/arcgis-data-reviewer/~/media/Files/Pdfs/library/fliers/pdfs/arcgis-data-reviewer-checks.pdf
http://www.esri.com/software/arcgis/extensions/arcgis-data-reviewer/~/media/Files/Pdfs/library/fliers/pdfs/arcgis-data-reviewer-checks.pdf
http://www.esri.com/software/arcgis/extensions/arcgis-data-reviewer/~/media/Files/Pdfs/library/fliers/pdfs/arcgis-data-reviewer-checks.pdf
http://www.esri.com/software/arcgis/extensions/arcgis-data-reviewer/~/media/Files/Pdfs/library/fliers/pdfs/arcgis-data-reviewer-checks.pdf
http://www.esri.com/software/arcgis/extensions/arcgis-data-reviewer/~/media/Files/Pdfs/library/fliers/pdfs/arcgis-data-reviewer-checks.pdf
http://www.esri.com/software/arcgis/extensions/arcgis-data-reviewer/~/media/Files/Pdfs/library/fliers/pdfs/arcgis-data-reviewer-checks.pdf
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𝑝􏷠 𝑝􏷡 𝑝􏷢

𝑝􏷣 𝑝􏷤 𝑝􏷥

𝑝􏷦 𝑝􏷧 𝑝􏷨

𝑝􏷠􏷟 𝑝􏷠􏷠 𝑝􏷠􏷡

exterior boundary

interior boundaries

Figure 10.2: Several invalid poly-
gons, with their outer boundaries
shown in black and their inner
boundaries in grey. The orange
areas represent one possible in-
terpretation of the interior of the
polygons. Polygon 𝑝􏷪􏷫 has an ex-
terior and an interior boundary
with the same geometry.

tially overlapping cascading errors and fixing them accordingly, it
is best performed separately and called as needed rather than inte-
grated into every operation of aGIS. The following sections describe
such independent repair methods as were used in this thesis, which
involve the creation of valid (multi)polygons and planar partitions
from2DGISdatasets (§10.2), and the creationof validpolyhedra and
3D space partitions from 3D BIM datasets (§10.3). These were then
used as input for the different experiments described in Part II.

10.2 Creating valid (multi)polygons and planar
partitions

10.2.1 What is a valid (multi)polygon or planar partition?

InmostGIS file formats and the software that reads andwrites them,
polygons and multipolygons are defined in a manner that is consis-
tent with the definitions in the Simple Features Specification [OGC,
2011; ISO, 2006]—an implementation of the ISO 19107 standard
[ISO, 2005a]. The specification states that: ‘A Polygon is a planar
Surface defined by 1 exterior boundary and 0 or more interior bound-
aries. Each interior boundary defines a hole in the Polygon’. Each of
these boundaries is described as a LinearRing (cf. Figure 3.17 on
page 42). According to the specification, an outer ring should be
oriented anticlockwisewhen viewed from a predefined top direction,
which is generally (but not necessarily) the viewing direction in 2D
or outwards when the polygon specifies part of the boundary of a
polyhedron. Inner rings should be oppositely oriented, i.e. gener-
ally clockwise when viewed from the top direction.

The Simple Features Specificationprovides several validity rules for
polygons, the most relevant of which are described below with ex-
amples of invalid polygons provided in Figure 10.2. The rules can
be summarised as follows:

► each ring defining the exterior and interior boundaries is sim-
ple, i.e. non-self-intersecting (𝑝􏷠 and 𝑝􏷠􏷟);

► each ring is closed (𝑝􏷠􏷠), i.e. its first and its last points should
be the same;

► the rings of a polygon do not cross (𝑝􏷢, 𝑝􏷦, 𝑝􏷧 and 𝑝􏷠􏷡), but they
may intersect at one tangent point;

► a polygon does not have cut lines, spikes or punctures (𝑝􏷤 and
𝑝􏷥);

► the interior of every polygon is a connected point set (𝑝􏷣);

► each interior ring creates a new area that is disconnected from
the exterior (𝑝􏷡 and 𝑝􏷨).
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Similarly, the specification provides a definition and some validity
rules for multipolygons. A MultiPolygon is defined as a MultiSur-
face forming an aggregationof Polygons, which also follows certain
validity criteria, which can be summarised as follows:

► the interiors of its polygons do not overlap, i.e. their point set
intersection should be empty;

► the boundaries of its polygons may only touch at a finite num-
ber of points;

► a multipolygon does not have cut lines, spikes or punctures;

► the interior of a multipolygon with more than one polygon is
not a connected point set.

Intuitively, a planar partition is a set of polygons that form a subdivi-
sion of a region of the plane. Planar partitions are thus commonly
used to model concepts where objects are expected not to overlap,
such as land cover, cadastral parcels, or the administrative bound-
aries of a given country. Despite being a very frequently used repre-
sentation in GIS, planar partitions are not explicitly defined in the
main GIS standards.

Within the classes in the ISO 19107 standard [ISO, 2005a, §6.6],
a planar partition could be considered as a GM_CompositeSurface,
defined in the standard as ‘a collection of oriented surfaces that join
in pairs on common boundary curves and which, when considered as a
whole, form a single surface’. By following this definition, overlaps be-
tweenpolygons are explicitly forbidden, as a GM_Complex (a parent of
GM_CompositeSurface) is defined as ‘a set of primitive geometric objects
(in a common coordinate system) whose interiors are disjoint’. However,
a GM_CompositeSurface explicitly allows gaps between the surfaces,
as these would simply result in inner rings within the overarching
single surface.

An alternative definition could be created based on the ISO 19123
standard [ISO, 2007a, §6.8]—a standard focusing on coverages of
various types. According to the standard, a planar partition can be
considered as a type of CV_DiscreteSurfaceCoveragewhere ‘the sur-
faces that constitute the domain of a coverage are mutually exclusive and
exhaustively partition the extent of the coverage’. Overlapping polygons
are disallowed by them being ‘mutually exclusive’ and gaps are dis-
allowed by the surfaces ‘exhaustively partitioning’ the extent. How-
ever, the standard states these conditions as something that occurs
‘in most cases’, whereas in a planar partition it should be considered
as a strict prerequisite.

In a valid planar partition, there should thus be no overlapping
polygons, and no gaps between them either unless these gaps are
considered to be outside of the region. These two conditions are cov-
ered by the ISO 19107 standard in a different context, when it lists
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148: Foley et al. [1995] considers
only polygons, but the rules as ex-
plained here also cover holes in
polygons and multipolygons.

(a)

(b)

Figure 10.3: (a) According to the
odd-even rule, a polygon’s interior
is the region(s) that can be ac-
cessed by passing through an odd
number of edges from its exte-
rior. (b) According to the non-zero
winding rule, a polygon’s interior
is the region(s) around which the
boundaries of a polygon do a non-
zero number of revolutions.

149: http://postgis.org/
documentation/manual-
svn/ST_MakeValid.html
150: http://www.1spatial.com/
software/radius_topology/

some possible inconsistencies of ‘spaghetti’ datasets represented as
a GM_Complex, stating that ‘slivers and gaps aremultiple lines that should
represent the same geometry, but do not coincide, leaving areas of overlap
between two surface boundaries (slivers), and gaps between them’ [ISO,
2005a, §6.2.2.6].

10.2.2 Commonly used validation and repairmethods

Starting from an arrangement of line segments that are meant to
define the boundary of a (multi)polygon, there are various rules that
can be used to define its interior and exterior. Foley et al. [1995]
discusses two commonly used sets of rules in vector-based graphic
software, which are shown in Figure 10.3148.

In practice, GIS users often repair invalid polygons manually.
Among the few documented automatic solutions, it is possible
to use a ‘buffer-by-0’ operation [Ramsey, 2010] or PostGIS 2.0’s
ST_MakeValid function149.

The validation of planar partitions is usually performed using a
checklist of individual tests that together ensure its validity. For in-
stance, Plümer and Gröger [1997] specify that a valid planar parti-
tion consists of: no dangling edges, no zero-length edges, planarity,
no holes, no self-intersections, no overlaps, and having a connected
graph. However, it is worth noting that without the use of a sup-
porting structure, some of these tests can be problematic or compu-
tationally expensive. For instance, checking whether any possible
pair of polygons overlap can have quadratic behaviour even when
heuristics to speed up the process are used [Badawy and Aref, 1999;
Kirkpatrick et al., 2000], and robustness issues are significant in
polygon intersection tests [Hoffmann, 1988]. Finding the potential
gaps in a planar partition is also a problem, as it can require com-
puting the union of the entire set of polygons [Margalit and Knott,
1989; Rivero and Feito, 2000].

Themost commonmethod used to repair a planar partition is based
on the assumption that polygons approximately match each other
at their common boundaries. If the adjacent polygons are within a
certain distance threshold of each other along their common bound-
aries (Figure 10.4a), and all parts further apart than this threshold
are known not to be common boundaries (Figure 10.4b), it is possi-
ble to snap together the polygons using this threshold, while in the-
ory keeping the rest untouched. This method of planar partition
repair is available in many GIS packages, including ArcGIS, FME,
GRASS and Radius Topology150.

The threshold value for certain input dataset(s) is then usuallyman-
ually determined, either by trial and error, or by analysing certain
properties of the datasets involved (e.g. point spacing, precision, or
map scale). However, it is often hard to find an optimal threshold

http://postgis.org/documentation/manual-svn/ST_MakeValid.html
http://postgis.org/documentation/manual-svn/ST_MakeValid.html
http://postgis.org/documentation/manual-svn/ST_MakeValid.html
http://www.1spatial.com/software/radius_topology/
http://www.1spatial.com/software/radius_topology/
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minimum
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maximum
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(a)

minimum
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maximum
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(b)

Figure 10.4: Defining a snapping
threshold taking into account: (a)
gaps and (b) overlaps.

151: Based on one robust ge-
ometric predicate that tests
whether three successive points
are collinear, have a clockwise
or a anticlockwise orientation
(e.g. Shewchuk [1996b]) and the
computation of new vertices
at the intersections of line seg-
ments. A constrained Delaunay
triangulation only requires an
additional predicate that deter-
mines whether a point lies inside,
on or outside the circle defined by
three other points.
152: https://www.cs.cmu.edu/
~quake/triangle.html
153: http://gts.sourceforge.
net

for certain datasets, and sometimes impossible as such a threshold
does not even exist (e.g. because point spacing in some places might
be smaller than the width of the gaps and overlaps present).

10.2.3 Repair using a constrained triangulation

Themethoddeveloped to repair polygons andplanar partitions uses
a constrained triangulation of the input polygons as a base struc-
ture. Constrained triangulations have distinct properties that make
them useful as a base for a repair algorithm. The can be built effi-
ciently with a variety of approaches [Guibas and Stolfi, 1985; Clark-
son et al., 1992], can easily be made numerically robust151, can be
used for quick traversal and point location [Mücke et al., 1999], and
have fast and robust implementations in several libraries, such as
CGAL [Boissonnat et al., 2002], Triangle152 [Shewchuk, 1997] and
GTS153.

The method used to repair individual (multi)polygons exploits
these properties and consists of three broad steps, which are shown
in Figure 10.5 and described as follows:

1. construction of the constrained triangulation of the line seg-
ments in the input, processing outer and inner rings iden-
tically and including an extra edge that connects the first
and last vertices of a ring when these are not the same (Fig-
ure 10.5b);

2. labelling of each triangle as either outside or inside, which is
based on an extension of the odd-even rule that supports over-
lapping lines by adding or removing (parts of) constraints in
the triangulation (Figure 10.5c), taking only edges that are con-
straints into account;

3. reconstruction of the interior areas as a repaired multipoly-
gon154 (Figure 10.5d).

This method is remarkably efficient, and its implementation based
on CGAL classes is able to process large polygons quickly. As an ex-
ample, Figure 10.6 shows the process on the largest polygon in the
CORINE land cover dataset155, which consists of almost 1 189 903

(a) (b) (c) (d)

Figure 10.5: Steps to repair a
(multi)polygon using a con-
strained triangulation: (a) input
data, (b) triangulation, (c) la-
belling, and (d) reconstruction.

https://www.cs.cmu.edu/~quake/triangle.html
https://www.cs.cmu.edu/~quake/triangle.html
http://gts.sourceforge.net
http://gts.sourceforge.net


170 10 Processing real-world datasets into clean geometric models

(a) (b) (c) (d)

Figure 10.6: Processing the largest polygon in the CORINE land cover dataset: (a) outer and inner boundaries, (b) triangula-
tion, (c) labelling, (d) reconstruction.

Figure 10.7: Steps to repair a pla-
nar partition using a constrained
triangulation: (a) input data, (b)
triangulation, (c) labelling, (d) re-
labelling problematic triangles, (e)
reconstruction. ov

er
la
pp
in
g r

egio
n

‘red’

‘blue’

(a) (b) (c) (d) (e)

154: The output might only be
representable as a multipolygon
even if the input was a polygon
155: http://www.eea.europa.eu/
publications/COR0-landcover

vertices and 7 672 holes, which is processed in under a second.

The method to repair a planar partition then uses polygons which
are known to be valid based on the previous method. It consists of
four main steps, shown in Figure 10.7, and is as follows:

1. the constrained triangulation of the input segments forming
the (now valid) polygons is constructed;

2. each triangle is labelled with the labels of the polygons inside
which it is located, such that problems are detected by identi-
fying triangles having no or multiple labels;

3. problems are fixed by re-labelling triangles according to cus-
tomisable criteria, such that each triangle has exactly one la-
bel;

4. the polygons are reconstructed from the triangulation.

Various local repair methods can thus be defined, all of which are
based on choosing how to relabel a triangle which no label or with

http://www.eea.europa.eu/publications/COR0-landcover
http://www.eea.europa.eu/publications/COR0-landcover
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(a) (b) (c) (d)

Figure 10.8: Various repair methods can be defined based on relabelling triangles or sets of connected triangles. For instance,
based on (a) the input data, it is possible to relabel: (b) an invalid triangle based using its longest boundary with a neighbour,
(c) an invalid region of connected triangles using its longest boundary with a neighbour, or (d) an invalid region of connected
triangles using a random neighbour.

156: On tests where ArcGIS and
GRASS were able to process the
data, they were slower than FME.

Figure 10.9: A planar partition
made from 16 tiles of the CORINE
land cover dataset.

multiple labels. Figure 10.8 shows a few examples of such meth-
ods. Within this thesis, planar partitions are obtained by repair-
ing invalid regions using the longest boundary with a neighbour
(Figure 10.8c) if possible, as this tends to produce a cartographically
more pleasing result, and a random neighbour (Figure 10.8d) oth-
erwise.

Thismethod is able to process large datasets quickly, such as the one
shown in Figure 10.9, which consists of 16 tiles of the CORINE land
cover dataset in a 4×4 configuration. It has 63 868 polygons with a
total of 6622 133 vertices andwasprocessed in4minutes 47 seconds.
By comparison, both ArcGIS and GRASS are unable to repair this
dataset by snapping geometries, while FME repairs it in 15 minutes
48 seconds156, also using snapping. Note that apart from the fact
that snapping is slower, it does not guarantee a valid result.

10.3 Creating valid polyhedra and 3D space partitions

10.3.1 Motivation: IFC input data

As discussed in §3.2.2, the data models used in 3D GIS have often
favoured an approach where objects that are volumetric in reality
are modelled as a set of their (visible) surfaces, which can be easily
captured after the objects are built. In addition, the volumetric ob-
jects that are small, elongated or thin are sometimes not modelled
as volumes, but they are instead respectively modelled as points,
curves or surfaces. For instance, in 3D models encoded in CityGML
[Gröger et al., 2012], all objects are modelled as surfaces that do not
necessarily form closed volumes, and thin objects (e.g. roof over-
hangs, windows and doors) are often modelled as single surfaces.

The volumetric models that are often used in CAD and BIM, such as
those in IFC format [ISO, 2013], follow a different approach, which
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Figure 10.10: A surface-based
model (left) consists of a set of
semantically labelled surfaces,
which are shown here in different
colours. A volumetric model
(centre+right) instead consists
of a set of semantically labelled
volumes.

157: Akin to how a set of poly-
gons can be better processed into
a planar partition compared to a
rough line drawing with under-
shoots and overshoots (i.e. a typi-
cal spaghetti dataset).

158: As shown in §5.4, these lower-
dimensional cells can store im-
portant information about the re-
lationships between them objects.

is shown in Figure 10.10. In it, almost all real-world volumetric ob-
jects, i.e. the objects with a non-zero volume, are modelled as vol-
umes as well. This approach is more expensive in terms of space
and makes certain computations more difficult, such as obtaining
the volume of a room that is only represented implicitly by a set of
(volumetric) walls, doors and windows around it. However, the ap-
proach is ultimately a more powerful representation that is closer
to reality, enabling more complex operations, such as the structural
analysis of a building, and eliminates the ambiguities inherent in
interpreting volumetric real-world objects that have been modelled
as points, curves or surfaces.

Although the volumes in such a model do not generally fit together
perfectly, they can nevertheless be better processed157 into a 3D
space partition consisting of a set of non-overlapping 3D objects,
where each of the volumes—and optionally also their vertices, edges
and faces—is labelled with appropriate semantic information158.
The result is thus a space-partitioning 3D model, which is analogous
to the 2D planar partitions often used to model coverages in GIS.
Such a model can be stored in a computer using the topological data
structures for 3D (§3.1.3) or 𝑛D (§4.3.5) cell complexes.

This makes a volumetric model a better base for a higher-
dimensional representation, as it fully exploits the properties of
higher-dimensional data structures and their operations. For in-
stance, taking the examples of this thesis, it can be extruded into
higher dimensions (Chapter 6) or multiple such 3D models can be
linked into a single 4D model (Chapter 8).

A space-partitioning model is also better able to take advantage of
the complex 3D models that are already created during the design
and construction processes of a building, such as the faces that form
a room, storey or building. This avoids theneed to extract or abstract
appropriate surfaces for their recreation in aGISmodel, such as was
done by Donkers [2013]. Since architectural and BIM models have a
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Figure 10.11: An IFC model of the
FZK-house159 contains a complex
representation of the structural el-
ements of the building. Note how
the volumes in this model fit to-
gether, having no overlaps even in
places that arenormallynot visible
(e.g. the beam ends which are em-
bedded in the walls).

GM_PrimitiveBoundary

GM_CurveBoundary GM_SurfaceBoundary GM_SolidBoundary

GM_ShellGM_RingGM_Point

GM_ComplexBoundary

GM_Boundary

GM_Complex

exterior interiorexterior interiorstartPoint endPoint0…n 0…n 1 1 1 1

1 1 0…1 0…n 0…1 0…n

GM_OrientableCurve

+boundary(): GM_CurveBoundary

GM_OrientableSurface

+boundary(): GM_SurfaceBoundary

GM_Solid

+boundary(): GM_SolidBoundary

Figure 10.12: The ISO 19107
standard [ISO, 2005a, §6.3.2]
is able to specify the bound-
aries of GM_Curve, GM_Surface
and GM_Solid as subclasses
of GM_Boundary, respectively
a GM_CurveBoundary linked
to a pair of GM_Point (the
end-points of a line segment),
GM_SurfaceBoundary linked to a
set of instances of GM_Ring, and a
GM_SolidBoundary linked to set of
instances of GM_Shell.

159: http://iai-typo3.iai.fzk.
de/www-extern/index.php?id=
1174&L=1

160: In some cases, there might
not be an outer boundary of a
solid, such as in non-Euclidean
spaces or in the representation
of unbounded solids. However,
there is nearly always an outer
boundary in the context of geo-
graphic information.

strong emphasis on representing individual 3D elements that need
to be designed, manufactured and put together, such as those shown
in Figure 10.11, as well as the fact that these elements generally do
not overlap in reality (except as part of hierarchies), they are ideally
suited to be used in a space-partitioning model.

10.3.2 What is a valid solid or 3D space partition?

The ISO 19107 standard [ISO, 2005a, §6.3.18] defines 3D objects with
3D holes that are known as solids, which are specified based on a
boundary representation scheme. As shown in Figure 10.12, the
standard thus defines a GM_Solid with a boundary operation return-
ing a GM_SolidBoundary, which is a ‘sequence of sets of GM_Surfaces
that limit the extent of [the] GM_Solid’. Each of these sets of surfaces
describes one of the boundaries of the GM_Solid as a GM_Shell, cor-
responding to either the outer boundary for the solid160 or one of
its holes.

A GM_Shell [ISO, 2005a, §6.3.8] thus represents ‘a single connected

http://iai-typo3.iai.fzk.de/www-extern/index.php?id=1174&L=1
http://iai-typo3.iai.fzk.de/www-extern/index.php?id=1174&L=1
http://iai-typo3.iai.fzk.de/www-extern/index.php?id=1174&L=1


174 10 Processing real-world datasets into clean geometric models

component of a GM_SolidBoundary’. It is known to be simple, and con-
sists of a set of oriented instances of GM_Surface composed of in-
stances of GM_SurfacePatch, which intuitively form a cellular sub-
division of the surface and themselves have a GM_SurfaceBoundary.
A GM_SurfaceBoundary represents an areapotentiallywith anynum-
ber of holes, each of which is stored as a reference to a GM_Ring. A
GM_Ring [ISO, 2005a, §6.3.6] is additionally defined as being sim-
ple.

GM_Object [ISO, 2005a, §6.2.2], a parent class to all the classes pre-
viously mentioned, defines every object as a point set and provides
the definition of simple as a ‘GM_Object [that] has no interior point of
self-intersection or self-tangency. Inmathematical formalisms, this means
that every point in the interior of the object must have a metric neighbor-
hoodwhose intersectionwith the object is isomorphic to an 𝑛-sphere, where
𝑛 is the dimension of this GM_Object’. As discussed by Ledoux [2013],
this implies that shells are effectively 2-manifolds. Rings are simi-
larly 1-manifolds.

It is important to note that even though each GM_Ring and GM_Shell
is individually simple, the boundary of the GM_Surface or GM_Solid
that they together describe does not need to be simple. A com-
mon example would involve an inner ring/shell tangent to the
outer ring/shell containing it. Arguably, the standard does appear
to explicitly forbid intersections between the interior of rings or
shells as GM_Complex is a parent class of GM_SurfaceBoundary and
GM_SolidBoundary and this class requires its composing primitives
to be ‘geometrically disjoint’. However, this interpretation is problem-
atic as it would arguably also forbid inner rings being inside their
containing outer ring.

Alternatively, it is possible to consider that the standard does not
specify any restrictions regarding the interactions between rings of
a surface or between shells of a solid. As the standard explicitly states
that ‘implementationsmay enforce stronger restrictions on the interaction
of boundary elements’, it might be the responsibility of other imple-
menting standards to place appropriate restrictions.

Although the GML standard [OGC, 2007] implementing ISO 19107
does not specify such restrictions, it is possible to use those defined
in the Simple Features Specification in 2D (§10.2) and define analo-
gous ones in 3D [Ledoux, 2013]. One possible formulation of these
could be as follows:

► the shells of a solid donot cross, but the shells on the boundary
of a solid may intersect only at a vertex or edge;

► the interior of every solid is a connected point set;

► each interior shell creates a new volume that is disconnected
from the exterior.
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(a) (b) (c)

Figure 10.13: In the (a) IfcOpenHouse dataset161, the openings where the windows and door fit are not explicitly carved out
from the wall volumes. Instead, the dataset consists of (b) walls with simple shapes and (c) the openings themselves as large
boxes. A Boolean point set difference thus needs to be computed in order to obtain the final explicit geometries.

161: http://blog.ifcopenshell.
org/2012/11/say-hi-to-
ifcopenhouse.html

Intuitively, a 3D space partition is a subdivision of a region of 3D
space into non-overlapping solids. However, just as with planar
partitions, 3D space partitions are usually not strictly defined. Fol-
lowing the same logic as with planar partitions in §10.2, a 3D space
partition can be considered as an ISO 19107 GM_CompositeSolid
[ISO, 2005a, §6.6.13], which is defined in the standard as a ‘a
set of solids that join in pairs on common boundary surfaces to form
a single solid’. While overlapping solids are explicitly forbid-
den by a GM_CompositeSolid inheriting from GM_Complex in which
‘[primitive] interiors are disjoint’, gaps between the solids are explic-
itly allowed.

An alternative definition could also be created based on the ISO
19123 standard by considering a 3D space partition as a type of
CV_DiscreteSolidCoverage [ISO, 2007a, §6.10], which states that
‘generally, the solids that constitute the domain of a coverage are mutu-
ally exclusive and exhaustively partition the extent of the coverage’. While
overlaps and gaps are respectively eliminated by the ‘mutually exclu-
sive’ and ‘exhaustively partition’ conditions, the word ‘generally’ im-
plies that these are not always enforced.

10.3.3 Common problems for 3D objects in an IFC file

An IFC model in theory consists of a set of 3D objects that mostly
do not overlap. However, there are a few common problems that
cause some of these 3D objects to be invalid or prevents them from
forming a clean space partition. The most significant of these are
the following:

http://blog.ifcopenshell.org/2012/11/say-hi-to-ifcopenhouse.html
http://blog.ifcopenshell.org/2012/11/say-hi-to-ifcopenhouse.html
http://blog.ifcopenshell.org/2012/11/say-hi-to-ifcopenhouse.html
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(a) (b) (c)

Figure 10.14: The volumes in the (a) IfcOpenHouse dataset do not perfectly match each other at their common boundaries.
(b) The two volumes forming the roof actually do not touch, causing the house not to be closed. (c) The left wall and the
foundation volumes have a small overlapping portion (i.e. the wall sinks inside the foundation).

Implicit geometries Objects are often represented using sweeps,
intersections of half-spaces and Boolean set operations, such
as in the case of openings as shown in Figure 10.13. These need
to be converted to explicit (boundary representation) objects
that can be made to fit with other objects. As these need to
be discretised, they will often not perfectly match the shape
of the original objects, sometimes creating problems in their
interaction with other objects.

Local coordinate systems Objects are defined using a local coordi-
nate system, which might differ per object. As the parameters
of these coordinate systems are stored (and computed) in a fi-
nite computer representation, this will cause the objects not
to fit together perfectly. In addition, applying a transforma-
tion to embed all objects into a unique coordinate system us-
ing computed arithmetic will cause additional problems. The
result is that objects that visually appear to fit together do not
actually do so, having small gaps and overlaps between them
as shown in Figure 10.14.

Hidden intentional overlaps Not caring about hidden object in-
tersections is common practice in most 3D modelling ap-
proaches. By not caring about these intersections, it is pos-
sible to ease and speed up the modelling process by using sim-
pler volumes (e.g. boxes or rectangles) thanwould otherwise be
required and hiding their undesirable parts behind or inside
other objects, as is shown in Figure 10.15.

10.3.4 Commonly used validation and repairmethods

In order for software to be able to process invalid polyhedra, vari-
ous automatic validation and repair methods have been developed,
detecting and/or fixing some of the possible invalid configurations
that can exist. The possible invalid configurations are many and
partly overlap or cascade (from lower to higher dimensions), but a
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(a) (b) (c)

Figure 10.15: (a) The right wall and the right roof volumes in the IfcOpenHouse dataset visually appear to match each other,
but the (b) right wall and (c) right roof are modelled as parallelepipeds, so they have a non-empty intersection (a triangular
pyramid).

162: In theory, errors can occur
at the point and edge level, such
as a lack or excess of coordinates,
but on a typical GIS input file
these would be generally consid-
ered as syntactic rather than geo-
metric errors.

possible list can be generated by systematically exploring those that
occur at the ring, polygon, shell and solid levels162. For instance,
Wagner et al. [2013] tests for 13 types of invalid configurations while
Ledoux [2013] tests for 26, notably including: consecutive points in
a ring with the same coordinates, rings that are not closed or self-
intersect, polygonswith intersecting rings orwith an inner ring out-
side the outer ring, shells that are not closed or are not 2-manifold,
and solids with intersecting shells.

Repairing individual rings and polygons can be basically done us-
ing the processes outlined in §10.2, even if these are embedded in 3D
rather than 2D. For this, rings and polygons can be first projected
onto a certain plane (e.g. the best-fitting one, or one obtained by
disregarding a coordinate of its vertices in a manner that does not
create new degenerate shapes) or a restricted triangulation [Cheng
et al., 2012, Ch. 13] could be used as a basis for a repair procedure.

Repairing shells and solids are problems that are also partly related
to those discussed previously, as a shell can be seen as a planar parti-
tion that wraps around an object, i.e. it is watertight, while the con-
straints that define how the inner and outer shells of a valid solid
should interact are similar to those defining the interaction of inner
and outer rings within a valid polygon. However, the methods that
have been presented previously are much less applicable to shells
and solids.

Instead, a shell can often be seen as a mesh that should be closed,
and it is thus possible to repair individual shells with the proce-
dures used for surface reconstruction and mesh repair. There are
various good surveys of the methods that can be used to repair var-
ious problems in polygonal meshes, such as Ju [2009] and Attene
et al. [2013]. Some of these problems and their respective meth-
ods are summarised below. However, it is important to notice that
many methods are intended for meshes representing the boundary
of a single ‘smooth’ 2-manifold, making them not applicable to the
great majority of BIM and GIS models where perpendicular angles
are common (e.g. those between walls and floors/ceilings).
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163: assuming a tetrahedron-
based data structure with ad-
jacency relationships to other
tetrahedra

164: As overlaps are embedded in
3D, they need to be defined from a
given point of view.

165: Proposed by Lancaster and
Salkauskas [1981], it is a widely
used surface reconstruction
method based on interpolating a
set of points.

Rossignac and Cardoze [1999] propose a method to make polygo-
nal meshes combinatorial manifolds, determining an appropriate
order for a set of edges around a face or for a set of faces bound-
ing a volume such that non-manifolds can be stored using a man-
ifold data structure (Figure 3.10 on page 37). Guéziec and Lazarus
[2001] treat the problem from a geometric point of view, convert-
ing non-manifold edges into thin volumes by cutting and joining
the mesh around them. Attene et al. [2009] propose a method to
make tetrahedral meshes163 manifold—something that can be used
also for solids by computing their constrained tetrahedralisation.

In a similar manner as in GIS, small gaps in a mesh (causing a
shell not to enclose any space) can be naively repaired by snapping
vertices [Rock and Wozny, 1992], but this requires an error-prone
threshold and can lead to topological errors. Iteratively snapping
boundary edges together works better [Sheng and Meier, 1995], as
it is possible to start from a single corresponding pair of edges, and
then iteratively ‘zip’ together corresponding edges that are adjacent
to these. Barequet and Sharir [1995] follows a related approach,
matching certain edges and triangulating the remaining gaps. Turk
and Levoy [1994] shows how overlapping triangular meshes164 can
be fixed by clipping all but one of a set of overlapping triangles, re-
triangulating them afterwards.

Holes in a mesh, which tend to be bigger than gaps and reflect miss-
ing parts of a surface (e.g. the bottom of a house, the sides of a ter-
raced house, or a surface that is hidden froma typical point of view),
require different methods. In many cases, a hole is close to planar
and can thus be simply projected to 2D and triangulated [Bøhn and
Wozny, 1992]. However, in other cases the holes are far from pla-
nar, and it is thus necessary to use more complex methods. For
instance, Lévy [2003] fills holes while attempting to minimise a
certain objective function representing the energy needed to fill it,
Wang and Oliveira [2007] uses moving least squares fitting of the
points around it165 and Podolak and Rusinkiewicz [2005] does so
by subdividing space into regions deemed to be completely in or
out of the shell. Nooruddin and Turk [2003], Bischoff et al. [2005]
and Hétroy et al. [2011] use voxel-based methods to attempt to de-
termine the interior and exterior of a shell and thus close a mesh.

Specifically in the context of buildings, which have different charac-
teristics frommany othermeshes such as sharp corners and orthog-
onal surfaces, Bogdahn andCoors [2010] andAlam et al. [2013] pro-
pose two methods that create a smooth 2-manifold, but do not guar-
antee their results. Zhao et al. [2014] attempts to solve gaps, holes
and overlaps in a building mesh simultaneously by using a con-
strained tetrahedralisation [Si and Gärtner, 2005] of a set of faces,
progressively carving away tetrahedra that are deemed as not be-
longing to its interior based on a set of rules. The possible intersec-
tions between the faces are explicitly computed by the constrained
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tetrahedralisation, so that the starting tetrahedra form a 3D space
subdivision.

Finally, the problem of creating a valid 3D space partition is loosely
related to mesh simplification and more closely to the topological
reconstruction of a 3D model, which sometimes deals with compu-
tation of topological relationships from imperfect datasets. Gen-
erally, the latter methods work by snapping the geometries that lie
within a threshold. For instance, Horna et al. [2006] snaps together
generalisedmapdarts that liewithin a threshold 𝜀, connecting them
by the appropriate involution 𝛼, which is based on the steps of the
reconstruction process.

10.3.5 Repair using snapping and Boolean set operations

Despite the fact that the methods presented above fix many of the
problems in individual 3Dobjects, thesemethods are not always suf-
ficient to create a valid 3D space subdivision. For instance, themeth-
ods that are based on snapping are unable to create a space partition
when adjacent geometries are farther than the snapping threshold
or their overlapping regions have a width larger than the threshold.
Similarly,mostmethods to repairmeshes donot guarantee that they
formproperly enclosed spaces and cannot deal well with solids with
inner shells.

A different technique that solves many of these issues was thus de-
veloped for this thesis. It starts from a set of separate 3D objects
that approximately form a 3D space partition, such as those that are
commonly found in IFC building models. The method starts by
handling every object separately, obtaining a valid interpretation of
each that is stored in an exact representation. It then snaps objects
together in order to remove small gaps and overlaps at their com-
mon boundaries. Finally, it uses Boolean set operations to remove
larger overlaps and in order guarantee that a 3D space partition is
obtained. Unlike most repair methods used in GIS, it tries to avoid
triangulating every face of an object but still manages to obtain per-
fectly planar faces (in memory). These steps required are described
in detail as follows:

1. Rough individual polyhedra One or more ‘rough’ polyhedral
representations of every object are first extracted from the in-
put model. These rough representations should be combina-
torially valid quasi-manifolds, being composed of patches that
join in pairs at their common boundaries. However, at this
stage the polygonal patches can have geometric issues, such as
not being planar and might intersect geometrically.

In order to obtain the rough polyhedral representations, ev-
ery object is first individually parsed, converting implicit ge-
ometries into explicit geometries usingBoolean set operations



180 10 Processing real-world datasets into clean geometric models

Figure 10.16: The best fitting plane
to the vertices of every face is com-
puted, here showing those belong-
ing to (a) the floor, back right wall,
back leftwall andback eave, and (b)
the front left wall, front right wall
and front eave.

(a) (b)

(a)

(b)

Figure 10.17: (a) The vertices of dif-
ferent polyhedra that lie within
a threshold are snapped together,
thus (b) removing a small gap. A
small overlap works in the same
manner.

(Figure 10.13) and triangulating curved surfaces. A transfor-
mation is then applied to convert every object’s coordinates to
a global coordinate system. Finally, the faces of every object
are extracted, object by object, and used to incrementally con-
struct a set of polyhedra. This is done by starting from a given
face and attempting to add adjacent faces until a closed shell is
formed, which is repeated until all faces of an object are pro-
cessed or the remaining faces cannot form any closed shells.

2. Clean individual polyhedra Clean individual polyhedra are
then created from the rough polyhedra. In order to do this,
the best fitting plane to the vertices of each face is first com-
puted using linear least squares (Figure 10.16) and is stored as
a plane equation. Considering these planes as constraints, all
the vertices of every polyhedron are moved to an exact inter-
section of as many as possible of its incident face planes using
a greedy algorithm unless this would result in a too large shift
(as defined by a threshold). If some plane constraints could
not be met, the corresponding faces are triangulated, thus be-
coming perfectly planar. The planes of these new triangular
faces are computed.

3. Snapping vertices together The vertices of the polyhedra that
lie within a threshold are snapped together, which removes
most of the small gaps andoverlaps in themodel (Figure 10.17).
This applies to vertices belonging to the same or to different
polyhedra. The snapped vertices are now considered immov-
able. Iterating through all the faces of the polyhedra, if a face
has at least three immovable non-collinear vertices, the plane
passing through these vertices is computed and it is consid-
ered as fixed. When there are more than three non-coplanar
vertices, the face is triangulated and the faces with three im-
movable vertices are also considered as fixed.

4. Snapping vertices to fixed planes The vertices that are still
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Figure 10.18: The steps of the
IfcOpenHouse do not actually
touch the house’s foundation.
Note that it also does not have
common vertices with the foun-
dation, so this gap cannot be
closed by vertex-to-vertex snap-
ping, but it can be closed by
snapping its vertices on the left to
the foundation’s right plane.

considered movable are then snapped to nearby fixed planes,
if any, eliminating certain other small gaps and overlaps that
do not have vertices in common (e.g. the steps in front of the
IfcOpenHouse shown in Figure 10.18, which are actually not
touching the house’s foundation). For this, iterating through
every movable vertex, if it is incident to three or more faces
with non-coplanar fixed planes and their intersection lies
within a threshold of the vertex’s current position, the vertex
is moved to the intersection of three of these planes and con-
sidered as immovable. If it has more than three incident faces
with non-coplanar fixed planes, the faces of the planes that
were not used, and are thus now not perfectly planar, are tri-
angulated. This step can be repeated a given number of times,
increasing the number of immovable vertices.

5. Fixing the remaining vertices The remaining movable ver-
tices are fixed to their incident faces’ fixed planes or to their
current location. For this, iterating through every movable
vertex, the same procedure as the step above is followed. How-
ever, if a vertex has less than three incident faces with non-
coplanar fixed planes, the vertex is fixed to the position on the
intersection of its incident faces’ fixed planes that is closest to
the vertex’s current position. These moved vertices are also
considered as fixed and their incident faces’ planes are recom-
puted if necessary.

6. Creating individual Nef polyhedra A Nef polyhedron is cre-
ated from every polyhedral representation using the precom-
puted planes for each face. Note that the exact representations
of each plane (in the form of plane equations) are thus kept in
this process.

7. Add the structural types The Nef polyhedra representing
structural types (e.g. walls, slabs and beams) are incrementally
added to amodel,making sure that a newNef polyhedrondoes
not intersect the previously added ones. This is done using a
Boolean set difference with a Nef polyhedron containing all
previously added polyhedra, which is then regularised.

8. Remove the opening types The Nef polyhedra representing
openings are carved out from the structural types by a Boolean
set difference whose result is then regularised. They are also
carved out from the Nef polyhedron representing the entire
model.

9. Add the fixture types TheNef polyhedra representing fixtures
(e.g. windows, doors, railings and frames) are incrementally
added to themodel in the samemanner as the structural types.
The fixtures will often fit into the openings carved out in the
previous step.
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The output of these steps is thus a list of Nef polyhedra represent-
ing each object using exact arithmetic. As these are regularised, they
are known to contain their boundary. Because of this, the common
faces of a pair of adjacent polyhedra are easy to obtain through the
computation of their Boolean set intersection, which can be imple-
mented quickly. These faces can therefore be used to easily compute
a topological representation of the 3D space subdivision.

This 3D repair method was implemented with the help of several
libraries: IfcOpenShell is used to parse the IFC file, Open CAS-
CADE is used to triangulate implicit representations and to trans-
form the objects’ coordinates to a global coordinate system, CGAL
Polyhedron_3 is used to construct a half-edge representation of ev-
ery polyhedron, and CGAL Nef_polyhedron_3 is used to store every
Nef polyhedron and to perform the Boolean set operations between
them.

10.4 Dimension-independent validity criteria

The previous sections have expanded on the criteria that define
what is a valid object or space partition of objects in 2D and 3D. They
also described some methods that can be used to make real-world
data comply with these criteria, enabling the data to be used for
more applications. As this thesis aims at utilising real-world higher-
dimensional data, it is important to also consider what criteria can
be used to define validity in higher-dimensional data.

The standards for geographic information in 2D and 3D described
previously (Simple Features [OGC, 2011], GML [OGC, 2012] and
ISO 19107 [ISO, 2005a]) are in theory limited to 2D and 3D. Con-
cretely, the ISO 19107 standard explicitly states that ‘this Interna-
tional Standard is restricted to at most three dimensions’. However, all
of these standards are easily extensible to higher dimensions. This
wouldmostly involve the addition of new classes and corresponding
definitions. However, the standards do contain minor hard-coded
assumptions that are only valid for the 2D and 3D cases, such as how
ISO 19107 andGMLconsider orientable curves and surfaces, but not
orientable solids (Figure 3.18 on page 43).

This section therefore defines higher-dimensional objects in aman-
ner that is (mostly) harmonious with the standards used in the GIS
world. An 𝑛-cell canbe thus representedby the set of (𝑛−1)-cells in its
(outer) boundary, using a similar mechanism as how other bound-
aries are represented in the ISO 19107 standard, which was shown
previously in Figure 10.12.

Following the terminology used in the standard and as shown
in Figure 10.19, such an extension of the would mainly en-
tail a GM_OrientableGeometricPrimitive with a dimension at-
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GM_GeometricPrimitiveBoundary

GM_PrimitiveBoundary

GM_Primitive

GM_Orientable
Primitive

GM_Cell

GM_OrientableGeometricPrimitive
+dimension: int

+dimension: int

+boundary(): GM_GeometricPrimitiveBoundary

exterior interior1 1
0…1 0…n

Figure 10.19: A dimension-
independent definition of a cell in
a harmonised manner with other
classes in the ISO 19107 standard
[ISO, 2005a].

tribute, which would set to 𝑛. This class would be analogous to
GM_OrientableCurve for dimension 1, GM_OrientableSurface for
dimension 2 and a newly created GM_OrientableSolid for dimen-
sion 3, which would be a subclass of GM_OrientablePrimitive.
The GM_OrientableGeometricPrimitive would be bounded by a
GM_GeometricPrimitiveBoundary, which would be linked to aggre-
gations of (𝑛 − 1)-dimensional instances of a newly created GM_Cell
(with their dimension attribute set to 𝑛−1). This GM_Cell class would
be analogous to GM_Point for dimension 0, GM_Curve for dimension 1,
GM_Ring for dimension 2, and GM_Shell for dimension 3. Each of the
instances of GM_Cell bounding a GM_OrientablePrimitive would
represent either the outer boundary of the geometric primitive (if
any), or one of any number of inner boundaries representing 𝑛-
dimensional holes. This extension of the standard would seem to
follow most in the spirit of ISO 19107.

However, other alternative extensions could be considered. As
GM_Curve, GM_Surface, and GM_Solid would essentially be special
cases of GM_Cell, all of the former could be seen as redundant and
eliminated. However, the standard already contains many special-
isations that are somewhat redundant but that cover common use
cases in geographic information, such as GM_Triangle and GM_Tin.
Another possibility would be considering GM_Curve, GM_Surface,
and GM_Solid as subclasses of GM_Cell or substituting the abstract
GM_Primitive for a non-abstract GM_Cell, but this would involve a
major change in the standard and seems to run counter to the pre-
ferred use of abstract top classes in the standard.

The definition of an GM_OrientableGeometricPrimitive as ex-
plained above also lends itself to the definition of sets of disjoint
cells (akin to the Multi… classes in the standard) and cell com-
plexes (akin to the Composite… classes in the standard), which could
also be handled in the same manner as in the ISO 19107 standard.
As shown in Figure 10.20, the standard already defines composite
curves, surfaces and solids, which are equivalent to 1-, 2- and 3-
dimensional cell complexes. A GM_CompositeCurve is ‘a list of ori-
entable curves (GM_OrientableCurve) agreeing in orientation in a man-
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Figure 10.20: The cell complexes
of dimension 1, 2 and 3 are respec-
tively defined in the ISO 19107
standard [ISO, 2005a, §6.6.3] as
the classes GM_CompositeCurve,
GM_CompositeSurface and
GM_CompositeSolid.
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Figure 10.21: A definition of an 𝑛-
dimensional space subdivision in
a harmonised manner with other
classes in the ISO 19107 standard
[ISO, 2005a].

ner such that each curve (except the first) begins where the previous one
ends.’, a GM_CompositeSurface is ‘a collection of oriented surfaces that
join in pairs on common boundary curves’, and a GM_CompositeSolid is
‘a set of solids that join in pairs on common boundary surfaces’.

A similarly defined GM_CompositeGeometricPrimitive, shown in
Figure 10.21 which should contain the dimension as a parameter,
would thus be equivalent to a representation of a space partition
of any dimension that allows objects with holes. It could be de-
fined as ‘a set of 𝑛-dimensional orientable geometric primitives
(GM_OrientableGeometricPrimitive) that join in pairs on common
(𝑛 − 1)-dimensional boundary geometric primitives’. Note that
this implies that the primitives combinatorially form an 𝑛-quasi-
manifold, although geometrically they might not do so due to the
presence of holes.

Following the validity criteria previously described in §10.2 and
§10.3, it is possible to define additional validity criteria for an 𝑛-
dimensional geometric primitive, which would serve to specify the
conditions upon which its bounding cells may interact. These
would be as follows:

► The bounding 𝑛-cells of an 𝑛-dimensional geometric primitive
do not cross, but they might intersect only at a cell of dimen-
sion 𝑛 − 1 or lower.

► The interior of every geometric primitive is a connected point
set.

► Each interior 𝑛-cell creates a new point set inℝ𝑛 that is discon-
nected from the exterior.

Meanwhile, an 𝑛-dimensional space subdivision should consist of a
set of 𝑛-dimensional geometric primitives that are mutually exclu-
sive and exhaustively partition an extent, itself a well-defined sub-
set of ℝ𝑛. As with the definitions of a planar partition and 3D space
subdivision, this implies that there should be no overlapping prim-
itives, and no gaps between them unless these gaps are considered
to be outside the extent.
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There are a great number of possible representations for spatial in-
formation, each of which with its own benefits and drawbacks and
only some of which have been discussed in this thesis. From an en-
gineering point of view, choosing an appropriate representation for
a given systemor task is a fundamental issue, as this choice cascades
down to almost every engineering decision and indirectly affects a
GIS program’s every functionality. Among other aspects, it affects
the type of objects that can be efficiently stored and the operations
that can be easily performed on them, and it also has important
computational consequences in terms of bothmemory andprocess-
ing time.

The 2D representations that dominate the GIS world work well for
2D datasets and problems that are essentially two-dimensional, but
manyproblems arisewhen they are adapted tomodel 3D, spatiotem-
poral andmulti-scale geographic information. Most research inGIS
is devoted to improving these adaptations, as well as to developing
new methods that build on them to solve problems both old and
new.

This thesis pushes GIS research in a different direction, start-
ing from the assumption that many issues in GIS can probably
be better solved by using a new, fundamentally different mod-
elling approach—modelling both spatial and non-spatial charac-
teristics as dimensions in the geometric sense, thus using higher-
dimensional representations to create, manipulate and visualise
geographic information. Accordingly, this thesis’ main research
objective was to realise the fundamental aspects of a higher-
dimensional Geographic Information System, and therefore focus-
ing on the development of higher-dimensional representations and
methods for GIS.

This concluding chapter starts with a short outlook on higher-
dimensional GIS in §11.1, describing concisely when and where it
makes sense to use higher-dimensional models. Afterwards, §11.2
describes in detail the lessons learned by pursuing this thesis’ re-
search objective. Finally, §11.3 lists the main contributions of this
thesis, and §11.4 discusses the topics that I think would be most use-
ful for future research on this topic.

185
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11.1 An outlook on higher-dimensional GIS

As this thesis has shown, there are many potential advantages to
the use of higher-dimensionalmodelling inGIS. This approach pro-
vides a simple and consistent way to store geometry, attributes and topo-
logical relationships between objects of any dimension. This generic
technique can be easily extended to handle other non-spatial char-
acteristics, enabling better data management and more powerful
operations. At the same time, higher-dimensional representations
are undoubtedly memory-intensive and often hard to work with,
both due to their level of abstraction and the unintuitiveness of
workingwith dimensions higher than three. Admittedly, current GIS
use cases do not easily justify the higher-dimensional approach.

However, a far stronger case for higher-dimensional representa-
tions emerges when considering what sort of new tools could be de-
veloped using this type of representations, both in GIS and in related
fields. For instance, 3D modelling software could consider time-
varying topology, much as Dalstein et al. [2015] do for 2D vector
drawings. 4D topology (as 3D+time) could then be used to automat-
ically generate smooth transitions for animations.

Similarly, CAD tools could use 4D topology to model buildings at
different scales and timeframes automatically, keeping track of all
relationships between objects and providing immediate user in-
put during interactive editing. For example, a program could dis-
play how different changes affect construction time, the size of the
model at predefined LODs and when certain safety constraints were
violated.

At a lower-level, 4D geometric modelling operators could be de-
veloped to operate directly on 4D primitives, such as splitting and
merging 4-cells. These could also be used intuitively in an interac-
tive environment, allowing for instance to change a building’s con-
figuration by adding and removing walls while always ensuring that
the representation remains a valid 4D space partition.

Considering that current GIS are very often used to manage large
heterogeneousdatasets andkeep themup todate, a future systemus-
ing a higher-dimensional underlying representation could be used
to enforce certain validity constraints at the data structure level,
such as avoiding 4D intersections or preserving a certain degree of
continuity at LOD transitions.

Is the higher-dimensional approachworthwhile?

In short, yes, but only given certain conditions.

Higher-dimensional modelling is advantageous, but only when the added
functionality that will be built with them—as compared to the simpler
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and more compact 2D/3D models—justifies it, such as when queries
across space and time can be implemented as higher-dimensional
geometric/topological operations. As discussed in §4.2.1, higher-
dimensional modelling makes sense only when the characteristics
depicted as dimensions are parametrisable and independent from each
other, as is the case for space/time/scale, and where objects occur
along a dimension as intervals, not as discrete points (which can
be easily stored as attributes). Based on current hardware, software
and the typical GIS datasets, there is another important practical
requirement: the manageable number of dimensions is limited to
6–8. Finally, it is also worth noting that higher-dimensional mod-
els are not incompatible with standard 2D/3D data structures and
methods—the best tool for the job can be chosen depending on the
need at hand and both approaches can be combined.

11.2 Lessons learned

Current representations are not suitable in higher dimensions
The mathematical foundations of spatial data modelling
(Chapter 2) are defined in a dimension-independent manner,
including all the basic tenets of geometry and topology. This
dimensional independence is also true for all spatial data
models or representation schemes (Chapter 3)—at least when
they are analysed at a high level—but is generally not pre-
served when they are implemented into more concrete data
structures. Most 2D and 3D data structures in GIS thus only
encode a few chosen geometric and topological properties
(e.g. the coordinates of each point and the adjacencies between
polygons), which are often defined with a formulation that is
different per dimension.

This modelling approach can make for custom structures that
are compact and efficient when used exactly as intended (i.e.
for a particular class of objects of a given dimension), but it
can limit functionality or introduce inefficiencies when the
data structures are adapted to be used under a different set
of circumstances. Case in point, the typical data structures
of 2D GIS are frequently used with minimal changes for 3D,
spatiotemporal and multi-scale GIS. This results various prob-
lems, such as inefficient representations (e.g. due to dupli-
cate elements), an inability to represent common 3D objects
(e.g. those with a non-2-manifold boundary), difficulties in ex-
pressing 3D topological relationships (e.g. adjacencies between
solids), and the widespread availability of invalid datasets (e.g.
3Dmodels that donot formally enclose any space), among oth-
ers.
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167: At least in theory.

Higher-dimensional modelling as a solution Analternative to the
use of ad hoc adaptations to 2D data structures is to model
both spatial and non-spatial characteristics as dimensions in
the geometric sense (Chapter 4). While this approach can be
memory-intensive, it provides a generic solution that can be
applied to the representation of 𝑛D space, time, scale and any
other parametrisable characteristics.

A tuple of 𝑛 parametrisable spatial and non-spatial character-
istics can thus define a coordinate system in ℝ𝑛, and lower-
dimensional 0D–3D objects existing across these characteris-
tics can thus be modelled as higher-dimensional 0D–𝑛D ob-
jects embedded in higher-dimensional space. As GIS objects
are usually non-overlapping167, they should form an 𝑛D space
partition and can thus be represented using 𝑛D topological
data structures, reducing the total number of elements and en-
suring that it is easy to navigate between the objects. However,
evenwhen theobjects donot forma spacepartition, theobjects
themselves can be partitioned by using an intermediate rep-
resentation where the original objects are transformed into a
set of non-overlapping regions, such that each of these regions
represents a set of the original objects [Rossignac andO’Connor,
1989].

𝑛D space partitions are also ideal in a practical sense, as they
simplify many of the operations that can be defined with
them, including simple point-in-polytope queries and all of
the constructions methods presented in Chapters 6–8. 𝑛D
point clouds, while outside the scope of this thesis, are a good
complement to 𝑛D space partitions, as they are close to data as
it is acquired and are relatively easy to store and manipulate.

Themost promising higher-dimensional representations Spatial
data structures often consist of two aspects: 1. a combinatorial
part, which consists of a set of primitives and some topological
relationships between them, and 2. an embedding that links
these primitives to their geometry and attributes [Lienhardt,
1994]. As argued in this thesis, the knowledge of higher-
dimensional topological relationships in a data structure is
the main aspect that differentiates higher-dimensional data
structures from 2D/3D ones.

Some data structures that are frequently used in 2D/3D GIS
have straightforward extensions to higher dimensions, such as
𝑛D rasters and hierarchies of trees. These use similar structures
and algorithms as their 2D/3D counterparts and are therefore
easy to understand and implement.

Other data structures implement the models of an 𝑛D sim-
plicial complex or an 𝑛D cell complex. As the simplices in
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168: http://www.
buildingsmart-tech.org/
specifications/ifc-releases

a simplicial complex have a known number of adjacent sim-
plices and bounding facets, they are most efficiently stored us-
ing simplex-based data structures. Meanwhile, cell complexes
can be easily stored using incidence graphs and related struc-
tures. However, Nef polyhedra [Bieri and Nef, 1988] are prob-
ably the most promising representation for an 𝑛D cell com-
plex, as they provide a good base to develop Boolean set oper-
ations, enabling a wide range of geometric operations.

Ordered topological models such as the cell-tuple [Brisson,
1993] and generalised/combinatorial maps [Lienhardt, 1994]
also deserve a special mention. By combining the strong alge-
bra and easy navigation of a simplicial complex with the easy
representation of a cell complex, they provide themost impor-
tant benefits of both. They are rather memory-intensive, but
it is important to note that can still be more compact than a
non-topological approach (Chapter 5).

Nevertheless, non-topological higher-dimensional represen-
tations do have a clear role to play as exchange formats, much
as is the case for those based around Simple Features in 2D
[OGC, 2011], and CityGML [Gröger et al., 2012] and IFC168 in
3D.

Three construction methods for higher-dimensional objects
Creating computer representations of higher-dimensional
objects can be complex. Common construction methods used
in 2D and 3D, such as directly manipulating combinatorial
primitives, or using primitive-level construction operations
(e.g. Euler operators [Mäntylä, 1988]), rely on our intuition
of 2D/3D geometry, and thus do not work well in higher
dimensions. It is therefore all too easy to create invalid
objects, which then cannot be easily interpreted or fixed—a
problem that is already exceedingly apparent in most 3D
datasets. As an alternative to the use of simple operations
on combinatorial primitives, this thesis thus proposed three
higher-level methods, all of which are relatively easy to use
and attempt to create valid output.

Method I. constructing objects using 𝑛D extrusion Ex-
trusion as used in GIS has a natural extension into a
dimension-independent formulation (Chapter 6). Starting
from an (𝑛 − 1)-dimensional space partition as an (𝑛 − 1)-
dimensional cell complex and a set of intervals per cell, it is
possible to extrude them to create an 𝑛-dimensional cell com-
plex. It is the easiest method to load existing 2D or 3D data
into a higher-dimensional structure, representing a set of cells
that exist along a given dimension, such as a length of time or
a range of scales. It is also easy to guarantee that the output
cell complex is valid and can be used as a base for further op-

http://www.buildingsmart-tech.org/specifications/ifc-releases
http://www.buildingsmart-tech.org/specifications/ifc-releases
http://www.buildingsmart-tech.org/specifications/ifc-releases
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erations, such as dimension-independent generalisation algo-
rithms.

The extrusion algorithm developed in this thesis works on the
basis of a generalised map representation of the cell complex
and is relatively fast, with a worst case complexity of 𝑂(𝑛𝑑𝑟) in
the main algorithm, where 𝑛 is the extrusion dimension, 𝑑 is
the total number of darts in the input map and 𝑟 is the total
number of intervals in the input, but offers better complexity
in practice. It is also memory-efficient, as only three layers of
darts (of the size of the input cell complex) need to be kept in
memory at the same time.

Method II. constructing 𝑛D objects incrementally Based on the
Jordan-Brouwer separation theorem [Lebesgue, 1911; Brouwer,
1911], it is known that an 𝑖-cell can be described based on a
set of its bounding (𝑖 − 1)-cells (Chapter 7). Since individual
(𝑖 − 1)-cells are easier to describe than the 𝑖-cell, this can be
used to subdivide a complex representation problem into
a set of simpler, more intuitive ones. This method can be
incrementally applied to construct cell complexes of any
dimension, starting from a set of vertices in ℝ𝑛 defined by
a 𝑛-tuple of their coordinates, and continuing with cells of
increasing dimension—creating edges from vertices, faces
from vertices or edges, volumes from faces and so on.

The incremental construction algorithm developed in this
thesis solves this problem in a practical setting by computing
the topological relationships connecting the bounding (𝑖 − 1)-
cells. It uses indices on the lexicographically smallest vertex
of every cell per dimension, as well as an added index using
the lexicographically smallest vertex of the ridges around the
bounding facets of the cell that is being built. It generates an
𝑖-cell in𝑂(𝑑􏷡) in the worst case, with 𝑑 the total number of darts
in the cell. However, it fares markedly better in real-world
datasets, as cells do not generally share the same lexicographi-
cally smallest vertex. By checking all matching ridges within a
cell’s facets, the algorithmcanoptionally verify that the cell be-
ing constructed forms a combinatorially valid quasi-manifold,
avoiding the construction of invalid configurations.

Method III. linking 3D models at different LODs into a 4Dmodel
As an example high-level higher-dimensional object construc-
tion method, a 4D model can be constructed from a series
of different 3D models at different LODs (Chapter 8). The
method presented in this thesis consists of three steps: iden-
tifying corresponding elements in different LODs, deciding
how these should be connected according to a linking scheme,
and finally linking relevant 3-cells into 4-cells. Different
linking schemes yield 4D models having different properties,
such as objects that suddenly appear and disappear, gradually
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change in size ormorph into different objects along the fourth
dimension.

By modelling the LOD as a dimension, the correspondences
between equivalent objects across LODs become geometric
primitives, making it possible to perform geometric opera-
tions with them (e.g. extracting an intermediate LOD for visu-
alisation purposes) or to attach attributes to them (e.g. general
semantics or the meaning of these correspondences), just as
is done to other geometric primitives. These topological rela-
tionships and correspondences can then be used for multiple
applications, such as updating and maintaining series of 3D
models at different LODs, or testing the consistency of multi-
LOD models (e.g. by using the validity checks in Gröger and
Plümer [2011a]).

Extracting 2D/3D subsets from an 𝑛Dmodel The process to obtain
a lower-dimensional subset of a higher-dimensional dataset
can be regarded as a function that maps a subset of ℝ𝑛 to a
subset of ℝ𝑚, 𝑚 < 𝑛, which is obtained by cutting through
the dataset in a geometrically meaningful way (Chapter 10).
Broadly, this process consists of two steps: (i) selecting a sub-
set of the objects in the model and (ii) projecting this subset
to a lower dimension. Both of these steps can vary substan-
tially. Selecting a subset of the objects can be as simple as ob-
taining those within a axis-aligned bounding box, or can be
as complex as a Boolean set intersection operation, such as
for the computation of cross-sections. Meanwhile, there are
a wide variety of transformations that apply different projec-
tions with different properties, such as the 𝑛-dimensional to
(𝑛 − 1)-dimensional orthographic and perspective projections
derived in this thesis and the ℝ𝑛 to 𝑆𝑛−􏷠 spherical projection
used in its cover.

Methods to create valid objects and space partitions in 2D and 3D
Most algorithms described in computational geometry and
GIS assume that their input datasets are flawless and they are
processable using real numbers. However, invalid datasets are
widespread in GIS (Chapter 10), and they are represented and
processed using limited-precision arithmetic (Appendix A).

In order to cope with 2D invalid datasets, this thesis further
developed methods to create valid polygons and planar par-
titions using a constrained triangulation of the input. These
were based on the work done in Arroyo Ohori [2010], im-
proving the reconstruction algorithm, fixing edge cases, im-
plementing an odd-even constraint counting mechanism and
improving the quality of the implementation. Similarly, a
method to repair 3D objects and space subdivisions was de-
veloped by snapping together lower-dimensional primitives
and removing overlaps using Boolean set operations on Nef
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polyhedra [Bieri and Nef, 1988; Hachenberger, 2006]. These
methods were used in this thesis in order to use real-world
datasets in practice, such as when applying the construction
algorithms.

11.3 Contributions

The main contribution of this thesis is the realisation of the fun-
damental aspects of a higher-dimensional Geographic Information
System. By approaching this problem in a practical manner, many
of the technical issues of its development were investigated, includ-
ing an analysis of its possible internal (in-memory) and external
(exchange format) representations, the development of basic algo-
rithms for object construction and visualisation, and the develop-
ment of GIS data repair tools for 2D and 3D datasets. By taking a
model that was previously only described at a conceptual level [van
Oosterom and Stoter, 2010] and realising it, it is now possible to
more fully evaluate the consequences of this higher-dimensional
approach.

In more concrete terms, there were several smaller contributions
that were necessary to be able to achieve this realisation. The most
significant ones are:

Survey and analysis of higher-dimensional models and structures
I conducted a survey of all of the main data models and data
structures used in GIS, geometric modelling and related
fields, considering 2D, 3D and 𝑛D data structures. These
were analysed in terms of their feasibility for the higher-
dimensional modelling of geographic information, including
how they could handle different geometry classes, topol-
ogy and attributes, either in their current form or through
modifications, as well as their ease of implementation in
practice.

Three construction methods I developed three easy-to-use con-
struction methods for objects of any dimension. The two
methods lower-level methods—extrusion and incremental
construction—were implemented using CGAL Combinatorial
Maps and tested using real-world datasets. The third method
has been tested with a few synthetic datasets, but more work
is necessary to fully realise it and automate it. All of the im-
plementations were made available publicly under an open
source licence.

Higher-dimensional real-world models Aspart of this thesis, I cre-
ated higher-dimensional models from real-world 2D and 3D
datasets. To the best of my knowledge, these are the only
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datasets consisting of realistic higher-dimensional objects in
a GIS setting.

Combinatorial map reversal As part of the development of the
incremental construction operation, I developed additional
functions that were added to CGAL Combinatorial Maps after
being approved by the CGAL Editorial Board. These functions
involved reversing the orientation of a combinatorial map of
any dimension.

Simple formulation of 𝑛D to (𝑛 − 1)D projections I developed in-
tuitive formulations of 𝑛-dimensional to (𝑛 − 1)-dimensional
orthographic andperspective projections. While other formu-
lations exist, my formulations based on normal vectors are in
my opinion the easiest to understand and manipulate, at least
for a GIS audience.

Repair methods tools I developed methods to automatically repair
2Dpolygons and planar partitions, as well as 3Dpolyhedra and
space partitions. The 2D methods were also released publicly
under an open source licence as prepair and pprepair. The 3D
methods will also be released publicly after further improve-
ments are made, together with more thorough testing and the
addition of basic documentation.

11.4 Futurework

As this thesis challenges many of the assumptions underpinning
current GIS, there are many potential lines of research that can
be formulated for higher-dimensional GIS and higher-dimensional
modelling in general. Most algorithms for 2D/3D GIS have a
dimension-dependent formulation and would result in open prob-
lems in an 𝑛D context.

However, while these are worthy of attention, I would like to focus
on what are still significant gaps in knowledge for the implemen-
tation of a higher-dimensional GIS and that could not be solved in
this thesis’ timeframe. While some of these research topics are not
within the main subject matter of GIS research, they are what I con-
sider to be the key steps for a more complete implementation of a
working system. They are:

Low-level linking algorithms The linking schemes fromChapter 8
have only been described in terms of high-level algorithms.
These should be further developed by finding adequate low-
level algorithms to identify matching elements using cus-
tomisable constraints. For instance, it is reasonable to attempt
to minimise a certain distance function between two models
(e.g. Earth mover’s distance), but it is also important to do so
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in a manner that preserves the topological relationships be-
tween the objects. The special treatment of holes of differ-
ent dimensions should also be investigated, together with ad-
equate methods to ensure that holes are linked correctly be-
tween themselves and to other primitives.

High-level construction algorithms The three object construction
methods described in this thesis operate mostly on lower-
dimensional primitives and consequently cover only a few use
cases. There is a need to develop intuitive methods that oper-
ate directly on higher-dimensional primitives, which should
preferably be usable in an interactive environment. Note
however that this does not mean that the end user would be
viewing the higher-dimensional model directly, as it could be
shown in simplified form or as a 2D or 3D representative sub-
set.

𝑛D constrained triangulator There are high-quality robust imple-
mentations of constrained Delaunay triangulations in 2D
[Shewchuk, 1996a] and 3D [Si and Gärtner, 2005], as well as
good descriptions of a constrained Delaunay triangulation in
𝑛D [Shewchuk, 2008]. However, in order to realise a higher-
dimensional GIS based on a simplicial complex model, it is
necessary to have a robust 𝑛D constrained triangulator which
should be preferably Delaunay.

Hyperspherical projective geometry kernel I deemed Nef poly-
hedra one of the most promising models for a higher-
dimensional GIS, but so far they have only been implemented
in 2D and 3D. In order to implement 𝑛-dimensional Nef poly-
hedra, it is necessary to develop a hyperspherical projective ge-
ometry kernel. This kernel would then be used to compute the
local (𝑛−1)-dimensional pyramids around every vertex. While
the projective mathematics for this are relatively simple, it is a
complex engineering problem to implement it robustly.

𝑛D Boolean set operations Using the above mentioned hyper-
spherical projective kernel or another method, it is necessary
to develop robust algorithms to compute 𝑛D Boolean set op-
erations. For instance, an 𝑛D Nef polyhedra implementation
using recursive boundary definitions could compute these op-
erations at the local pyramid level. 𝑛D Boolean set operations
would be an excellent base for most geometric operations in a
higher-dimensional GIS.

𝑛D to/from 2D and 3D projective kernel Many operations that are
required for object manipulation in 𝑛D are actually well-
defined operations applied to 2D and 3D objects that are
merely embedded in 𝑛D. A robust kernel that could handle on-
the-fly conversions of 𝑛Dgeometries to 2D and 3Dwithout loss
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of precision would enable many of these operations to be ap-
plied. Relatedly, CGAL currently has simple kernels that apply
3D to 2D orthographic projections using the planes defined by
the 𝑥𝑦, 𝑦𝑧 or 𝑧𝑥 planes. These are useful as they can be wrapped
around the basic 2D kernels (i.e. ℝ􏷡 with floating-point, in-
terval or exact representations) using the traits programming
paradigm available throughout CGAL, and so they can be used
to apply 2D operations to 2D objects that are embedded in 3D.
However, these kernels donot handle the conversions from2D
back to 3D automatically nor are easily extensible to higher di-
mensions.

Visualisation of higher-dimensional geographic information
Chapter 9 described how data selection and projection meth-
ods can work in arbitrary dimensions, while §5.2 described
the 𝑛D mathematics behind the basic manipulation oper-
ations for higher-dimensional objects. However, there are
significant issues to tackle in order to create a useful visu-
aliser for higher-dimensional datasets. Namely, there are
significant hurdles in user interaction, dealing with large
datasets, computing higher-dimensional cross-sections and
the definition of useful visual cues in higher dimensions. The
simple implementation used for the cover of this thesis make
several hard-coded assumptions for the dataset that was used
and is far from optimal, but it will be published together with
the rest of the open source tools developed for this thesis once
it is improved to handle more general input in the form of 𝑛D
linear cell complexes.

2D/3D/𝑛D repair methods with quality guarantees The data re-
pair methods described in Chapter 10 are able to recover from
most simple invalid 2D and 3D configurations. However,
they are not easily extensible to higher dimensions due to the
lack of a robust 𝑛D constrained triangulator (see above), they
do not provide quality guarantees in their output, and can
be numerically unstable when there are many nearly copla-
nar planes. In order to develop robust systems, it is highly
desirable to be able to specify a robustness criterion (e.g. a
minimum distance between vertices or ensuring that the
geometries are not collapsed/flipped in a floating-point rep-
resentation), which is guaranteed by a data repair algorithm.
Additional geometric constraints could also be implemented,
such as guaranteeing that coplanar planes stay coplanar after
repair.

Higher-dimensional modification operations By necessity, this
thesis focused on operations for object creation in order to
generate initial higher-dimensional datasets. Now that it is
possible to generate them, it is important to think of intuitive
higher-dimensional object modification operations. For in-
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stance, how can a 4-cell split operation be intuitively defined,
or how can collapsed geometries (e.g. from the extruded and
collapsed models in §6.5) be processed to remove combinato-
rial elements. Ideally, these operations should also be intu-
itively usable in an interactive environment, such as a geomet-
ric modeller.

Real-world 4D spatiotemporal datasets Using timestamped 3D
volumetric datasets, it should be possible to create true
4D datasets using spatiotemporal information. However,
obtaining reasonably clean volumetric datasets is nearly im-
possible at this point. Every dataset that was found during this
project had only surfaces embedded in 3D, had severe validity
problems up to the point that it would require substantial
manual work to fix, or was missing the temporal information.
Exporting the temporal information that is present in some
closed commercial formats is also an issue, as doing do in a
naïve way generally means losing the links to the timestamps’
corresponding geometries.
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Implementing higher-dimensional
representations and operations A

The higher-dimensional representations described in Part I and the
operations described in Part II can be difficult to implement, es-
pecially when we expect these implementations to be fast, robust,
generic, compact and dimension-independent. This is true even
when the basic ideas and algorithms are provided, as has been done
in this thesis.

For the sake of full reproducibility, this chapter shows some of the
key implementation details that are used to efficiently implement
the representations and operations described in this thesis. §A.1
lists the main libraries that were used and how they were used. §A.2
explains the main techniques that are used to perform arithmetic
and geometric operations robustly. Finally, §A.3 describes the traits
programming technique and its use in CGAL and this thesis to pro-
duce dimension-independent efficient implementations.

A.1 Main libraries usedwithin this thesis

CGAL170 (the Computational Geometry Algorithms Library) con-
tains a wide variety of 2D/3D/𝑛D data structures and computa-
tional geometry algorithms. Some of its basic packages are di-
rectly usedwithin this thesis to store andmanipulate numbers
and basic shapes, namely: Algebraic Foundations, Number
Types, 2D and 3D Linear Geometry Kernel, and 𝑑D Geometry
Kernel. Most significantly, the packages Combinatorial Maps
and Linear Cell Complex are used in most of the implementa-
tions described in the previous chapters. Finally, other pack-
ages are used as temporary data structures and to process and
clean input data: 3D Polyhedral Surface, Halfedge Data Struc-
tures, 3D Boolean Operations on Nef Polyhedra, 2D Triangu-
lation, and Principal Component Analysis. A few other pack-
ages are used as dependencies of the aforementioned pack-
ages.

GDAL171 (theGeospatial DataAbstraction Library) reads andwrites
commonly used GIS file formats. Within this thesis, its OGR
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174: This is only the most com-
mon representation among those
provided by the much broader
IEEE 754 standard [IEEE, 2008],
which provides for decimal num-
bers as well as special values for
±∞ and NaN (not a number),
among other features.

vector module is mainly used to read and write polygons de-
scribed as well-known text [OGC, 2011], or in Esri Shapefile
[ESRI, 1998] and FileGDB files.

IfcOpenShell172 is a library that is able to read and write IFC files
[ISO, 2013]. It internally uses the Open CASCADE geometry
types, including to convert implicit geometries (e.g. those built
using constructive-solid geometry or sweeps as in Figure 3.19)
into explicit ones that can be stored using boundary represen-
tation, or to create meshes of a given degree of accuracy from
curved surfaces.

Open CASCADE173 is a library that is able to manipulate geometric
representations in CAD applications. In theory, it supports
complex geometric operations between implicit geometries,
including Boolean set operations with 3D point sets. However,
in practice it performs poorly with GIS data, often failing due
to numerical errors or imperfect data.

A.2 Geometric operations using computer arithmetic

Theoretical descriptions of geometric objects and geometric algo-
rithms generally start from the notions of the Euclidean space ℝ𝑛,
in which the coordinates of a point can be described precisely using
real numbers (ℝ). However, as real numbers cannot be represented
on (digital) computers, implementations usually opt for a combina-
tion of integer numbers to represent whole numbers of known preci-
sion that are known to fall within a given interval and floating-point
numbers in all other cases. While integers can be precisely expressed
as a sequence of binary digits of a given length, floating-point num-
bers often cannot. The latter are therefore usually174 expressed us-
ing binary numbers with a predefined number of bits.

Floating-point numbers can represent a wide range of values and
work well in many instances. However, arithmetic performed us-
ing floating-point numbers needs special care, as it often leads to
a loss of precision [Goldberg, 1991]. While this is a problem for
all kinds of algorithms [Hoffmann, 1988], geometric operations are
particularly vulnerable as they often rely on getting a correct result
for a large number of predicates, which can fail when dealing with
edge cases [Kettner et al., 2008], such as almost collinear or coplanar
points.

Many alternatives have been developed to deal with various limi-
tations of integer and floating-point numbers. Among these, the
ones described below are those that have been used for the imple-
mentations related to this thesis. Multiple precision arithmetic is a
generic solution that can achieve an arbitrary level of precision by

http://www.ifcopenshell.org
http://www.ifcopenshell.org
http://www.opencascade.org
http://www.opencascade.org
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175: https://gmplib.org/

176: http://www.mpfr.org

177: combined with correct
rounding in the case of floating-
point numbers

178: https://perso.ens-
lyon.fr/nathalie.revol/
software.html

using numbers with a user-definable number of digits. It is widely
implemented in libraries such as GMP175 and MPFR176.

Simple arithmetic operations can be computed precisely by using
rational arithmetic, where a number is stored as a ratio of two other
numbers, most commonly integers. In a geometric context, this
type of representation is often used in the form of homogeneous
coordinates, where a single number is used as a common denomi-
nator for all of the coordinates. This common denominator can be
used to represent special values, such as a point at infinity by setting
it to zero.

In interval arithmetic numbers are substituted with intervals. When
these are used to represent the error bounds of an operation177, it
is possible to compute arithmetic operations with provably correct
results [Ratschek and Rokne, 1988, Ch. 2], such as those provided by
the MPFI library178. Unfortunately, while this setup using multiple
precision interval arithmetic can be applied to most problems with
relative ease, it is also very slow. For instance, Held andMann [2011]
reports a factor of 70 for the computation of Voronoi diagrams.

It is possible to go around this problem by fine-tuning a multiple-
precision approach to a specific problem. Notably, this is done with
very good results for a fewgeometric predicates by Shewchuk [1997],
and the simulation of simplicity paradigm advocated by Edelsbrun-
ner and Mücke [1990]. A more generic and easier to implement
solution is provided by the lazy evaluation scheme used in CGAL
[Pion and Fabri, 2011], which is based on interval arithmetic and
is the one used in this thesis. In it, the computationally expensive
multiple precision operations are only computed when floating-
point precision is not sufficient. As these cases are important to
get correct results, but also relatively rare, it significantly improves
the performance of most operations while maintaining their cor-
rectness.

A.3 Efficient and flexible dimension-independent
programming

Previously, §4.2.1 discussed how higher-dimensional representa-
tions have large sizes and methods using them have high compu-
tational complexities, which often increase exponentially on the
dimension. However, there are also practical obstacles that make
it difficult to implement dimension-independent structures and
methods efficiently, especially when these have to be used in a
generic setting such as in GIS, where varied objects of different di-
mensions need to be dynamically created and modified, as well as
appended with possibly multiple attributes of various types.

https://gmplib.org/
http://www.mpfr.org
https://perso.ens-lyon.fr/nathalie.revol/software.html
https://perso.ens-lyon.fr/nathalie.revol/software.html
https://perso.ens-lyon.fr/nathalie.revol/software.html
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Table A.1: The typical computa-
tional complexity of accessing a
given element in common C++
containers [ISO, 2015]

structure complexity

hard-coded 𝑂(􏷠)
array/vector 𝑂(􏷠)

map/set 𝑂(log𝑛)
list 𝑂(𝑛)

One of these obstacles is the need to allocate and use structures
that are dimension- and data-independent, and therefore flexible
enough to cover all the aforementioned use cases, but at the same
time remain compact and allow their contents to be accessed effi-
ciently. These structures can range from simple ones that can be
handled by standard data types and containers, to more complex
ones that need to be dynamically defined. For instance, some sim-
ple types are directly dependent on the dimension, such as 𝑛-tuples
storing the coordinates of a point in ℝ𝑛, and can thus be stored as
arrays or vectors.

At the opposite end, consider the sets of extrusion intervals that
were associated to each cell in Chapter 6, where an unknown num-
ber of cells need to be each associated with an unknown number
of intervals. As the number of intervals per cell is not known, it is
not possible to store the intervals in a fixed-length structure that is
integrated into the embedding structure of each cell. Also, while it
is possible to directly link a cell to its set of intervals from its em-
bedding structure, these intervals are only temporarily needed, so
allocating space for the intervals directly in the embedding struc-
ture is wasteful at all other times and thus difficult to justify. The
end result was that the intervals per cell were kept in an external
structure, where a map linked a cell embedding to a set of intervals.
As Table A.1 shows, this means that accessing a given interval of a
given cell—an operation that is performed a very large number of
times—, takes logarithmic rather than constant time, significantly
slowing the extrusion algorithm in practice.

A possible solution to the aforementioned problems is based on
template meta-programming. Template meta-programming is a tech-
nique that uses templates to generate certain data structures or per-
form certain computations during the compilation of a program
rather than during its execution. Templates are normally used as
a way to support generic programming, enabling the creation of
functions that can deal with different data types indistinctly. A tem-
plate might thus be instantiated with the dimension of an object or
a particular attribute type, thus generating a data structure of the
appropriate size and disposition whose members can be accessed
in constant time. Figure A.1 shows a slightly more complex exam-
ple, where a template can be used to convert a string into any num-
ber type, which is used in this thesis to parse numbers from various
types of files (e.g. coordinates and identifiers).

However, apart from their use in generic programming, templates
can also beused to create complexdimension-dependent structures,
such as through the use of the traits programming technique [My-
ers, 1995] used in CGAL, which exploits C++’s typedef declarations
to create custom dependent types. As an example, Figure A.2 shows
how the implementation of the extrusion algorithm defines a com-
binatorial map that is one dimension higher than the input, which
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template <typename T>
T string_to_number (const std::string &text, T def_value) {

std::stringstream ss;
for (std::string::const_iterator i = text.begin(); i != text.end(); ++i)

if (isdigit(*i) || *i=='e' || *i=='-' || *i=='+' || *i=='.') ss << *i;
T result;
return ss >> result ? result : def_value;

}

Figure A.1: Using C++ tem-
plates to convert a string
containing a number into any
number type 𝑇 , including sci-
entific notation. Adapted from
http://www.cplusplus.com/
forum/articles/9645/.

1 template <unsigned int unextruded_dimension>
2 class Linear_cell_complex_extruder_with_range {
3 public:
4 typedef typename Linear_cell_complex_with_ids<unextruded_dimension>::type Lower_dimensional_cell_complex;
5 typedef typename Linear_cell_complex_with_ids<unextruded_dimension+1>::type Higher_dimensional_cell_complex;
6 typedef Linear_cell_complex_extruder_with_range<unextruded_dimension> Self;
7 typedef typename Lower_dimensional_cell_complex::FT FT;
8
9 typedef typename Extruded_embeddings_with_range_of_dimension_and_lower<Self>::type Extruded_embeddings_with_range;
10 typedef Extrusion_ranges_tuple_per_dimension<Lower_dimensional_cell_complex> Extrusion_ranges;
11
12 private:
13 Extrusion_ranges extrusion_ranges;
14 std::set<typename Lower_dimensional_cell_complex::FT> all_ranges;
15 Higher_dimensional_cell_complex hdcc;
16 };

Figure A.2: Using C++ templates it is possible to create dependent types such as the Higher_dimensional_cell_complex de-
fined in line 5 and used in line 15.

is created during compilation.

This type of mechanism can be used to a much higher degree by
defining recursive templates, which are used extensively in the CGAL
CombinatorialMaps package. As an example, Figure A.3 shows how
this was applied in order to store the extrusion rangesmaps for each
dimension separately, which is necessary because the embedding
structures of each cell are different depending on the dimension.

The same technique can be used to create algorithms that are also
fully dimension-independent. In fact, C++ templates are known
to be Turing-complete [Veldhuizen, 2003], and thus can be used to
compute general-purpose problems. Figure A.4 shows one such ex-
ample from the implementation of the incremental construction al-
gorithm of Chapter 7, which shows the validation that a set of (𝑛−1)-
cells form a quasi-𝑛-manifold.

http://www.cplusplus.com/forum/articles/9645/
http://www.cplusplus.com/forum/articles/9645/
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1 // Abstracts a map of cell->ranges for a particular dimension
2 template <class LCC, unsigned int dimension>
3 struct Extrusion_ranges_map_of_dimension {
4 public:
5 typedef std::map<typename LCC::template Attribute_const_handle<dimension>::type,
6 Extrusion_ranges<LCC> > type;
7 type ranges_map;
8 };
9
10 // Abstracts a tuple of maps of cell->ranges, each element containing the map of a particular dimension
11 template <class LCC, unsigned int dimension = LCC::dimension, class Result = CGAL::cpp11::tuple<> >
12 struct Extrusion_ranges_tuple_per_dimension_up_to;
13
14 template <class LCC, class ... Result>
15 struct Extrusion_ranges_tuple_per_dimension_up_to<LCC, 0, CGAL::cpp11::tuple<Result ...> > {
16 typedef CGAL::cpp11::tuple<Extrusion_ranges_map_of_dimension<LCC, 0>, Result ...> type;
17 };
18
19 template <class LCC, unsigned int dimension, class ... Result>
20 struct Extrusion_ranges_tuple_per_dimension_up_to<LCC, dimension, CGAL::cpp11::tuple<Result ...> > {
21 typedef typename Extrusion_ranges_tuple_per_dimension_up_to<LCC,dimension - 1,
22 CGAL::cpp11::tuple<Extrusion_ranges_map_of_dimension<LCC, dimension>, Result ...> >::type type;
23 };
24
25 // Abstracts a tuple of maps of cell->ranges, each element containing the map of a particular dimension
26 template <class LCC_>
27 struct Extrusion_ranges_tuple_per_dimension {
28 public:
29 typedef LCC_ LCC;
30 typedef typename Extrusion_ranges_tuple_per_dimension_up_to<LCC>::type type;
31 type ranges;
32 };

Figure A.3: Recursive C++ templates can be used to generate dimension independent code. The first structure Extru-
sion_ranges_map_of_dimension (lines 1–8) contains the extrusion map for a single dimension. The second structure Extru-
sion_ranges_tuple_per_dimension_up_to (lines 10–23) uses as a triplet of definitions to create copies of the first for every
dimension up to a given one. This is done using a template specialisation for dimension 0 which stops the recursion. The
last structure Extrusion_ranges_tuple_per_dimension (lines 25–32) creates all structures using the dimension of a passed
combinatorial map LCC. Note the non-ideal use of std::map in line 5.
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template <unsigned int dimension, class InputIterator>
Dart_handle get_cell(InputIterator begin, InputIterator end) {

// Validate that this will create a closed (topologically open) quasi-manifold cell
for (typename std::list<Dart_handle>::iterator dart_in_current_facet_1 = free_facets.begin();

dart_in_current_facet_1 != free_facets.end(); ++dart_in_current_facet_1) {

// Go ridge by ridge
for (auto dart_in_current_ridge_1 = lcc.one_dart_per_incident_cell<dimension-2, dimension-1, dimension-1>(

*dart_in_current_facet_1).begin();
dart_in_current_ridge_1 != lcc.one_dart_per_incident_cell<dimension-2, dimension-1, dimension-1>(

*dart_in_current_facet_1).end();
++dart_in_current_ridge_1) {

int matches = 0;

// Find possible matches
for (typename std::list<Dart_handle>::iterator dart_in_current_facet_2 = free_facets.begin();

dart_in_current_facet_2 != free_facets.end();
++dart_in_current_facet_2) {

if (&*dart_in_current_facet_1 == &*dart_in_current_facet_2) continue; // Compare by memory address

// Go ridge by ridge in a potential match
for (auto current_dart_in_facet_2 = lcc.darts_of_cell<dimension-1, dimension-1>(

*dart_in_current_facet_2).begin();
current_dart_in_facet_2 != lcc.darts_of_cell<dimension-1, dimension-1>(

*dart_in_current_facet_2).end();
++current_dart_in_facet_2) {

// Check if it's a complete match (isomorphism test using signatures)
if (isomorphic<dimension-2>(lcc,dart_in_current_ridge_1, current_dart_in_facet_2)) ++matches;
if (isomorphic_reversed<dimension-2>(lcc, dart_in_current_ridge_1, current_dart_in_facet_2)) ++matches;

}
}

CGAL_precondition(matches == 1);
}

}
}

Figure A.4: Recursive C++ templates can also be used to implement dimension-independent algorithms. In this case, the
dimension that is passed to the templated function is passed on to other functions to obtain appropriate orbits for a given
facet (dimension-1) or ridge (dimension-2), which are then compared dart by dart.





Ashort dictionary of dimension-basedGIS terms B
ambient space the space in which objects are embedded.

area 1. measure of the 2D extent of an object; 2. 2D combi-
natorial element; 3. 2D geometric object.

ball 1. (→ same as 3-ball) topological definition of the space
within a 2-sphere (i.e. a sphere), often defined as the
space within a certain distance (the radius) from a
point in ℝ􏷬 (the centre); 2. (→ often 𝑛-ball) topologi-
cal definition of the space within an (𝑛 − 􏷠)-sphere, of-
ten defined as the space within a certain distance (the
radius) from a point in ℝ𝑛 (the centre); 3. geometric
definition of a perfectly round filled 3D object.

body 𝑛-dimensional combinatorial element in an 𝑛D con-
text.

box 1. cuboid; 2. orthotope of any dimension.

cavity 3D hole.

cell 1. (→ sometimes 𝑛-cell) 𝑛D combinatorial element; 2. 3D
combinatorial element.

cell complex topological space formed by a set of cells glued
along common faces, all faces of a cell in the complex
should be in the complex.

circle 1. topological definition of the space at a certain dis-
tance (the radius) from a point in ℝ􏷫 (the centre); 2.
geometric definition of a perfectly round hollow 2D
object.

closed 1. topological definition of an object that includes its
boundary; 2. geometric definition of an object in 𝑛D,
usually defined using boundary representation, that
encloses an 𝑛D subspace.

congruent having the same shape and size.

cube 1. (→ same as 􏷢-cube) 3D polyhedron with 6 square
facets; 2. (→ usually 𝑛-cube) 𝑛-orthotope with identical
(𝑛−􏷠)-cube facets, akin to a square in 2D and a cube in
3D.

cuboid 1. box-shaped 3D polyhedron with 6 rectangular
facets, its opposite facets are congruent and parallel;
2. parallelotope.

curve 1. 1D geometric object, often with a non-linear geom-
etry; 2. 1D combinatorial element; 3. 1-manifold.

cut-line degenerate part of a 2D shape forming a curve and
protruding inwards from its boundary.

disk topological definition of the space within a circle, of-
ten defined as the space within a certain distance (the
radius) from a point in ℝ􏷫 (the centre).

edge 1D combinatorial element.

face 1. 2D combinatorial element; 2. (→ sometimes 𝑛-face of
𝑋) 𝑛D combinatorial element on the boundary of𝑋; 3.
(→ usually face of𝑋) (𝑛−􏷠)Dcombinatorial element on
the boundary of an 𝑛D combinatorial element 𝑋.

facet 1. (𝑛 − 􏷠)D combinatorial element in an 𝑛D context; 2.
(→ often facet of 𝑋) (𝑛 − 􏷠)D combinatorial element on
the boundary of an 𝑛Dcombinatorial element𝑋; 3. 2D
combinatorial element.

flat unbounded geometric object with linear geometry of
any dimension, such as a point, line or plane.

hole 1. 2D void region; 2. 𝑛D void region.

hyperball higher-dimensional ball.

hypercell 1. higher-dimensional combinatorial element; 2.
4D combinatorial element.

hypercube 1. higher-dimensional cube; 2. 4-cube.

hyperplane 1. (𝑛 − 􏷠)D linear subspace in an 𝑛D context; 2.
plane in a higher-dimensional context.

hyperrectangle higher-dimensional orthotope.

hypersphere higher-dimensional sphere.

hypersurface (𝑛 − 􏷠)D subspace in an 𝑛D context, often
curved;

interval topological definition of the space between two
points in ℝ (the endpoints).

Lebesgue measure measure of the 𝑛D extent of an object,
akin to length in 1D, area in 2D and volume in 3D.

length measure of the 1D extent of an object.

line segment 1D geometric object.

manifold (→ sometimes 𝑛-manifold) topological space that
resembles ℝ𝑛 at every point.

manifold with boundary (→ sometimes 𝑛-manifold with
boundary) topological space that resemblesℝ𝑛 at every
point in its interior.

node 0D combinatorial element.

open 1. topological definition of an object that does not in-
clude its boundary; 2. geometric definition of an ob-
ject in 𝑛D, usually defined using boundary represen-
tation, that does not enclose any 𝑛D subspace.

orthotope (→ sometimes 𝑛-orthotope) 𝑛-polytope with con-
gruent parallel facets forming right angles to each
other, akin to a rectangle in 2D and a cuboid in 3D.

parallelepiped 3Dpolyhedron bounded by 6parallelogram-
shaped 2D faces.
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parallelogram polygon bounded by 4 parallel and have the
same shape.

parallelotope a polytope whose opposite facets are parallel
and have the same shape, akin to a parallelogram in
2D and a parallelepiped in 3D.

peak 1. (𝑛 − 􏷢)D combinatorial element in an 𝑛D context; 2.
(→ peak of 𝑋) (𝑛 − 􏷢)D combinatorial element on the
boundary of an 𝑛D combinatorial element 𝑋;

plane 2D unbounded linear subspace.

point 1. 0D geometric element; 2. topological definition of
the space at one location.

polychoron 4D geometric object with linear geometry.

polygon 2D geometric object with linear geometry, possibly
with holes.

polygonal curve curve formed by a sequence of line seg-
ments joined at their endpoints.

polyhedron 1. 3D geometric object with linear geometry,
possiblywith holes; 2. an 𝑛Dgeometric objectwith lin-
ear geometry.

polyline curve formedby a sequence of line segments joined
at their endpoints.

polyteron 5D geometric object with linear geometry.

polytope 𝑛D geometric object with linear geometry.

puncture 0D (point) hole, often formed from a degenerate
polyline or polygon.

ridge 1. (𝑛 − 􏷡)D combinatorial element in an 𝑛D context; 2.
(→ ridge of 𝑋) (𝑛 − 􏷡)D combinatorial element on the
boundary of an 𝑛D combinatorial element 𝑋.

line string curve formedby joining a sequence of vertices by
straight line segments, represented by these vertices.

linear ring 2D geometric object with linear geometry repre-
sented as a sequence of vertices.

ring 2D combinatorial element represented by its 1D
boundary.

subfacet 1. (𝑛 − 􏷡)D combinatorial element in an 𝑛D context;
2. (→ subfacet of 𝑋) (𝑛 − 􏷡)D combinatorial element on
the boundary of an 𝑛D combinatorial element 𝑋.

shell 3D geometric object with linear geometry without 3D
holes, usually defined as the volumeenclosed by its 2D
boundary, often represented as a set of 2D faces.

simplex 1. (→ sometimes 𝑛-simplex) combinatorial element
with 𝑛 + 􏷠 vertices and 𝑛 + 􏷠 facets; 2. (→ sometimes 𝑛-
simplex) geometric object based on 𝑛 + 􏷠 affinely inde-
pendent vertices, akin to a point in 0D, a line segment
in 1D, a triangle in 2D, or a tetrahedron in 3D.

simplicial complex 1. (→ sometimes abstract simplicial com-
plex) topological space formed by a set of simplices
glued along common faces, all faces of a simplex in the
complex should be in the complex; 2. (→ sometimes
geometric simplicial complex) abstract simplicial com-
plex where simplices are embedded into Euclidean
space, their interiors should not intersect geometri-
cally.

solid 1. 3D geometric object with linear geometry, possibly
with 3D holes, often represented as a set of shells; 2.
object defined based on solid modelling, often as op-
posedonebasedonboundary representation; 3. anob-
ject containing its interior (as opposed to hollow).

spike degenerate part of a 2D shape forming a curve, often
protruding outwards from its boundary.

sphere 1. (→ same as 􏷡-sphere) topological definition of the
space at a certain distance (the radius) from a point in
ℝ􏷬 (the centre); 2. (→ often 𝑛-sphere) topological def-
inition of the space at a certain distance (the radius)
from a point in ℝ𝑛+􏷪 (the centre); 3. geometric defini-
tion of a perfectly round hollow 3D object.

surface 1. 2-manifold; 2. 2D combinatorial element.

tesseract 4-cube: polychoron with 8 cubical facets.

vertex 0D combinatorial element.

volume 1. measure of the 3D extent of an object; 2. 3D com-
binatorial element.

wire 2D combinatorial element represented by its 1D
boundary.
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Figure 1: In GIS, a cube is not rep-
resented as a 3D solid, but as the 6
square 2D faces that bound it.

Figure 2: 3D space, time and scale
can be modelled as 5D space.

Figure 3: A 3D space subdivi-
sion model is composed of a set
of space-filling volumes without
gaps or overlaps.

Summary

Our world is three-dimensional and complex, continuously chang-
ing over time and appearing different at different scales. Yet, when
we model it in a computer using Geographic Information Systems
(GIS), wemostly use 2D representations, which essentially consist of
linked points, lines and polygons (Figure 1). These representations
are relatively easy to use and efficient, and awide variety ofmethods
is built on top of them. However, 2D representations are necessar-
ily limiting. They force us to reduce problems to two dimensions,
limit the type of objects we can represent, and complicate storing
the relationships between different objects—especially when these
are across time and different scales. Nevertheless, most research in
GIS is devoted to improving these 2D representations, as well as to
the development of new methods that build on them to solve prob-
lems, both old and new.

This thesis explores a new, fundamentally different modelling
approach—integrating both spatial and non-spatial characteristics
as dimensions in the geometric sense, specifically targeting the
cases of time and scale (Figure 2). While this has been proposed
before at a conceptual level, this thesis aims to realise the funda-
mental aspects of a higher-dimensional GIS by developing higher-
dimensional (𝑛D) representations, as well as new methods operat-
ing on them to create, manipulate and visualise geographic infor-
mation. As this thesis shows, the higher-dimensional approach is
undoubtedly memory-intensive, but it is also very powerful, as it
provides a simple and consistent way to store geometry, attributes
and the topological relationships between objects of any dimension.
This generic approach can also be easily extended to handle other
non-spatial characteristics, enabling better datamanagement that is
consistent across dimensions and more powerful operations, such
as checking if two objects are adjacent at any point in time.

In order tomodel higher-dimensional space, it is best to consider an
𝑛D space subdivision as a base (Figure 3), which is conceptualised as
an 𝑛-dimensional simplicial complex or cell complex. This can then
be implemented with a simplex-based data structure, with an inci-
dence graph, as a set ofNef polyhedra, or—as done in this thesis—by
using ordered topological models such as the cell-tuple and gener-
alised/combinatorial maps.
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(a)

(b)

Figure 4: (a) A set of polygons is
converted into (b) a set of boxes by
2D-to-3D extrusion.

Figure 5: Two LODs of a 3D model
of a house (left and right) are
linked into a 4D model.

Creating computer representations of higher-dimensional objects
can be complex. Common construction methods used in 2D and
3D, such as directly manipulating combinatorial primitives, or us-
ing primitive-level construction operations (such as Euler opera-
tors), rely on our intuition of 2D/3D geometry, and thus do not
work well in higher dimensions. It is therefore all too easy to create
invalid objects, which then cannot be easily interpreted or fixed—
a problem that is already exceedingly apparent in three dimen-
sions.

As a way to easily create representations of higher-dimensional ob-
jects, this thesis proposes three novel higher-level methods, all of
which are intuitive to use and attempt to create valid output. Extru-
sion takes an (𝑛 − 1)-dimensional cell complex and a set of intervals
per cell, projecting them parallel to a new axis in order to create
an 𝑛-dimensional cell complex (Figure 4). Incremental construction
describes an 𝑛-dimensional object based on its (𝑛 − 1)-dimensional
boundary, from dimension zero (points) and then upwards. Finally,
a 4D model can be constructed from a series of 3D models at differ-
ent levels of detail (LODs) by linking them (Figure 5).

In order to visualise higher-dimensional models, as well as to be
able to process them in existing software, it is important to have
methods to extract meaningful 2D/3D subsets from them. As a
stepping stone towards such methods, this thesis shows how 𝑛-
dimensional to (𝑛 − 1)-dimensional orthographic and perspective
projections can be defined.

Finally, this thesis placed an emphasis on validating the algorithms
with real-world datasets, which was only possible by developing
methods to repair the invalid datasets that are widespread in prac-
tice. This thesis thus contains methods to create valid polygons
and planar partitions using a constrained triangulation of the in-
put, as well as a method to repair polyhedra and space subdivisions
by snapping together lower-dimensional primitives and removing
overlaps using Boolean set operations on Nef polyhedra. This al-
lowed tests with up to 6D datasets based on real-world data—a good
base for higher-dimensional GIS.

In the future, the work in this thesis will be extended with
higher-dimensionalmodification operations, true 4D spatiotempo-
ral datasets and repair methods with quality guarantees. All imple-
mentations made for this thesis are publicly available under open
source licences.



Figuur 1: In GIS wordt een ku-
bus niet gerepresenteerd als een
3D volume maar als 6 vierkante
2D vlakken die tesamen de ruimte
van de kubus omvatten.

Figuur 2: 3D ruimte, tijd en schaal
kunnen worden gemodelleerd als
5D ruimte.

Figuur 3: Een 3D ruimtelijke op-
deling bestaat uit een set ruimte-
vullende volumes zonder gaten en
overlap.

Samenvatting (Dutch summary)

Onze wereld is driedimensionaal en complex, is continue in ver-
andering en heeft verschillende verschijningsvormen op verschil-
lende detailniveaus. Toch modelleren we de werkelijkheid in Geo-
grafische Informatie Systemen (GIS) meestal middels 2D represen-
taties. Deze modellen bestaan uit punten, lijnen en polygonen die
met elkaar zijn verbonden (Figuur 1). De resulterende representa-
ties zijn efficiënt en relatief eenvoudig te gebruiken en veel metho-
des en applicaties zijn hierop gebaseerd. Maar 2D representaties
kennen hun beperkingen. Problemen moeten worden versimpeld
tot 2D; en het beheren van relaties tussen verschillende objecten is
complex, vooral als deze relaties een tijdscomponent hebbenof over
verschillende detail-niveaus gaan. Desalniettemin gaat veel GIS on-
derzoek over het verbeteren vande 2D representaties alsookhet ont-
wikkelen van nieuwe methoden die op 2D representaties zijn geba-
seerd.

Deze dissertatie bestudeerd een fundamenteel andere modelleer-
benadering waarbij zowel ruimtelijke als niet-ruimtelijke kenmer-
ken worden gemodelleerd als extra geometrische dimensies. De
kenmerken “tijd” en “schaal” worden daarbij specifiek bekeken (Fi-
guur 2). Eerdere onderzoeken naar het modelleren van tijd en
schaal als extra dimensie zijn nooit verder gekomen dan een con-
ceptuele beschrijving. Dit onderzoek daarentegen beoogt de funda-
mentele aspecten van eenmultidimensionaalGIS te realiseren door
hoger dimensionale (𝑛D) representaties te ontwikkelen inclusief be-
werkingsmethodes om deze 𝑛D geografische informatie te creëren,
manipuleren en visualiseren. In deze thesis wordt aangetoond dat
een 𝑛D benadering aan de ene kant veel computergeheugen vraagt
omalle relaties over dimensies heen op te slaan. Aan de andere kant
is de aanpak zeer krachtig gebleken omdat een 𝑛D benadering op
een doeltreffende en consistente manier geometrie met haar attri-
buten opslaat. Naast de objecten, kunnen ook alle topologische rela-
ties tussen de objecten worden opgeslagen welke zich kunnen voor-
doen binnen en tussen iedere dimensie. De in dit onderzoek voor-
gestelde aanpak is generiek enkan eenvoudigwordenuitgebreid om
andere niet-ruimtelijke aspecten te modelleren. Hierdoor is data
management waarbij de consistentie van geografische informatie
wordt gegarandeerd over dimensies heen. Bovendien kunnen hier-
mee krachtigere bewerkingen worden uitgevoerd zoals controleren

229



230 Samenvatting (Dutch summary)

(a)

(b)

Figuur 4: (a) een set polygonen
wordt geconverteerd naar (b) een
set blokken door de polygonen
van 2D naar 3D op te trekken.

Figuur 5: Twee detailniveaus van
een 3D model van een huis (links
en rechts) worden gelinkt tot een
4D model.

of twee objecten op enig moment in de tijd aangrenzend zijn.

Om een 𝑛D ruimte te modelleren kan het best gestart worden met
een 𝑛D ruimtelijke partitie (zonder gaten en overlap) (Figuur 3).
Conceptueel kan dit worden weergegeven als een 𝑛D simplicial com-
plexof een cell complex. Vervolgens kanditwordengeïmplementeerd
via een simplex-based datastructuur met een incidence graph, bijvoor-
beeld als een set van Nef polyhedra of, zoals dat in dit onderzoek is
gedaan, via geordende topologische modellen (cell-tuple en generali-
sed/combinatorial maps).

Het construeren van computer representaties van 𝑛D objecten kan
erg complex zijn. Bestaande 2D/3D constructie methodes manipu-
leren combinatorial primitives of maken gebruik van bewerkingen op
primitieve-niveau (zoals Euler operatoren). Deze gaan uit van onze
intuïtie over 2D en 3D geometrieën en werken daarmee niet goed in
hogere dimensies. Hierdoor is het helaas heel makkelijk om inva-
lide 𝑛Dobjecten te creëren die vervolgensmoeilijk te bewerken zijn.
Dit probleem doet zich ook al voor in drie dimensies.

In deze dissertatie is eenmanier onderzocht en ontwikkeld om een-
voudig valide representaties van 𝑛D objecten te construeren. Daar-
toe zijn er drie methodes voorgesteld: Extrusion neemt een (𝑛 − 1)D
cell complex en een set van intervallen per cell en projecteert deze
parallel aan een nieuwe as ten einde een 𝑛D cell complex te constru-
eren (Figuur 4). Incremental construction construeert een 𝑛D object
op basis van zijn (𝑛 − 1)-grens. Via het linken van verschillende re-
presentaties van hetzelfde 3D object op verschillende detailniveaus
(LODs) met als resultaat een 4D model (Figuur 5).

Om 𝑛D modellen te kunnen visualiseren en te kunnen bewerken in
huidige software, is er een methode nodig om valide 2D/3D subsets
af te leiden uit de 𝑛D data. Als opstap heeft dit onderzoek laten zien
hoe een zowel orthografische als een perspectieve projectie van 𝑛D
naar (𝑛 − 1)D kan worden gedefinieerd.

Tenslotte heeft deze thesis alle hierboven genoemde concepten ge-
valideerd op 𝑛D data over de “echte” wereld. Omdat er veel fouten
voorkomen in deze data, zijn er in dit onderzoek ook methodes ont-
wikkeld om valide polygonen en een plenaire partitie te creëren op
basis van constrained triangulatie. Daarnaast is er een methode ont-
wikkeld ompolyhedra en ruimtelijke opdelingen te corrigeren door
het “snappen” van primitieven op lagere dimensies en het verwij-
deren van overlap door middel van Boolean set bewerkingen opNef
polyhedra. Hierdoor zijn er testen gedaan met data tot 6D gebaseerd
op “echte” GIS data, wat een goede basis is voor 𝑛D GIS.

In de toekomst kan dit onderzoek worden uitgebreid met wij-
zigingsbewerkingen voor 𝑛D objecten, “echte” 4D ruimtelijk-
temporele datasets en correctie methodes die de kwaliteit van de 𝑛D
data garanderen. Alle implementaties van deze dissertatie zijn pu-
bliekelijk beschikbaar via open source licenties.



Figura 1: En los SIG, un cubo no
se representa comoun sólido, sino
como las 6 caras cuadradas en su
superficie.

Figura 2: El espacio 3D, el tiempo
y la escala modelados como un es-
pacio 5D.

Figura 3: Una partición espacial
3D se compone de un conjunto de
volúmenes que llenan el espacio
sin huecos y sin solaparse entre
ellos.

Resumen (Spanish summary)

Nuestro mundo es tridimensional y complejo, cambiando conti-
nuamente a través del tiempo y mostrándose distinto a distintas es-
calas. Aún así, cuando lo modelamos usando sistemas de informa-
ción geográfica (SIG), generalmente usamos representaciones 2D,
las cuales esencialmente consisten en conjuntos de puntos, líneas y
polígonos enlazados entre sí (Figura 1). Estas representaciones son
relativamente fáciles deusar y eficientes, y una granvariedaddemé-
todos se han construido usándolas. Sin embargo, las representacio-
nes 2D son necesariamente restrictivas. Nos fuerzan a reducir los
problemas a dos dimensiones, limitan el tipo de objetos que pode-
mos representar y dificultan guardar las relaciones entre diferentes
objetos—especialmente cuando éstas son a través del tiempo y di-
ferentes escalas. A pesar de ello, la mayoría de la investigación en
SIG se dedica a mejorar estas representaciones 2D, así como a desa-
rrollar nuevos métodos que las usan para resolver problemas, sean
éstos nuevos o antiguos.

Esta tesis explora un nuevo y fundamentalmente distinto paradig-
ma demodelado—integrando características espaciales y espaciales
comodimensiones en el sentido geométrico, específicamente apun-
tandohacia los casos del tiempo y la escala (Figura 2). A pesar de que
este paradigma ha sido propuesto antes a un nivel conceptual, esta
tesis tiene como objetivo llevarlo a cabo al implementar los aspectos
fundamentales de un SIG de altas dimensiones, desarrollando represen-
taciones para objetos en altas dimensiones (𝑛D), así como nuevos
métodos que operen en ellas para crear, manipular y visualizar in-
formación geográfica. Como esta tesis muestra, el paradigma de al-
tas dimensiones tiene un alto consumo de memoria pero también
es muy poderoso, proveyendo un método simple y consistente para
guardar la geometría, los atributos y las relaciones topológicas entre
objetos de cualquier dimensión. Este paradigma genérico puede ser
fácilmente extendido a otras características no espaciales, haciendo
posible un mejor manejo de datos con consistencia a través de las
dimensiones y operaciones más poderosas.

Para poder modelar el espacio de altas dimensiones, es mejor consi-
derar una partición espacial 𝑛D como una base (Figura 3), la que es
conceptualizada como un complejo simplicial o celular. Éste puede
entonces ser implementado con una estructura de datos basada en
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232 Resumen (Spanish summary)

(a)

(b)

Figura 4: (a) Un conjunto de polí-
gonos se convierte en (b) un con-
junto de paralelepípedos al aplicar
una extrusión 2D a 3D.

Figura 5: Dos niveles de detalle de
una casa (izquierda y derecha) se
enlazan en un modelo 4D.

símplices, un grafo de incidencia, como un conjunto de poliedros
Nef, o—como en esta tesis—usando modelos topológicos ordena-
dos, como la tupla de células (cell-tuple) o los mapas generalizados
o combinatorios (generalised/combinatorial maps).

Crear representaciones de objetos en altas dimensiones puede ser
complejo. Los métodos comunes usados en 2D y 3D, como la ma-
nipulación directa de elementos combinatorios primitivos, o el uso
de operaciones de construcción que operan al nivel de los elemen-
tos primitivos (como las operaciones de Euler), se basan en nuestra
intuición de la geometría 2D/3D, y por lo mismo no funcionan bien
en altas dimensiones. Esto causa que sea demasiado fácil crear ob-
jetos inválidos, los cuales no pueden ser fácilmente interpretados o
reparados—un problema que es extremadamente aparente incluso
en tres dimensiones.

Esta tesis propone tresmétodos novedosos para crear fácilmente re-
presentaciones de objetos en altas dimensiones, todos los cuales son
intuitivos e intentar crear datos de salida válidos. La extrusión recibe
un complejo celular 𝑛 − 1 dimensional y un conjunto de intervalos
por cada célula, proyectándolos de forma paralela a un nuevo eje
para crear un complejo celular 𝑛 dimensional (Figura 4). La cons-
trucción incremental describe un objeto 𝑛 dimensional basado en su
frontera 𝑛 − 1 dimensional, desde la dimensión cero (puntos) y ha-
cia arriba. Finalmente, es posible construir unmodelo 4D enlazando
una serie de modelos 3D a diferentes niveles de detalle (Figura 5).

Para poder visualizarmodelos en altas dimensiones, así comopoder
procesarlos en el software existente, es importante tener métodos
para extraer de éstos subconjuntos significativos 2D/3D. Como un
paso inicial hacia este tipo de métodos, esta tesis muestra como se
pueden definir las proyecciones ortográficas y de perspectiva de 𝑛
dimensiones a 𝑛 − 1.

Finalmente, esta tesis tuvo un enfoque importante en validar los
algoritmos con datos reales, lo cual sólo fue posible al desarrollar
métodos para reparar datos inválidos, los cuales son comunes en la
práctica. Esta tesis por lo tanto contiene métodos para crear polí-
gonos y particiones planares válidas usando una triangulación res-
tringida de los datos de entrada, así como un método para reparar
poliedros y particiones 3D juntando objetos (snapping) de menores
dimensiones y eliminando las partes que se solapan utilizando ope-
raciones booleanas de conjuntos con poliedros Nef. Esto permitió
pruebas hasta en seis dimensiones basados endatos reales—una bue-
na base para un SIG de altas dimensiones.

En el futuro, el trabajo de esta tesis será extendido con operaciones
demodificación en altas dimensiones, datos reales espaciales y tem-
porales 4D, así como métodos de reparación de datos con garantías
de calidad. Todas las implementaciones hechas para esta tesis están
disponibles públicamente bajo licencias de código abierto.
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