
VoxelizationAlgorithms for Geospatial
Applications: Computationalmethods for

voxelatingspatial datasets of 3D city
models containing 3D surface, curve and

point datamodels
Pirouz Nourian Romulo Gonçalves Sisi Zlatanova

Ken Arroyo Ohori Anh Vu Vo

This is an author’s version of the paper. The authoritative version is:

Voxelization Algorithms for Geospatial Applications. Pirouz Nourian,
Romulo Gonçalves, Sisi Zlatanova, Ken Arroyo Ohori and Anh Vu Vo. Meth-
odsX 3, January 2016, pp. 69–86. ISSN: 2215–0161.
doi: 10.1016/j.mex.2016.01.001

Related source code is available at
https://github.com/NLeSC/geospatial-voxels/tree/master/software/
voxelGen

Voxel representations have been used for years in scientific computation and
medical imaging. They are the main focus of our research where we provide easy
access to methods for making large-scale voxel models of built environment for
environmental modelling studies that are spatially correct, meaning they cor-
rectly represent topological and semantic relations among objects. In this article
we present algorithms that generate voxels (volumetric pixels) out of point cloud,
curve, or surface objects. The algorithms for voxelization of surfaces and curves
are a customization of the Topological Voxelization approach [Laine, 2013]; we
additionally provide an extension of thismethod for voxelization of point clouds.

1

http://dx.doi.org/10.1016/j.mex.2016.01.001
https://github.com/NLeSC/geospatial-voxels/tree/master/software/voxelGen
https://github.com/NLeSC/geospatial-voxels/tree/master/software/voxelGen

1 Introduction

We present three methods for voxelating
point, curve, and surface objects. For curve
(1D) and surface (2D) objects we present al-
gorithms for the methods mathematically
described by Laine [2013] and for voxeliz-
ing points (0D) we devise our own algo-
rithms. Note that 0D, 1D, and 2D refer to
the topological dimension of inputs; this,
however does not contradict the fact that all
inputs are embedded in three-dimensional
Euclidean space ofℝ, i.e. a Cartesian prod-
uct of X, Y and Z coordinates represented in
the domain of real numbers ℝ. Full scripts
of algorithms are available in the above-
mentioned repository. Laine [2013] mathe-
matically proves that using the so-called in-
tersection targets desired connectivity lev-
els such as 6 or 26 connected voxel results
could be achieved. He does not present an
algorithm in detail though. In developing
an algorithm for dealingwith large datasets,
we had to come up with an efficient way of
iteration. In general, one can either iter-
ate over all possible voxels in a bounding
box or iterate over objects. It sounds obvi-
ous that iterating over objects is more effi-
cient as the whole space is not usually filled
with objects. This approach can also lead to
inefficiency when it comes to a large mesh
object such as a TIN (Triangular Irregular
Network) terrain model. However, this is-
sue can be resolved if all objects are decom-
posed into primitives such as triangles (in
case of surface input) or line segments (in
case of curve inputs). In such cases the algo-
rithms can iterate over triangles or line seg-
ments. In our implementation of the topo-
logical voxelization method, we have cho-
sen four intersection targets from those de-
fined by Laine [2013], namely two hairline
targets for surface inputs and two mesh tar-
gets for curve inputs as shown in Table 1. In
the following sectionwe give an overview of
topological voxelization.

2 Topological Voxelization in
Brief

Laine [2013] mathematically proves that us-
ing the so-called “intersection targets” de-
sired connectivity levels such as 6or 26 con-
nected voxel results could be achieved. The
idea can be best understood by asking the
following question based on the definitions
of connectivity given below:

• 6-Connected Voxel Collection: a voxel
collection in which every voxel has at
least one face- neighbour, i.e. by virtue
of having adjacent faces

• 18-Connected Voxel Collection: a voxel
collection in which every voxel has at
least one edge- neighbour, i.e. by virtue
of having adjacent edges

• 26-Connected Voxel Collection: a voxel
collectionwhich every voxel has at least
one vertex- neighbour, i.e. by virtue of
having adjacent vertices

Question 1 given a curve (1D manifold in-
put, as vector data model) how can we
obtain a ‘thin’ voxelated curve (i.e. a
voxel collection as a raster representing
the curve in question without unneces-
sary voxels) that is 6 connected or 26
connected?

Question 2 given a surface (2D manifold
input, as vector datamodel) how canwe
obtain a ‘thin’ voxelated surface (i.e. a
voxel collection as a raster representing
the surface in question without unnec-
essary voxels) that is 6 connected or 26
connected?

Formally, considering adjacency between
voxels in a voxel collection can be in the
sense of face- adjacency, edge-adjacency or
vertex adjacency. Analogous to these def-
initions, we can mention edge-adjacency
or vertex adjacency between pixels which
correspond to 4-neighbourhoods (a.k.a.
von Newman neighbourhoods1) and 8-
neighbourhoods (a.k.a. Moore neighbour-

1http://mathworld.wolfram.com/
vonNeumannNeighborhood.html

2

http://mathworld.wolfram.com/vonNeumannNeighborhood.html
http://mathworld.wolfram.com/vonNeumannNeighborhood.html

Table 1: Intersection targets for topological voxelization reproduced after Laine [2013]
Output connectivity → 6-connected 26-connected

1D (curve) inputs

2D (surface) inputs

hoods2) respectively. These neighbourhood
definitions are mostly known in definition
of Cellular Automata3 (CA) models. The
term ‘connected’ refers to the graph that
represents the adjacencies between vox-
els or pixels with the given definition of
adjacency. It is easier to conceive of the
principle of guaranteeing connectivity in
raster (pixel or voxel) output by looking at

2http://mathworld.wolfram.com/
MooreNeighborhood.html

3http://mathworld.wolfram.com/
CellularAutomaton.html

the 2D case in Figure 1.

1D Input (Curves)

• (saleable) 6-Connected Intersec-
tion Target: The 6 faces of a voxel
cube

• (saleable) 26-Connected Intersec-
tion Target: 3 plane faces cutting a
voxel cube in halves along X,Y and
Z,meeting at the centre of the voxel
cube

3

http://mathworld.wolfram.com/MooreNeighborhood.html
http://mathworld.wolfram.com/MooreNeighborhood.html
http://mathworld.wolfram.com/CellularAutomaton.html
http://mathworld.wolfram.com/CellularAutomaton.html

Figure 1: topological pixilation after Laine [2013] the rasterization at the left is based on
an ‘outline’ intersection target which ensures a 4-connected rasterized curve in
which every pixel has at least one neighbour sharing an edge with; the raster-
ization at the right is based on a ‘crosshair’ intersection target which ensures
an 8-connected rasterized curve in which every pixel has at least one neighbour
sharing a vertex with. Resulting pixels are highlighted in dark grey. Intersection
Targets are highlighted in yellow and intersections with them in red dots. Pixels
are shown as blue squares.

2D Input (Surfaces): voxelization

• (saleable) 6-Connected Intersec-
tion Target: The 12 edges of a voxel
cube

• (saleable) 26-Connected Intersec-
tionTarget: A 3Dcrosshair centred
at a voxel cube made of lines going
through face centres along X,Y and
Z axes

3 What is an Intersection
Target?

The fundamental idea behind using In-
tersection Targets is based on what is
calledPoincaréDuality Theorem[Munkres,
1984] or similar to the approach of Pigot
[1991] and Lee [2001], which establishes
a primal-dual pairing between ‘primal’ 𝑘-
dimensional features and their (𝑛 − 𝑘)-
dimensional ‘duals’ in an 𝑛-dimensional
space (ℝ𝑛), within which these objects are
‘embedded’. In 3D space, we can think of
dualities as shown in Table 4. For a clearer
picture we also show potential dual pairs in
1D and 2D spaces respectively in Table 2 and
Table 3. Simply put, an Intersection Target
is a dual feature of dimension 𝑛 − 𝑘 (3 − 𝑘 in
case of the 3D space of ℝ) that must be in-
tersected with the input feature (primal) to
determine whether a voxel should be added
to the voxelated output object or not.

A well-known example of duality between
2D maps is the duality between a Delaunay
triangulation and a Voronoi tessellation.

An example of dual relationships in 3D is
shown in Figure 2. A face in the left image
can be considered as the element through
which two 3D cells are connected; this is
why representing the same face with an
edge in thedual graphmakes sense as it con-
nects two vertices representing the respec-
tive 3D cells.

Figure 2: representing adjacencies between
3D cells or bodies via their dual
vertices [Lee, 2001]

4 What is special about
topological approach over
alternatives?

In many geospatial applications it is im-
portant to preserve topological relations
among objects [Egenhofer and Herring,
1990; Zlatanova, 2000]. This set of topo-
logical relations is used for many purposes

4

Table 2: Duality of features in 1D space
Primal Features Dual Feature

0D vertex (e.g. a point) 1D edge
1D edge (e.g. a line segment) 0D vertex

Table 3: Duality of features in 2D space
Primal Features Dual Feature

0D vertex (e.g. a point) 2D face
1D edge (e.g. a line segment) 1D edge
2D face (e.g. a triangle or a pixel) 0D vertex

such as to analyse relationships between ge-
ographical objects [Louwsma et al., 2006],
to ensure validity of geospatial datasets [Ar-
royo Ohori et al., 2012], or to construct
‘graphs’, as in navigation and path plan-
ning [OGC, 2014]. In the raster domain,
connectivity levels in the output voxels of
a voxelation process are essentially topo-
logical properties, which are best handled
through an explicitly topological approach.
The topological approach brings added ele-
gance and clarity to the voxelizationprocess
and allows for obtaining desired connectiv-
ity levels in a systematic way.

In the topological approach to voxelization
[Laine, 2013] the idea is that if we are to
decide whether a voxel ‘needs to be’ in the
output (so as to ensure preserving the topo-
logical properties of the input features); we
need to ensure its relevant Intersection Tar-
get intersects with the input. The nature of
these Intersection Targets is dual to the na-
ture of the primal inputs. This way, there
will be no doubt on the necessity of hav-
ing a voxel in the output; i.e. the results
are guaranteed to be ‘minimally thin’ as to
representing a raster version of the original
vector features. We refer the reader to the
mathematical proofs given in Laine [2013].
Here we give an intuitive explanation for
the 2D example shown in Figure 1. This fig-
ure shows a 2D version of topological ras-
terization (pixelization) of a 1D input curve.
If we want to ensure that every necessary
pixel is added to the results, we need to fo-
cus on the connectivity level desired (4 or 8
neighbours for each pixel). If we want our
pixelated curve to be a 4-Connected path

so as to best represent the connected un-
derlying curve, then we need a determin-
ing factor for including a pixel in the out-
come. Let us figuratively imagine an ant go-
ing through that curve somewhere, we want
to know from which spaces (pixels) it has
passed; and that we want to reconstruct its
path as a sequence of interconnected pix-
els sharing a wall with one another. If the
ant in question crosses a wall-edge in one
pixel it definitely enters to a 4- neighbour-
ing cell. Therefore, checking the crossings
of the path curve with the pixel boundaries
would be enough to decide for including a
pixel in the rasterized path.

The prevalent alternative approaches,
which are quite common as to their ef-
ficiency can be seen as variants of Scan
Conversion [Kaufman and Shimony,
1986], which works by interacting rays in
3D directions passing through objects. If
all voxels inside are needed then voxels co-
inciding with intersection points between
odd and even intersections will be added
to the rasterized (voxelated) output. In
our approach this operation corresponds
to finding those 0D voxel centre points
which happen to be intersecting with the
3D volume (inside or on the volume)4.
Observe that the last pair of dual features in
Table 4 actually corresponds to voxelating a
volume in this way.

The topological approach can also eventu-
ally be adapted to be implemented based on
rays, so as to make it more efficient, but that
4We have not included an algorithm for this case, as it

seemed quite straightforward.

5

Table 4: duality of features in 3D space
Primal Features Dual Feature

0D vertex (e.g. a point) 3D body
1D edge (e.g. a line segment) 2D face
2D face (e.g. a triangle or a pixel) 1D edge
3D body (e.g. a tetrahedron or a voxel) 0D vertex

subject would fall out of scope of the current
paper. We can simply say that such a scal-
ing approach would be based on consider-
ing Meta Intersection Targets such as rays
for meshes and half-planes for curves and
finding intersectionparameters along these
Meta Intersection Targets to locate meeting
voxels.

5 Point Voxelization (0D
Inputs, 3D Targets)

In this section the voxelization algorithm
for 0D data inputs, i.e. point clouds, is de-
scribed in detail. The algorithm has been
devised and implemented in C# and its
implementation is available in our GitHub
repository. Its pseudo code is in Algo-
rithm 1. In the initialization phase, the al-
gorithm creates a bounding box for ℤ co-
ordinates that is larger than or equal to the
size of the bounding box of the point cloud
in ℝ. It then finds how many voxels could
be in each direction by finding the floor in-
teger closest to the size of bounding box in
each direction divided by the voxel size in
the corresponding direction. It then initial-
izes a 3-dimensional array of Boolean (1 bit)
values of respective 𝑋 , 𝑌 , and 𝑍 sizes plus
one (i.e. minimal in size for it only stores
bits). This array will be used to keep track
of voxels already visited as tuples of [𝑖, 𝑗, 𝑘]
inℤ. If not yet visited, itmarks it as visited
(true). It then continues by ‘embedding’ the
voxel in ℝ, that is through mapping the
[𝑖, 𝑗, 𝑘] voxel in ℤ to ℝ by first creating a
point of respective voxel size and then shift-
ing it first for half of the voxel size vector
and then for the point at the minimum cor-
ner of the ℤ bounding box.

The RBBox_to_ZBBox algorithm ad-
justs a bounding box in ℝ to a larger
or equal size bounding box in ℤ.
Its pseudo code, described in Algo-
rithm 2, uses MinBoundRP_to_ZP and
MaxBoundRP_to_ZP to ensure the new
bounding box contains the ℝ bounding
box. The time complexity of the algorithm
is linear, i.e., 𝑂(𝑛) where 𝑛 is the number of
points in the point cloud.

Figure 4 and Figure 5 show the application
of this algorithm on a sample point cloud
data from AHN (Actual Height of Nether-
lands dataset) of Noordereiland in Rotter-
dam, shown in Figure 3. This point cloud
is consisted of 136828 points as 𝑋 , 𝑌 , and
𝑍 coordinate tuples, we have provided this
point cloud in our GitHub repository. Fig-
ure 5 depicts voxels with higher resolution
than those shown in Figure 4.

Figure 3: Rotterdam AHN dataset, site in
Noordereiland

6 Curve Voxelization (1D
Inputs, 2D Targets)

According to the topological voxelization
approach [Laine, 2013] if an effectively one
dimensional input such as a curve is inter-
sected with voxels replaced by relevant in-
tersection targets mentioned in the Table 1,

6

Algorithm 1: voxelizePointCloud
Input : Point3d[] 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑, double 𝑠𝑥, double 𝑠𝑦, double 𝑠𝑧
Output: List<Point3d> voxels

1 Initialize begin
2 form a bounding box BBox in ℝ for the 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑, i.e. composed of six intervals between the

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑃𝑜𝑖𝑛𝑡 with largest 𝑋,𝑌, 𝑍 coordinates and the 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃𝑜𝑖𝑛𝑡 with the smallest;
3 define voxels as new list of 3D points;
4 define voxel size as Vector3d 𝑣𝑆𝑖𝑧𝑒 = [𝑠𝑥, 𝑠𝑦, 𝑠𝑧];

/* generate a bounding box equal or larger than the current bounding box in ℤ (c.f.,
Algorithm 2) */

5 𝑍𝐵𝐵𝑜𝑥 = RBBox_to_ZBBox(𝑅𝐵𝐵𝑜𝑥, 𝑣𝑆𝑖𝑧𝑒);
6 compute 𝐶𝑋 = ⌊(𝑍𝐵𝐵𝑜𝑥.𝑀𝑎𝑥.𝑋 − 𝑍𝐵𝐵𝑜𝑥.𝑀𝑖𝑛.𝑋)/𝑆𝑥⌋; /* number of voxels in 𝑋 direction */
7 compute 𝐶𝑌 = ⌊(𝑍𝐵𝐵𝑜𝑥.𝑀𝑎𝑥.𝑌 − 𝑍𝐵𝐵𝑜𝑥.𝑀𝑖𝑛.𝑌)/𝑆𝑦⌋; /* number of voxels in 𝑌 direction */
8 compute 𝐶𝑍 = ⌊(𝑍𝐵𝐵𝑜𝑥.𝑀𝑎𝑥.𝑍 − 𝑍𝐵𝐵𝑜𝑥.𝑀𝑖𝑛.𝑍)/𝑆𝑧⌋; /* number of voxels in 𝑍 direction */
9 define bool[„] 𝑉𝑜𝑥𝑒𝑙𝑠𝐼 as a 3D array of Booleans of size [𝐶𝑋,𝐶𝑌,𝐶𝑍];
10 define List<Point3d> 𝑉𝑜𝑥𝑒𝑙𝑠𝑂𝑢𝑡 as new list of 3D points;
11 Compute voxels begin
12 foreach vertex as Point3d in the point cloud do
13 compute integer 𝑖 = ⌊(𝑣𝑒𝑟𝑡𝑒𝑥.𝑋 − 𝑍𝐵𝐵𝑜𝑥.𝑀𝑖𝑛.𝑋)/𝑆𝑥⌋;
14 compute integer 𝑗 = ⌊(𝑣𝑒𝑟𝑡𝑒𝑥.𝑌 − 𝑍𝐵𝐵𝑜𝑥.𝑀𝑖𝑛.𝑌)/𝑆𝑦⌋;
15 compute integer 𝑘 = ⌊(𝑣𝑒𝑟𝑡𝑒𝑥.𝑍 − 𝑍𝐵𝐵𝑜𝑥.𝑀𝑖𝑛.𝑍)/𝑆𝑧⌋;

/* Check if a voxel was already generated for the 𝑖, 𝑗, 𝑘 location in ℤ, if not generate
one */

16 if 𝑉𝑜𝑥𝑒𝑙𝑠𝐼[𝑖, 𝑗, 𝑘] = 𝑓𝑎𝑙𝑠𝑒 then
17 𝑉𝑜𝑥𝑒𝑙𝑠𝐼[𝑖, 𝑗, 𝑘] = 𝑡𝑟𝑢𝑒/* mark it as visited */
18 Point3d 𝑉𝑜𝑥𝑒𝑙𝑂𝑢𝑡 = new Point3d(𝑖 × 𝑆𝑥, 𝑗 × 𝑆𝑦, 𝑘 × 𝑆𝑧);
19 𝑉𝑜𝑥𝑒𝑙𝑂𝑢𝑡 = 𝑉𝑜𝑥𝑒𝑙𝑂𝑢𝑡 + 𝑉𝑆𝑖𝑧𝑒/ + 𝑍𝑏𝑏𝑜𝑥.𝑀𝑖𝑛; /* change its reference as to the 𝑍 */
20 𝑉𝑜𝑥𝑒𝑙𝑠𝑂𝑢𝑡.𝐴𝑝𝑝𝑒𝑛𝑑(𝑉𝑜𝑥𝑒𝑙𝑂𝑢𝑡); /* and add it to the voxel output */

21 return voxels;

Algorithm 2: RBBox_to_ZBBox
Input : A bounding box in ℝ, i.e. composed of three intervals in 𝑋 , 𝑌 , and 𝑍 directions
Output: A bounding box embedded in ℝ, Corresponding to the voxels in ℤ

1 RBBox_to_ZBBox begin
/* to ensure the bounding box for voxels covers the whole bounding box in ℝ */

2 compute Point3d 𝑍𝑀𝑖𝑛𝑃 = MinBoundRP_to_ZP(𝑅𝐵𝑏𝑜𝑥.𝑀𝑖𝑛, 𝑣𝑆𝑖𝑧𝑒); /* min box corner */
3 compute Point3d 𝑍𝑀𝑎𝑥𝑃 = MaxBoundRP_to_ZP(𝑅𝐵𝑏𝑜𝑥.𝑀𝑎𝑥, 𝑣𝑆𝑖𝑧𝑒); /* max box corner */
4 return new BBox(𝑍𝑀𝑖𝑛𝑃, 𝑍𝑀𝑎𝑥𝑃);
5 Function MinBoundRP_to_ZP(𝑅𝑃𝑜𝑖𝑛𝑡, 𝑉𝑆𝑖𝑧𝑒) begin
6 compute 𝑥 = 𝑅𝑃𝑜𝑖𝑛𝑡.𝑋; 𝑦 = 𝑅𝑃𝑜𝑖𝑛𝑡.𝑌; 𝑧 = 𝑅𝑃𝑜𝑖𝑛𝑡.𝑍;
7 compute 𝑢 = 𝑉𝑆𝑖𝑧𝑒.𝑋; 𝑣 = 𝑉𝑆𝑖𝑧𝑒.𝑌; 𝑤 = 𝑉𝑆𝑖𝑧𝑒.𝑍;
8 compute 𝑍𝑃𝑥 = 𝑢.⌈𝑥/𝑢⌉; /* ceiling integer nearest to the 𝑋 coordinate of the point */
9 compute 𝑍𝑃𝑦 = 𝑣.⌈𝑦/𝑣⌉; /* ceiling integer nearest to the 𝑌 coordinate of the point */
10 compute 𝑍𝑃𝑧 = 𝑤.⌈𝑧/𝑤⌉; /* ceiling integer nearest to the 𝑍 coordinate of the point */
11 return 𝑍𝑃 = new Point3d(𝑍𝑃𝑥, 𝑍𝑃𝑦, 𝑍𝑃𝑧);
12 Function MaxBoundRP_to_ZP(𝑅𝑃𝑜𝑖𝑛𝑡, 𝑉𝑆𝑖𝑧𝑒) begin
13 compute 𝑥 = 𝑅𝑃𝑜𝑖𝑛𝑡.𝑋; 𝑦 = 𝑅𝑃𝑜𝑖𝑛𝑡.𝑌; 𝑧 = 𝑅𝑃𝑜𝑖𝑛𝑡.𝑍;
14 compute 𝑢 = 𝑉𝑆𝑖𝑧𝑒.𝑋; 𝑣 = 𝑉𝑆𝑖𝑧𝑒.𝑌; 𝑤 = 𝑉𝑆𝑖𝑧𝑒.𝑍;
15 compute 𝑍𝑃𝑥 = 𝑢.⌊𝑥/𝑢⌋; /* floor integer nearest to the 𝑋 coordinate of the point */
16 compute 𝑍𝑃𝑦 = 𝑣.⌊𝑦/𝑣⌋; /* floor integer nearest to the 𝑌 coordinate of the point */
17 compute 𝑍𝑃𝑧 = 𝑤.⌊𝑧/𝑤⌋; /* floor integer nearest to the 𝑍 coordinate of the point */
18 return 𝑍𝑃 = new Point3d(𝑍𝑃𝑥, 𝑍𝑃𝑦, 𝑍𝑃𝑧);

7

Figure 4: Rotterdam AHN-2 dataset, No-
ordereiland, voxel count 31880,
1 × 1 × 1 m

Figure 5: Rotterdam AHN-2 dataset, No-
ordereiland, voxel count 81588,
0.4 × 0.4 × 1 m

then the resulting set of voxels is guaran-
teed to have the desired connectivity level,
namely 6 or 26. The idea is to construct
intersection targets as triangle meshes and
then:

1. form a bounding box for the curve in
question;

2. adjust the bounding box to ensure its
size is an integer multiple of the voxel
size and that it covers the whole curve;

3. fill in the bounding box with voxels;
find out voxels which potentially in-
tersect with the curve in question, i.e.
those closer thanhalf of the size of a vir-
tual vector representing the diagonal of
a voxel cube;

4. for each voxel that is near enough to be
possibly included in the result, find out
if its relevant connectivity target inter-
sects with the curve in question; if yes
then add it to the voxels.

Here we explain our voxelization algorithm
for 1D data inputs, i.e. lines, polylines or

curves that can be approximated as such5.

The idea behnid the algorithmTriangleIn-
tersectsLine is to represent an imagina-
try intersection point in the triangle us-
ing two barycentric coordinates based on
the axes defined along two vectors corre-
sponding to two sides of the triangle. If
the barycentric parameters termed 𝑠 & 𝑡
can be found and they are both positive
and add up to one, then there is an in-
tersection inside the triangle in question.
An algorithm for TriangleIntesectsLine
is available at http://geomalgorithms.com
(by Dan Sunday, subject: Intersections of
Rays, Segments, Planes and Triangles (3D)).
The function 1D_26_intersectionTarget
described by the pseudo code in Algo-
rithm 4 creates mesh objects that ensure 26
connectivity if used as intersection target
for voxelizing 1D input.

The above algorithm is currently imple-
mented such that it produces 12 quadran-
gular faces and thus 24 triangles. It will
be therefore more efficient to implement
the above function instead. The func-
tion 1D_6_intersectionTarget described
by the pseudo code in Algorithm 5 creates
1Dmesh ensuring 6-connectivity. Note that
this intersection target produces 12 trian-
gles and that this number cannot be re-
duced, even if the other alternative for a 6-
connected result were implemented (i.e. the
outline faces of a voxel cube). This implies
that if we want to create a better-connected
raster with more voxels (6-connected), then
we need to do more computation.

The function BboxToVoxels, defined in Al-
gorithm6, canbeused tofill a boundingbox
with voxels.

The voxelizeCurve algorithm has been ap-
plied to a dataset consisting of street centre-
lines of a neighbourhood in Istanbul called
5Note that in our current implementation of

the curve voxelization algorithm we are using
the Curve-Mesh intersection algorithm from
Rhinocommon. This algorithm can be easily
rewritten using the line-triangle intersection al-
gorithm (Algorithm 10), provided that the input
curve is approximated as a polyline composed
of line segments. This is a normal procedure as
such approximation is needed for all kinds of
curves such as conic sections and NURBS prior to
rendering.

8

http://geomalgorithms.com

Algorithm 3: voxelizeCurve
Input : int 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, list<polyline> 𝑐𝑢𝑟𝑣𝑒𝑠, double 𝑠𝑥, double 𝑠𝑦, double 𝑠𝑧
Output: list<Point3d> 𝑣𝑜𝑥𝑒𝑙𝑠

1 foreach curve in curves do
2 form a bounding box in ℝ for curve;
3 define voxels as list of 3D points;

/* generate a bounding box equal or larger than the current bounding box in ℤ (c.f.,
Algorithm 2) */

4 𝑍𝐵𝐵𝑜𝑥 = RBBox_to_ZBBox(𝑅𝐵𝐵𝑜𝑥, 𝑣𝑆𝑖𝑧𝑒);
5 𝑣𝑆𝑖𝑧𝑒 = [𝑠𝑥, 𝑠𝑦, 𝑠𝑧];

/* Pseudo code described by Algorithm 6 */
6 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠 = BBoxToVoxels(𝑍𝐵𝐵𝑜𝑥, 𝑣𝑆𝑖𝑧𝑒);

/* voxel centre points closer than the length of vSize to the curve which possibly
intersect; */

7 𝑛𝑒𝑎𝑟_𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠.𝐹𝑖𝑛𝑑𝐴𝑙𝑙(𝑙𝑎𝑚𝑏𝑑𝑎|𝑙𝑎𝑚𝑏𝑑𝑎.𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜(𝐶𝑢𝑟𝑣𝑒) < |𝑣𝑆𝑖𝑧𝑒|/);
8 foreach 𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡 in 𝑛𝑒𝑎𝑟_𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡𝑠 do
9 if 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = then

/* Pseudo code described by Algorithm 4 */
10 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡 = 1D_26_intersectionTarget(𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡, 𝑣𝑆𝑖𝑧𝑒);
11 else if 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = then

/* Pseudo code described by Algorithm 5 */
12 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡 = 1D_6_intersectionTarget(𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡, 𝑣𝑆𝑖𝑧𝑒);
13 else
14 throw exception and prompt: “other connectivity levels undefined”;
15 if TriangleIntersectLine(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡, 𝑐𝑢𝑟𝑣𝑒) then
16 𝑣𝑜𝑥𝑒𝑙𝑠.𝑎𝑑𝑑(𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡);

17 return 𝑣𝑜𝑥𝑒𝑙𝑠;

Tarlabasi, shown in Figure 5, available on
OpenStreetMap6. The results are shown in
Figure 6. It is important to note that for
6-connectivity the both of the targets men-
tioned in Table 1 guarantee 6-connectivity
and in that sense are equally effective. How-
ever, the diagonal mesh target is only com-
posed of 8 triangles whereas the cube out-
line target will be practically composed of
12 triangles. It is important to note that for
solving intersections unambiguously an in-
tersection between a ray or a half-line and a
triangle should be found. This means that
in practice the diagonal target will 12/8 =
1.5 times faster than a corresponding cube
outline target. This is not the final conclu-
sion on efficiency however. As for imple-
menting Meta Intersection Targets, straight
faces would be advantageous as they can be
eventually replaced byfinding intersections
to half-planes.

Note that every line in the the voxelized
curve network in Figure 6 is 6-connected
but thewhole network is not. Ensuring such
connectivity for the network would require

6https://www.openstreetmap.org

Figure 6: A set of curves extracted from
OpenStreetMap representing a
street network Tarlabasi, Istanbul

Figure 7: Voxelized curves (street centre-
lines) with 6-connectivity from
Tarlabasi dataset with the resolu-
tion 10 × 10 × 10 m

9

https://www.openstreetmap.org

Algorithm 4: 1D_26_intersectionTarget

1
Input : voxel size as Vector3d
Output : an intersection target for 1D input ensuring 26 connectivity as a mesh object

as in the figure

Initialize begin
2 Mesh 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡 = new 𝑀𝑒𝑠ℎ();
3 Point3d[] 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = new Point3d[];
4 double 𝑢 = (𝑣𝑆𝑖𝑧𝑒.𝑋/), 𝑣 = (𝑣𝑆𝑖𝑧𝑒.𝑌/), 𝑤 = (𝑣𝑆𝑖𝑧𝑒.𝑍/);
5 Create Vertices begin
6 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, +𝑣,); /* parallel to 𝑋𝑌 */
7 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, +𝑣,); /* parallel to 𝑋𝑌 */
8 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, −𝑣,); /* parallel to 𝑋𝑌 */
9 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, −𝑣,); /* parallel to 𝑋𝑌 */
10 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡− new Vector3d(, +𝑣, +𝑤); /* parallel to 𝑌𝑍 */
11 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡− new Vector3d(, −𝑣, +𝑤); /* parallel to 𝑌𝑍 */
12 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(, −𝑣, −𝑤); /* parallel to 𝑌𝑍 */
13 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(, +𝑣, −𝑤); /* parallel to 𝑌𝑍 */
14 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, , +𝑤); /* parallel to 𝑍𝑋 */
15 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, , +𝑤); /* parallel to 𝑍𝑋 */
16 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, , −𝑤); /* parallel to 𝑍𝑋 */
17 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡− new Vector3d(+𝑢, , −𝑤); /* parallel to 𝑍𝑋 */

18 Create Faces begin
19 List<MeshFace> 𝐹𝑎𝑐𝑒𝑠 = 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡.𝐹𝑎𝑐𝑒𝑠;
20 𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒(, , ,); /* parallel to 𝑋𝑌 */
21 𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒(, , ,); /* parallel to 𝑌𝑍 */
22 𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒(, , ,); /* parallel to 𝑍𝑋 */
23 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡.𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝐴𝑑𝑑𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠);
24 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡.𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒𝑠(𝐹𝑎𝑐𝑒𝑠);
25 return 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡;

10

Algorithm 5: 1D_6_intersectionTarget

1
Input : voxel size as Vector3d
Output: an intersection target for 1D input ensuring 6 connectivity as a mesh object as in

the figure

Initialize begin
2 Mesh 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡 = new Mesh();
3 double 𝑢 = (𝑣𝑆𝑖𝑧𝑒.𝑋/), 𝑣 = (𝑣𝑆𝑖𝑧𝑒.𝑌/), 𝑤 = (𝑣𝑆𝑖𝑧𝑒.𝑍/);
4 Point3d[] 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = new Point3d[]; 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡;
5 Create Vertices begin
6 Vertices[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡− new 𝑉𝑒𝑐𝑡𝑜𝑟𝑑(+𝑢, +𝑣, +𝑤);
7 Vertices[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡− new 𝑉𝑒𝑐𝑡𝑜𝑟𝑑(−𝑢, +𝑣, +𝑤);
8 Vertices[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡− new 𝑉𝑒𝑐𝑡𝑜𝑟𝑑(−𝑢, −𝑣, +𝑤);
9 Vertices[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡− new 𝑉𝑒𝑐𝑡𝑜𝑟𝑑(+𝑢, −𝑣, +𝑤);
10 Vertices[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new 𝑉𝑒𝑐𝑡𝑜𝑟𝑑(−𝑢, −𝑣, +𝑤);
11 Vertices[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new 𝑉𝑒𝑐𝑡𝑜𝑟𝑑(+𝑢, −𝑣, +𝑤);
12 Vertices[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new 𝑉𝑒𝑐𝑡𝑜𝑟𝑑(+𝑢, +𝑣, +𝑤);
13 Vertices[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new 𝑉𝑒𝑐𝑡𝑜𝑟𝑑(−𝑢, +𝑣, +𝑤);
14 Create Faces begin
15 List<MeshFace> 𝐹𝑎𝑐𝑒𝑠 = 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡.𝐹𝑎𝑐𝑒𝑠; ;
16 𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒(, ,);
17 𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒(, ,);
18 𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒(, ,);
19 𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒(, ,);
20 𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒(, ,);
21 𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒(, ,);
22 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡.𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝐴𝑑𝑑𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠);
23 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡.𝐹𝑎𝑐𝑒𝑠.𝐴𝑑𝑑𝐹𝑎𝑐𝑒𝑠(𝐹𝑎𝑐𝑒𝑠);
24 return 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡;

Algorithm 6: BBoxToVoxels
Input : bounding box adjusted to voxel size (𝑍𝐵𝐵𝑜𝑥), voxel size as Vector3d (𝑣𝑆𝑖𝑧𝑒)
Output: a bounding box filled with voxels

1 Initialize begin
2 int 𝑖 = , 𝑗 = , 𝑘 = ;
3 int 𝐼𝑚𝑎𝑥 = [|𝑍𝐵𝐵𝑜𝑥.𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙.𝑋/𝑉𝑠𝑖𝑧𝑒.𝑋|];
4 int 𝐽𝑚𝑎𝑥 = [|𝑍𝐵𝐵𝑜𝑥.𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙.𝑌/𝑉𝑠𝑖𝑧𝑒.𝑌|];
5 int 𝐾𝑚𝑎𝑥 = [|𝑍𝐵𝐵𝑜𝑥.𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙.𝑍/𝑉𝑠𝑖𝑧𝑒.𝑍|];
6 List<Point3d> 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠 = new List<Point3d>();
7 Create Voxels begin
8 for ≤ 𝑘 < 𝐾𝑚𝑎𝑥 do
9 for ≤ 𝑗 < 𝐽𝑚𝑎𝑥 do
10 for ≤ 𝑖 < 𝐼𝑚𝑎𝑥 do
11 Point3d 𝑅𝑒𝑙𝑃𝑜𝑖𝑛𝑡 = new Point3d(𝑖 × 𝑣𝑆𝑖𝑧𝑒.𝑋, 𝑗 × 𝑣𝑆𝑖𝑧𝑒.𝑌, 𝑘 × 𝑣𝑆𝑖𝑧𝑒.𝑍);
12 𝑅𝑒𝑙𝑃𝑜𝑖𝑛𝑡 = 𝑅𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(𝑍𝐵𝐵𝑜𝑥.𝑀𝑖𝑛) + . × 𝑉𝑆𝑖𝑧𝑒;
13 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠.𝐴𝑑𝑑(𝑅𝑒𝑙𝑃𝑜𝑖𝑛𝑡);

14 return 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠;

11

extra measures and techniques.

7 Surface Voxelization (2D
Inputs, 1D Targets)

Function voxelizeSurface is used for
topological voxelization of 2D surfaces,
which are represented as TIN or triangular
polygon mesh objects. Note that other
surfaces such as NURBS surfaces are also
approximated as such for rendering pur-
poses and so they can be the input of this
method. The algorithm works by iterating
over triangle faces of the surface in question
by checking whether they intersect with the
relevant intersection target of each voxel
that could possibly be in resulted 3D raster.
The points that possibly intersect with an
intersection target are those whose distance
to the input object is less than half of the
length of the voxel size vector, i.e. a virtual
vector comprised of the voxel size in 𝑋 , 𝑌
and 𝑍 directions. Intersection between a
connectivity target and the input surface is
eventually determined by checking inter-
sections between individual line segments
and triangles. A standard algorithm for
determining whether a triangle and a line
intersect has been used for this purpose
(see Curve Voxelization (1D Inputs, 2D
Targets)).

Users can choose a level of connectivity (6
or 26), because of which a corresponding
connectivity target will be chosen here to
produce appropriate results. The pseudo
code is described in Algorithm 7.

The function 2D_26_intersectionTarget
described by the pseudo code in Algo-
rithm 8 creates 2D mesh ensuring 26 con-
nectivity.

The function2D_26_intersectionTargetDiagonal
described by the pseudo code in Algo-
rithm 9 creates a 2D mesh ensuring 26
connectivity with a diagonal target.

The function 2D_6_intersectionTarget
described by the pseudo code in Algo-
rithm 10 creates a 2D mesh ensuring 6 con-
nectivity with outline target.

Similar to the case of mesh targets for curve
inputs, it is notable that each diagonal line
target is only composed of 8 lines (which
can also be made with 4 lines) whereas the
outline target composed of cube edges is
consisted of 12 lines. This means that the
diagonal target is 12/8 = 1.5 times faster for
computing voxels in the output compared
to the cube outline edges. This is because
for each voxel to be included in the output
in the case of cube outline edges there must
be 12 intersections solved in the worst case
whereas the maximum number of line tri-
angle intersections in the case of diagonal
targets is 8. However, it might be advanta-
geous to work with the cube edges because
in that case 2D scan conversions parallel to
𝑋 , 𝑌 , or 𝑍 axes might be combined (in a
Meta Intersection Target) to find out voxels
in the output. This is important because 2D
scan conversion is a standard procedure for
graphical processors that pixelate vector in-
puts for visualization on 2D digital moni-
tors. Treating this matter in depth falls out-
side of the scope of this paper though.

Figure 8: A surface (triangular polygon
mesh) voxelized with connectiv-
ity level 26

Figure 9: A surface (triangular polygon
mesh) voxelized with connectiv-
ity level 6

12

Algorithm 7: voxelizeSurface
Input : int 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, mesh 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠, double 𝑠𝑥, double 𝑠𝑦, double 𝑠𝑧
Output: list<3D_points> 𝑣𝑜𝑥𝑒𝑙𝑠

1 foreach surface in surfaces do
2 form a bounding box in ℝ for curve;
3 define voxels as list of 3D points;

/* generate a bounding box equal or larger than the current bounding box in ℤ (c.f.,
Algorithm 2) */

4 𝑍𝐵𝐵𝑜𝑥 = RBBox_to_ZBBox(𝑅𝐵𝐵𝑜𝑥, 𝑉𝑆𝑖𝑧𝑒);
5 define voxel size as 𝑣𝑆𝑖𝑧𝑒 = [𝑠𝑥, 𝑠𝑦, 𝑠𝑧];

/* Pseudo code described by Algorithm 6 */
6 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠 = BBoxToVoxels(𝑍𝐵𝐵𝑜𝑥, 𝑉𝑆𝑖𝑧𝑒);

/* voxel centre points closer than half of the length vSize to the surface which possibly
intersect with the input surface */

7 𝑛𝑒𝑎𝑟_𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠.𝐹𝑖𝑛𝑑𝐴𝑙𝑙(𝑙𝑎𝑚𝑏𝑑𝑎|𝑙𝑎𝑚𝑏𝑑𝑎.𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜(𝑆𝑢𝑟𝑓𝑎𝑐𝑒) < |𝑉𝑆𝑖𝑧𝑒|/)
8 foreach 𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡 in 𝑛𝑒𝑎𝑟_𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡𝑠 do
9 if 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = then

/* Pseudo code described by Algorithm 8 */
10 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡 = 2D_26_intersectionTarget(𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡, 𝑣𝑆𝑖𝑧𝑒);
11 else if 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = then

/* Pseudo code described by Algorithm 10 */
12 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡 = 2D_6_intersectionTarget(𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡, 𝑣𝑆𝑖𝑧𝑒);
13 else
14 throw exception and prompt: “other connectivity levels undefined”;
15 if TriangleIntersectsLine(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡, 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) then
16 𝑣𝑜𝑥𝑒𝑙𝑠.𝑎𝑑𝑑(𝑣𝑜𝑥𝑒𝑙_𝑝𝑜𝑖𝑛𝑡);

17 return voxels;

Algorithm 8: 2D_26_intersectionTarget

1
Input : voxel size as Vector3d
Output: an intersection target for 2D input ensuring 26 connectivity as a line array as in

the figure

Initialize begin
2 Line[] 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑇𝑎𝑟𝑔𝑒𝑡 = new Line[];
3 Point3d[] 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = new Point3d[];
4 double 𝑢 = (𝑣𝑆𝑖𝑧𝑒.𝑋/), 𝑣 = (𝑣𝑆𝑖𝑧𝑒.𝑌/), 𝑤 = (𝑣𝑆𝑖𝑧𝑒.𝑍/);
5 Create Vertices begin
6 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, ,);
7 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(, +𝑣,);
8 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(, , +𝑤);
9 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, ,);
10 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(, −𝑣,);
11 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(, , −𝑤);
12 Create Edges begin
13 for ≤ 𝑖 ≤ do
14 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑇𝑎𝑟𝑔𝑒𝑡[𝑖] = new Line(𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖], 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 +]);
15 return 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡;

13

Algorithm 9: 2D_26_intersectionTargetDiagonal

1
Input : voxel size as Vector3d
Output: an intersection target for 2D input ensuring 26 connectivity as a line array as in

the figure

Initialize begin
2 Line[] 𝐼𝑇 = new Line[];
3 Point3d[] 𝑉𝑋 = new Point3d[];
4 double 𝑢 = (𝑣𝑆𝑖𝑧𝑒.𝑋/); 𝑣 = (𝑣𝑆𝑖𝑧𝑒.𝑌/); 𝑤 = (𝑣𝑆𝑖𝑧𝑒.𝑍/);
5 Create Vertices begin
6 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, +𝑣, +𝑤);
7 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, +𝑣, +𝑤);
8 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, −𝑣, +𝑤);
9 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, −𝑣, +𝑤);
10 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, −𝑣, −𝑤);
11 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, −𝑣, −𝑤);
12 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, +𝑣, −𝑤);
13 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, +𝑣, −𝑤);
14 Create Edges begin
15 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
16 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
17 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
18 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
19 return 𝐼𝑇 ;

8 Notes on Implementation
andApplication

Our implementation of point cloud vox-
elization algorithm and curve voxelization
algorithm are using rhinocommon.dll7 that
is a library provided by McNeel8, the ven-
dor of Rhino3D9. The dependencies how-
ever are mostly because of using geomet-
ric type definitions such as Point3D, Line
and Mesh, which can be replaced straight-
forwardly. An example code without such
dependencies is the surface voxelization
code provided in the repository. Codes
dependant on Rhinocommon can be com-
plied and tested in an environment such
as Grasshopper3D10 also developed by Mc-
Neel.

As can be seen in curve and surface vox-
elization algorithms, we are currently form-
ing a 3D grid full of voxels for a bounding
7http://4.rhino3d.com/5/rhinocommon/ See also:
https://github.com/mcneel/rhinocommon

8http://www.en.na.mcneel.com/
9https://www.rhino3d.com/

10http://www.grasshopper3d.com/

box of the input object. This can be prob-
lematic in case this bounding box is big. In
case of surfaces, it is more efficient to iter-
ate over individual triangle faces to avoid
this problem. Similarly, it will be more ef-
ficient to iterate over individual line seg-
ments in a polyline approximating the in-
put curve compared to iterating over curve
objects directly11. This, however, means that
there will be many duplicate voxels in the
raster output. To avoid this problem, a 3D
raster data model similar to the model im-
plemented in the voxelization algorithm for
point clouds needs to be implemented to
keep track of voxels already created and to
ensure there will not be duplicates. Such a
3D raster data model will be possibly very
space efficient as it should only store one
bit per voxel. Such an implementation
then will bring other advantages such as the

11This is not the case in our current implementation
now. We are iterating over ‘generic curve objects’
and use a function of Rhinocommon to intersect a
curve and a mesh. However, deep inside, this func-
tion is also based on intersecting line segments and
triangles. Note that free-form curve objects such as
NURBS curves are rendered as polylines with fine
line segments.

14

http://4.rhino3d.com/5/rhinocommon/
https://github.com/mcneel/rhinocommon
http://www.en.na.mcneel.com/
https://www.rhino3d.com/
http://www.grasshopper3d.com/

Algorithm 10: 2D_6_intersectionTarget

1
Input : voxel size as Vector3d
Output: an intersection target for 2D input ensuring 6 connectivity as a line array as in

the figure

Initialize begin
2 Line[] 𝐼𝑇 = new Line[];
3 Point3d[] 𝑉𝑋 = new Point3d[];
4 double 𝑢 = (𝑣𝑆𝑖𝑧𝑒.𝑋/); 𝑣 = (𝑣𝑆𝑖𝑧𝑒.𝑌/); 𝑤 = (𝑣𝑆𝑖𝑧𝑒.𝑍/);
5 Create Vertices begin
6 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, +𝑣, +𝑤);
7 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, +𝑣, +𝑤);
8 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, −𝑣, +𝑤);
9 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, −𝑣, +𝑤);
10 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, −𝑣, −𝑤);
11 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, −𝑣, −𝑤);
12 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(+𝑢, +𝑣, −𝑤);
13 𝑉𝑋[] = 𝑉𝑜𝑥𝑒𝑙𝑃𝑜𝑖𝑛𝑡+ new Vector3d(−𝑢, +𝑣, −𝑤);
14 Create Edges begin
15 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
16 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
17 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
18 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
19 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
20 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
21 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
22 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
23 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
24 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
25 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
26 𝐼𝑇[] = new Line(𝑉𝑋[], 𝑉𝑋[]);
27 return 𝐼𝑇 ;

15

ease of Boolean operations on multiple 3D
raster objects such as Boolean operations
(union, intersection, etc.) and mathemat-
ical morphology operations (erosion, dila-
tion, gradient, etc.) as it will only involve
bitwise operations, provided that every two
3D raster models are defined in reference to
the same bounding box so that theirℤ rep-
resentations are compatible. Then such a
requirement imposes another requirement
that regards the existence of many zeros in
any such 3D raster data model. Consider
a house model voxelized in reference to a
bounding box over the whole neighbour-
hood or city. It is obvious that most of the
voxels represented in the 3D array of bits
are zero. This suggests implementation of
a data structure like sparse matrix so that
such 3D rastermodels can be compressed in
memory.

What is interesting about a binary repre-
sentation of a voxel collection (as 3D raster)
is that the same way 2D raster data mod-
els (2D images) can be processed and anal-
ysed, 3D raster models (3D images if you
like) can be processed and analysed. What
is common in both cases is the binary rep-
resentation of coloured picture elements
(pixels) or coloured volume elements (vox-
els). In short, we can enter a completely
new world of possibilities inspired by dig-
ital image processing, merely by represent-
ing voxel grids as Boolean tensors (3D ma-
trices).

9 Acknowledgements

The work reported here was partly
funded by the Netherlands eScience
Center (NLeSC) project, Big Data Analyt-
ics in the Geo-Spatial Domain (https:
//www.esciencecenter.nl/?/project/
big-data-analytics-in-the-geo-spatial-domain),
project code: 027.013.703. We hereby thank
the reviewers for their constrcutive and
detailed comments, which improved the
paper significantly.

10 Additional Information
and Supplementary
Materials

10.1 Rasterizing CADmodels

Rasterization of a building model (Bent-
ley building) can be done using the C#
version of the code in Rhinoceros; as
shown in the following images (see our
exemplary immplementation of the
C# source for Rhino3D and Grasshop-
per 3D here: https://github.com/
NLeSC/geospatial-voxels/tree/master/
software/voxelGen/voxelizationTools_
Rhino_and_GH):

Figure 10: An IFC building mode provided
by Bentley Systems, imported as
OBJ generated fromoriginal BIM
model, corrected and coloured
to represent objects of different
semantics

Figure 11: Topological Rasterization with
Semantics from a BIM model [0.5
by 0.5 by 0.5 m]

16

https://www.esciencecenter.nl/?/project/big-data- analytics-in-the-geo-spatial-domain
https://www.esciencecenter.nl/?/project/big-data- analytics-in-the-geo-spatial-domain
https://www.esciencecenter.nl/?/project/big-data- analytics-in-the-geo-spatial-domain
https://github.com/NLeSC/geospatial- voxels/tree/master/software/voxelGen/voxelizationTools_Rhino_and_GH
https://github.com/NLeSC/geospatial- voxels/tree/master/software/voxelGen/voxelizationTools_Rhino_and_GH
https://github.com/NLeSC/geospatial- voxels/tree/master/software/voxelGen/voxelizationTools_Rhino_and_GH
https://github.com/NLeSC/geospatial- voxels/tree/master/software/voxelGen/voxelizationTools_Rhino_and_GH

Figure 12: Topological Rasterization with
Semantics from a BIM model
[0.4 by 0.4 by 0.4 m]

Figure 13: Topological Rasterization with
Semantics from a BIM model [0.1
by 0.1 by 0.1 m]

10.2 Rasterizing CityGML LOD2
models (GIS)

In voxelizing CityGML files the main issues
are defining a proper schema both for raster
3D and voxels in order to keep semantic
information such as the ones modelled in
a CityGML. Both of these issues and also
thematter of ensuring uniqueness of voxels
(avoiding duplicates when joining multiple
voxel collections) requires further inves-
tigation and implementation of measures
such as a 3D binary array to keep track of
visited voxels as implemented in our point
cloud voxelization algorithm. The follow-
ing images are test results of the last version
of the TUD_voxelizer code in C#, presented
in the aforementioned repository. Visual-
izations are done in CloudCompare.

Figure 14: The area voxelized using
CItyGML models provided
by the municipality of Rot-
terdam. See the data sets and
a sample voxelated result at:
https://github.com/NLeSC/
geospatial-voxels/tree/
master/software/voxelGen/
data

Figure 15: Rotterdam CityGML, Noorderei-
land, and neighbourhoods
around it; voxelized in different
resolutions, zoomed out.

Figure 16: Rotterdam CityGML, No-
ordereiland and neighbour-
hoods around it; Noordereiland
selected

17

https://github.com/NLeSC/geospatial-voxels/tree/master/software/voxelGen/data
https://github.com/NLeSC/geospatial-voxels/tree/master/software/voxelGen/data
https://github.com/NLeSC/geospatial-voxels/tree/master/software/voxelGen/data
https://github.com/NLeSC/geospatial-voxels/tree/master/software/voxelGen/data

Figure 17: Rotterdam CityGML, Noorderei-
land, 0.2 × 0.2 × 0.2; zoomed in.

10.3 Background and Literature
Review

In this section, we briefly compare (qual-
itatively) our developments with other 3D
rasterization algorithms for curves and sur-
faces. Since the geospatial objects are com-
monly represented by multiple surfaces,
the review is specifically on voxelizing sur-
faces. Use of volumetric primitives (cone,
cylinder, sphere) to represent buildings,
bridges, e.g. in BIM (Building information
modelling) are excluded. Research dis-
cussing voxelisation of such primitives can
be found in [Fang andChen, 2000] or [Jones
and Satherley, 2000].

Two general approaches can be distin-
guished in voxelisation: object rasteriza-
tion (e.g. Topological Voxelization) and
scan-conversion (e.g. 3D Scan Conversion)
in the body of existing methods. Object ras-
terization concentrates on the object of in-
terest following two steps: boundary raster-
ization (and possibly interior filling). The
scan conversion focuses on the bounding
box of the objects and decides that in a
given raster volume which voxels get what
kind of value. Most of the presented meth-
ods in this group are based on extensions
of thewell-known scan-conversionmethod,
which iswell studied and commonlyused in
the field of 2D computer graphics. After an
initial investigation of methods in a rather
historical order Table 5, we chose the follow-
ing methods to implement and compared
them according to our quality criteria:

• 3D Scan Conversion [Kaufman and
Shimony, 1986]: i.e. extended 2D scan
conversion into 3D. Thismethod is very

efficient but 6-Connectivity cannot be
reached, therefore 26-separability
not assured, difficult to generalize
the method to different geometric
primitives.

• Topological Voxelization [Laine, 2013]
NVIDIA: based on the concept of con-
nectivity target, very elegant mathe-
matically; which can be efficiently im-
plemented. The topological approach
focuses on matters of Boolean nature
such as connectivity, separability, in-
tersectionsmore explicitly compared to
former geometrical approaches.

If there is any interest in doing the same
comparison, we refer the reader to our im-
plementation of both methods at: https://
github.com/NLeSC/geospatial-voxels/
tree/master/software/voxelGen. How-
ever, giving full account of our implemen-
tation of 3D scan conversion falls out of the
scope of this paper.

References
Ken Arroyo Ohori, Hugo Ledoux, and Mar-

tijn Meijers. Validation and automatic
repair of planar partitions using a con-
strained triangulation. Photogrammetrie,
Fernerkundung, Geoinformation, 5:613–630,
October 2012.

Daniel Cohen-Or and Arie Kaufman. Fun-
damentals of surface voxelization. Graph-
ical Models and Image Processing, 57(6):
453–461, November 1995.

Max J. Egenhofer and John R. Herring. A
mathematical framework for the defini-
tion of topological relations. In Pro-
ceedings of the 4th International Symposium
on Spatial Data Handling, pages 803–813,
1990.

Shiaofen Fang andHongsheng Chen. Hard-
ware accelerated voxelisation. Computers
& Graphics, 24(3):433–442, June 2000.

Jian Huang, Roni Yagel, Vassily Filippov,
and Yair Kurzion. An accurate method
for voxelizing polygon meshes. In VVS ’98
Proceedings of the 1998 IEEE symposium on
Volume visualization. ACM Press, 1998.

18

https://github.com/NLeSC/geospatial-voxels/tree/master/software/voxelGen
https://github.com/NLeSC/geospatial-voxels/tree/master/software/voxelGen
https://github.com/NLeSC/geospatial-voxels/tree/master/software/voxelGen

Table 5: A qualitative comparison of voxelization algorithms
Year 1997 1995 1998 2003 2010 2013

Authors Kaufman
and Shi-
mony [1986]

Cohen-Or
and Kauf-
man [1995]

Huang et al.
[1998]

Varadhan
et al. [2003]

Schwarz and
Seidel [2010]

Laine [2013]

Method 3D Scan
Conversion
(lines)

3D Scan Con-
version (sur-
faces)

Distance
Based
(Spheres)

Max-Norm
distance

Parallel vox-
elization us-
ing GPUs

Topological
Voxelization

Explicit
topology
control?

Yes only
for 26- con-
nectivity/6
separation

Yes only
for 26 con-
nectivity/6
separation

Yes N/A Yes Yes

Notes 6-connected
results can-
not be pro-
duced

6-connected
results
cannot be
produced,
multiple
algorithms
for differ-
ent types of
surfaces

Is not mini-
mal and it is
sensitive to
tessellation

Produces a
‘cover’ voxel
set, can be
eventually
used for
improving
efficiency
of other
methods

Using an un-
necessarily
large target
results in
voxels that
are not re-
quired for 6-
separation,
thus not
minimal

Elegant
method that
comes with
mathemati-
cal proofs for
topological
properties;
algorithm
not clearly
defined

Mark W. Jones and Richard Satherley. Vox-
elisation: Modelling for volume graph-
ics. In Vision, Modeling, and Visualisation,
2000.

Arie Kaufman and Eyal Shimony. 3D scan-
conversion algorithms for voxel-based
graphics. In I3D ’86 Proceedings of the 1986
workshop on Interactive 3D graphics, pages
45–75. ACM Press, 1986.

Samuli Laine. A topological approach to
voxelization. Computer Graphics Forum, 32
(4):77–86, July 2013.

Jiyeong Lee. 3D datamodel for representing
topological relations of urban features. In
Proceedings of the 21st Annual ESRI Interna-
tional User Conference, 2001.

Jildou Louwsma, Sisi Zlatanova, Ron van
Lammeren, and Peter van Oosterom.
Specifications and implementations of
constraints inGIS—with examples from a
geo-virtual reality system. GeoInformatica,
10(4):531–550, 2006.

James R. Munkres. Elements of Algebraic
Topology. Perseus Books, 1984.

OGC. OGC IndoorGML. Open Geospatial
Consortium, December 2014.

Simon Pigot. Topological models for 3D
spatial information systems. In Proceed-
ings of the 10th International Symposium
on Computer Assisted Cartography (AUTO-
CARTO 10), pages 369–391, 1991.

Michael Schwarz and Hans-Peter Seidel.
Fast parallel surface and solid voxeliza-
tion on gpus. ACM Transactions on Graph-
ics (TOG)—Proceedings of ACM SIGGRAPH
Asia 2010, 29(6), 2010.

Gokul Varadhan, Shankar Krishnan,
Young J. Kim, Suhas Diggavi, and Di-
nesh Manocha. Efficient max-norm
distance computation and reliable vox-
elization. In SGP ’03 Proceedings of the 2003
Eurographics/ACM SIGGRAPH symposium
on Geometry processing. ACM Press, 2003.

Sisi Zlatanova. On 3D topological relation-
ship. In Proceedings of the 11th Interna-
tional workshop on Database and Expert Sys-
tem Applications (DEXA 2000), pages 913–
919, 2000.

19

	Introduction
	Topological Voxelization in Brief
	What is an Intersection Target?
	What is special about topological approach over alternatives?
	Point Voxelization (0D Inputs, 3D Targets)
	Curve Voxelization (1D Inputs, 2D Targets)
	Surface Voxelization (2D Inputs, 1D Targets)
	Notes on Implementation and Application
	Acknowledgements
	Additional Information and Supplementary Materials
	Rasterizing CAD models
	Rasterizing CityGML LOD2 models (GIS)
	Background and Literature Review

