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An alternative to the traditional approaches to model separately 2D/3D space,
time, scale and other parametrisable characteristics in GIS lies in the higher-
dimensional modelling of geographic information, in which a chosen set of non-
spatial characteristics, e.g. time and scale, are modelled as extra geometric di-
mensions perpendicular to the spatial ones, thus creating a higher-dimensional
model. While higher-dimensional models are undoubtedly powerful, they are
also hard to create and manipulate due to our lack of an intuitive understand-
ing in dimensions higher than three. As a solution to this problem, this paper
proposes a methodology that splits the creation and manipulation of an nD ob-
jects in three steps: (i) constructing simple nD objects based on nD prismatic
polytopes—analogous to prisms in 3D—, (ii) defining simple modification oper-
ations at the vertex level, and (iii) simple postprocessing to fix errors introduced
in the model. In particular, we show how two sets of operations can be defined
and implemented in a dimension-independent manner using this methodology:
the most common transformations (i.e. translation, scaling and rotation) and the
collapse of objects.
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1 Introduction

The traditional approaches to model 2D/3D
space, time and scale in GIS are mostly
based on adaptations to well-known 2D data
structures, such as the DCEL [Muller and
Preparata, 1978] and the quad-edge [Guibas
and Stolfl, 1985]. Many ‘3D’ GIS internally
represent objects using a 2.5D structure, es-
sentially treating the third dimension as
an attribute, or represent individual 3D ob-
jects only implicitly through the 2D surface
that separates their interior from their exte-
rior. Spatiotemporal GIS keep multiple rep-
resentations of 2D structures [Armstrong,
1988], each at a different point in time, or
a list of changes per object [Worboys, 1992,
Peuquet, 1994], while multi-scale datasets
generally consist of independent datasets at
each scale with some identifiers that link
equivalent objects between datasets [Friis
Christensen and Jensen, 2003, Stoter et al.,
2014].

An alternative to this approach lies in the
higher-dimensional modelling of geographic in-
formation [Arroyo Ohori, 2014], where a
chosen set of non-spatial characteristics,
e.g. time and scale [van Oosterom and
Stoter, 2o1d], are modelled as true geo-
metric dimensions in addition to the spa-
tial ones. For instance, the complete his-
tory of a set of 3D objects in time and
all of their possible representations at var-
ious scales can be modelled as a sin-
gle 5D model. Mathematically, a higher-
dimensional model corresponds to the def-
inition of an n-dimensional cell complex
(Section p.1), which can be directly imple-
mented in a computer using a variety of
data structures.

Higher-dimensional models are undoubt-
edly space-intensive, but they are also very
powerful: they provide a simple and con-
sistent way to store the geometry, attributes
and topological relationships between any
objects of any dimension. However, one of
the main problems of higher-dimensional mod-
els is that they are not intuitive. While we are
used to solving problems in 2D and 3D, and
we thus have an intuitive understanding of
2D and 3D space, and of operations on 2D

and 3D objects (e.g. the Euler operators typ-
ically used to create polyhedra), we do not
have similar intuitive notions and experi-
ences for nD objects.

As a partial solution to this problem,
this paper proposes to use nD prismatic
polytopes—analogous to prisms in 3D—as a
base for the creation and manipulation of
nD models. Prismatic polytopes essentially
represent objects that are unchanged along
asingle dimension. By applying a modifica-
tion operation to the vertices of the top or
bottom facet of a prismatic polytope, they
can be used to model many common geo-
graphic phenomena, such as objects that are
moving and/or changing shape in time, or
being generalised as their LOD is reduced.
Moreover, unlike arbitrary nD objects, nD
prismatic polytopes can be easily created
based on nD extrusion, as is explained in
Section p.2.

Our methodology (Section §) splits the cre-
ation or modification of a set of nD objects
into three steps: (i) creating simple nD ob-
jects based on nD prismatic polytopes, (ii)
defining simple modification operations at
the vertex level, and (iii) simple postpro-
cessing to fix the errors introduced in the
model.

Within this paper, we describe in detail
two concrete examples of operations de-
fined based on our general methodology:
the most common transformations applied
to GIS objects (i.e. translation, scaling and
rotation) in Section j4.1, and collapsing cells
in Section [4.2. We finish the paper with
a discussion on the possibilities of these
and other nD operations based on the same
methodology in Section .

2 Related work

2.1 nD cell complexes and their
implementation

Hereafter follows a simple intuitive def-
inition of n-dimensional cell complexes
and their related terms as used in this pa-
per. More correct (but harder) definitions



are usually based on induction. See e.g.
Fomenko [1990] or Hatcher [2002]].

An n-dimensional cell complex is a struc-
ture made of connected cells of dimensions
from zero up to n, where an i-dimensional
cell (i-cell), 0 < i < n, is an object homeo-
morphic to an open i-ball (i.e. a oD point, 1D
open arc, 2D open disk, 3D open ball, etc.)i.
o-cells are commonly known as vertices, 1-
cells as edges, 2-cells as faces and 3-cells as
volumes. For GIS purposes and consider-
ing only linear geometries, o-cells are used
to model points, 1-cells to model line seg-
ments, 2-cells to model polygons, 3-cells to
model polyhedra, and so on. Figure [l shows
a diagrammatic description of a set of three
simple polygons as a 2D cell complex.

1=z

(a) Polygons (b) Cell complex

Figure 1: (a) A set of polygons can be rep-
resented as (b) a 2D cell complex
consisting of o-cells (black disks),
1-cells (black lines), and 2-cells
(coloured polygons).

An i-cell (i > 0) is bounded by a structure of
j-cells, j < i, which are collectively known as
its boundary. A j-dimensional face (j-face) of
an i-cell is a j-cell, j < i, that is part of the
boundary of the i-cell. A facet of an i-cell is
an (i — 1)-face of the i-cell, and a ridge of an
i-cell is an (i — 2)-face of the i-cell. A facet of
a polyhedron is thus one of the polygons on
its boundary, and a ridge of the polyhedron
is one of the line segments on its bound-

ary.

Various surveys describe the data structures
that can be used to represent n-dimensional
cell complexes [Comi¢ and de Floriani,

*Note that these objects do not contain their bound-
ary, unlike closed i-balls which do contain it.

2012, Arroyo Ohori et all, oisb]. Possi-
ble data structures include incidence graphs
[Rossignac and O’Connot, 1989, Masuda,
1993, Sohanpanah, 1989], Nef polyhedra
[Bieri and Nef, 1988], and ordered topologi-
cal models [Brisson, 1993, Lienhardt, 1994].
nD combinatorial maps [Damiand and
Lienhard{, 2014] are particularly promising
[Arroyo Ohori et all, 2015b], as they are rea-
sonably compact, can elegantly handle at-
tributes for the cells of every dimension
and have an excellent freely available imple-
mentation in CGALE. They are thus used in
order for the implementations developed in
this paper.

2.2 Prismatic polytopes and their
creation using extrusion

A prismatic polytopel is the higher-
dimensional analogue of a 2D rectangle
or a 3D prism. Using the terminology of a
cell complex and just like in rectangles and
prisms, a prismatic polytope can be defined
intuitively as a cell that is bounded by a set
of facets: two identical ‘top’ and ‘bottom’
facets, and a set of other facets that join
corresponding ridges of the top and bot
tom facets. Figure Pl shows an icosahedral
prism, an example of a 4D prismatic poly-
tope with icosahedron-shaped (equivalent
to Figure pB) top and bottom facets.

Extrusion is a widely used technique in
GIS to construct simple 3D models from
2D-+height data [Ledoux and Meijers, 2011].
Starting from a set of non-overlapping poly-
gons and a height interval associated to
each of them, it generates a set of non-
overlapping prisms by considering that
each polygon exists all along its related in-
terval. As shown in Figure B, a set of build-
ing footprints and associated heights can
thus be extruded into a set of simple pris-
matic buildings. Figure | shows a differ-
ent 3D use case in which the third dimen-
sion represents time. The history of a set of
building footprints is thus represented by a
set of extruded polyhedra.

2http://www.cgal.org
3A polytope is analogous to a polygon in 2D or poly-
hedron in 3D.
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Figure 2: The 24 vertices, 72 edges, 70 faces
and 22 volumes bounding an
icosahedral prism in a stereo-
graphic projection from 4D to 3D,
shown here in parts for clarity.
Due to the projection used, the
fourth dimension corresponds to
an inwards-outwards axis. In this
manner, the ‘top’ and ‘bottom’
facets (i.e. volumes in this 4D
case) of the prismatic polytope are
visualised as (a) the inner and (b)
the outer icosahedra. Meanwhile,
(c-f) the other facets are triangular
prisms that join corresponding
ridges (i.e. faces in this 4D case) of
the top and bottom facets.

Figure 3: A simple 3D city model created by
extruding buildings.

Figure 4: A 2D+time model generated using
extrusion. The red volume repre-
sents the footprint of a corridor
that existed between times ¢; and
t,. The left and right building foot-
prints were thus extruded along
[#o, 3] and the corridor footprint
along [t4, t,].

While extrusion is usually used in GIS only
in this 2D-to-3D form, it can be straight-
forwadly generalised to higher dimensions
[Arroyo Ohori et all, o15d]: given a set of
(n — 1)-dimensional objects in the form of a
(n — 1)-dimensional cell complex, and a set
of'intervals per (n—1)-cell in the complex, it
is possible to extrude the cells along the n-th
dimension, thus creating a n-dimensional
cell complex. Considering linear geome-
tries only, this perfectly corresponds to the
creation of a set of n-dimensional prismatic
polytopes from a set of (n — 1)-dimensional
polytopes.

When all the (n — 1)-cells are extruded
along a single identical interval, this oper-
ation can be computed purely combinatori-
ally (i.e. without any geometric tests) and is
equivalent to the Cartesian product of the
cells in the complex with an edge. This
was described for the case of generalised
maps—an ordered topological model—by




Lienhardt et al! [2oo4]. Moreover, such
a procedure can be repeated in order to
support more than one interval, and given
some preprocessing of the intervals by sub-
dividing them into non-overlapping parts,
it can also be used with different intervals
per cell, as was suggested by Ferrucci [1993].
Arroyo Ohori et al| [2015d] describes a more
complex method to do so in the context
of a generalised or combinatorial map, but
one that minimises the total number of gen-
erated cells. For the purposes of this pa-
per, any of these methods can be used as
a base to generate the required prismatic
polytopes.

3 Methodology

We propose a simple methodology for the
creation and manipulation of nD objects
based on three steps: (i) an (n — 1)-
dimensional object or set of objects is ex-
truded into a set of n-dimensional prismatic
polytopes, (ii) a modification operation is
applied to the vertices of the top or bottom
facets of each prismatic polytope, and (iii)
simple postprocessing is used to fix the er-
rors that were introduced in the model. The
manipulation of an nD object corresponds
to the last two steps only. If a topological
data structure is used, the last step includes
recomputing the topological relationships
between the cells that have changed. The
reasoning behind each of these steps is de-
scribed in more detail below.

A n-dimensional prismatic polytope, where
the n-th dimension represents a non-spatial
characteristic such as time or scale, essen-
tially represents a lack of change. It can be
thus equivalent to an (n — 1)-dimensional
object whose geometry does not change
along a period of time or whose represen-
tation is valid along an interval of levels of
detail (LODs) [Arroyo Ohori et all, boisa].
While extrusion might seen unduly restric-
tive, it is able to produce a large set of use-
ful objects (see e.g. the complex examples in
Ferrucci [1993]), and it remains simple and
intuitive even in higher dimensions.

Moreover, the facets of a prismatic polytope

have a few properties that make them ap-
pealing as a base for further operations:

- the top and bottom facets are parallel
to the (n — 1)-dimensional subspace de-
fined by the axes of the n — 1 coor-
dinate system of the original (n — 1)-
dimensional cell complex—or alterna-
tively, the top and bottom facets are or-
thogonal to the newly defined n-th axis;

- the ‘side’ facets connecting corre-
sponding ridges of the top and bottom
facets are orthogonal to the (n — 1)-
dimensional subspace defined by the
axes of the n — 1 coordinate system of
the original (n — 1)-dimensional cell
complex—or alternatively, the side
facets are parallel to the newly defined
n-th axis.

Together, these properties mean that it is
possible to apply various modification op-
erations by applying them directly to the
vertices of the top or bottom facet of a pris-
matic polytope. Or in the case of multi-
ple extrusions (i.e. multiple prisms stacked
on top of each other), to the vertices of any
facet that is orthogonal to the n-th axis. As
long as these modifications do not move the
vertices of the facet out of the hyperplaneH
where it lies, and the modifications do not
cause the side facets to intersect (e.g. a 180°
rotation), the resulting polytope should be
a reasonably well behaved object. That is, it
should contain only minor errors that are
relatively easy to fix, either by minor mod-
ifications to the process or by using sim-
ple preprocessing or postprocessing steps
(e.g. moving some vertices to remove self-
intersections).

For instance, a smooth non-self intersect-
ing rotation of any angle can be obtained
by applying several small extrusions and
rotations that together define the complete
rotation—thus generating a screw shape
rather than a twisted prism. In this manner,
even rotations of more than 360° are possi-
ble. Meanwhile, many other types of opera-
tions causing self-intersections can be fixed
by first refining the input cells into smaller

4i.e. an (n — 1)-dimensional unbounded linear sub-
space in an n-dimensional setting, such as a line in
2D and a plane in 3D.



cells whose neighbourhood is expected to
be well-behaved. Among other examples,
this preprocessing step can solve problems
with flexible objects that do not morph uni-
formly (such as animated 3D models, which
might otherwise have self-intersections), as
well as non-linear transformations.

4 Two sets of operations on
prismatic polytopes

In order to provide clear examples of
nD operations that can be defined us-
ing the methodology described above, this
section describes two such operations in
detail and in a dimension-independent
form: the most common transformations
in Section .1, and collapsing cells in Sec-
tion [4.2. The former represents the base
of most interactive geometric modellers,
while the latter together with the former
provide a simple way to define a set of sim-
ple dimension-independent map generali-
sation operators.

4.1 Simple transformations

Starting from a set of n-dimensional pris-
matic polytopes, where every vertex is em-
bedded in a location in R", it is possible to
define a set of basic transformations to ma-
nipulate them or parts of them (e.g. their top
or bottom (n — 1)-dimensional facets) sim-
ply by applying these transformations to the
coordinates of their corresponding vertices.
This section thus gives a simple dimension-
independent formulation of the most im-
portant transformations that are typically
applied to 2D/3D objects in GIS: transla-
tion, scaling and rotation. In this way, ob-
jects that are moving or changing in shape
(in certain ways) can be modelled. Fig-
ure f§ shows the result of these transforma-
tions being applied to the vertices of the top
facet of a prismatic polyhedron, which was
generated by extruding a building footprint
with two holes. Note how the two holes in

the original polygon become generall of the
extruded polyhedron’s surface.

(c) Rotation

(d) Scaling

Figure 5: Applying transformations to the
top face of (a) a prism results in:
(b) a parallelepiped in the case of
a translation, (c) a twisted prism in
the case of a rotation, and (d) a
frustum in the case of scaling.

Translating of a set of points in IR” can be
easy expressed as a sum with a vector t =
[to, ..., t,], or alternatively as a multiplica-
tion with a matrix using homogeneous co-
ordinates, which is defined as:

10 0 t
01 0 #
T=|: : Do
00 1t
00 0 1

For instance, it is often useful to apply a
multiplication with a centering matrix [Mar
den, 1996, §3.2], which moves a dataset to a
position around the origin. Such a matrix

would be defined as I, — %Ml, where I, is

an n X n identity matrix and M; isann X n
matrix where all entries are set to 1.

Scaling is similarly simple. Given a vector
s = [sg,$1, - ,S,] that defines a scale factor
per axis (which in the simplest case can be
the same for all axes), it is possible to define
a matrix to scale an object as:

SPlural of genus. Intuitively, the genus of a surface in-
dicated how many holes or handles it has. For in-
stance, a donut has genus 1.
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Rotation is somewhat more complex. Ro-
tations in 3D are often conceptualised in-
tuitively as rotations around an axis. As
there are three degrees of rotational free-
dom in 3D, combining three such elemental
rotations can be used to describe any rota-
tion in 3D space. Most conveniently, these
three rotations can be performed respec-
tively around the x, y and z axes, such thata
point’s coordinate on the axis being rotated
remains unchanged. This is a very elegant
formulation, but this view of the matter is
only valid in 3D.

A more correct way to conceptualise rota-
tions is to consider them as rotations paral-
lel to a given plane [Hollasch, 1991], such that
a point that is continuously rotated (with-
out changing rotation direction) will form
a circle that is parallel to that plane. This
view is valid in 2D (where there is only one
such plane), in 3D (where a plane is orthog-
onal to the usually defined axis of rotation)
and in any higher dimension. Incidentally,
this shows that the degree of rotational free-
dom in 1D is given by the number of possi-
ble combinations of two axes (which define
aplane) on that dimension [Hansorn, 1994],
Le. (7). A general rotation in any dimension

can also be seen as a sequence of elemen-
tary rotations, although the total number of
these rotations that need to be performed
increases significantly.

Consider the 2D rotation matrix R,,, that ro-
tates points in IR? parallel to the xy plane:

R = [cos 0

—sin @
XY 7 |sin @

cos 6

Based on it, it is possible to obtain the three
3D rotation matrices to rotate points in R3
around the x, y and z axes, which corre-
spond to the rotations parallel to the yz, zx

and xy planesf. These would consist of an

SNote the order of the three rotation planes given
here, which results from omitting the axes x, y and

identity row and column that preserves the
coordinate of a particular axis and rotates
the coordinates of the other two, resulting
in the following three 3D rotation matri-
ces:

1 0 0
R, =[0 cos® -—sinf
[0 sinf cos0 |

[ cosO 0 sin0]
R, = 0 1 0
|—sin@ 0 cosO)]

[cos@ —sinO O]
R, =|sin@ cos® O
0 0 1]

Similarly, in a 4D coordinate system defined
by the axes x, y, z and w, it is possible to de-
fine six 4D rotation matrices, which corre-
spond to the six rotational degrees of free-
dom in 4D [Hanson, 1994]. These respec-
tively rotate points in IR* parallel to the xy,
xz, xw, yz, yw and zw planes:

cos@ -sinf 0 O cos@ 0 -sinf O
R = sin@ cos@ 0 O R = 0 1 0 0
xy 0 0 1 0 z " |sin@ 0 cos@ O
0 0 0 1 0 0 0 1
cos@ 0 0 -—sinf 1 0 0 0
R = 0 1 0 0 R. = 0 cos@ -—sinf O
xw 0 0 1 0 2710 sin® cosO@ O
sinf 0 0 cosf 0 0 0 1

1 0 0 0 1 0 0 0

R = 0 cos§ 0 ~—sinf R = 0 1 0 0
yw = [0 0 1 0 zZw =10 0 cosO —sinBO

0 sin@ 0 cosO 0 0 sin@ cosO

This scheme of a set of elementary rotations
can be easily extended to any dimension,
always considering a rotation matrix as a
transformation that rotates two coordinates
of every point and maintains all other co-
ordinates. An alternative to this could be to
apply more than one rotation at a time [van
Elfrinkhof, 1897]. However, for an appli-
cation expecting user interaction, it might
be more intuitive to rely on an arbitrarily

z (in that order). Note also the order of the two axes
in zx, which follows the right hand rule and defines
the signs of the sines in the rotation matrices.




defined rotation plane that does not corre-
spond to specific axes, e.g. by defining such
a plane through a triplet of linearly inde-
pendent points [Hanson, 1994].

Unlike the cases of translation and scaling
presented above, a rotation applied to the
vertices of the top or bottom facet of a pris-
matic polytope causes its side facets to de-
form. The vertices of such side facets thus
do not lie on a hyperplane (i.e. its vertices
become non-collinear, non-coplanar, etc.).
If this is a problem, it is then necessary to
apply a simple postprocessing step that sub-
divides the side facets into simplices (i.e. tri-
angles in a 3D model, tetrahedra in a 4D
model). Since the side facets of model are
combinatorially equivalent to (n — 1)-cubes,
they can be decomposed into simplices with
ease. For instance, a square is split into
two triangles by an edge that joins two of
its opposite vertices, and a cube can be split
into 5 tetrahedra. Similar optimal simpli-
cial decompositions are known up to 7D
[Hughes and Anderson, 1994], while non-
optimal solutions are known for any di-
mension [Orden and Santos, 2003, Haiman,

1991]].

4.2 Collapsing cells

Collapsing cells is perhaps the most com-
mon simplification operation used in both
geometric processing and in cartographic
generalisation [Weibel, 1997]. For instance,
collapsing edges and faces in a triangula-
tion are the two most important fundamen-
tal operations used in the simplification
of a GIS TIN, or more generally any tri-
angular or polygonal mesh [Hoppe, 1996].
Similarly, roads are collapsed from areas
to lines and cities are collapsed from areas
to points at appropriate scales according to
various cartographic rules [SGK, 1975]. For
instance, Goodchild [2001] suggests a mini-
mal feature size in paper maps of 0.5 mm—
arguably, objects smaller than this value
should be either increased in size or col-
lapsed to points and represented instead us-
ing appropriate symbols.

Within the methodology described in this
paper, implementing the collapse of a cell

ofany dimension is quite simple and can be
performed in three steps: (i) all the vertices
of the cell are moved to a single location (e.g.
the centroid of the cell or a point known to
lie in its interior), (ii) the degenerate cells
produced by this process are removed, and
(iii) any non linear geometries that were
generated are subdivided. Figure [ shows
an example with the collapse operation ap-
plied to the top face and an edge of the top
face of a polyhedron. Figure [] shows a 4D
example where the collapse operation is ap-
plied to a volume.

(b) Edge collapse

Figure 6: Cells can be collapsed by moving
all of their vertices to the same lo-
cation. Shown here are the col-
lapse of (a) a face and (b) an edge
on the top facet of the prism. The
modified edges in (b) are high-
lighted in red. Note how among
the modified edges, one edge that
is not incident to the collapse ver-
tex (plus another one hidden from
this view) is added in order to tri-
angulate a non-planar facet.

As in the rotation example from Section 4.1,
it is also important to note that if a lower-
dimensional cell that is collapsed is a face of



Figure 7: Collapsing a facet consisting of the
volume of a simple 3D model of a
house in 4D. As in Figure P, the
fourth dimension corresponds to
an inwards-outwards axis due to
the stereographic projection that
is used.

some higher-dimensional cells, the higher-
dimensional cells might deform so that
their vertices will not lie on a hyperplane.
Whether this happens depends on the loca-
tion of the newly collapsed vertex. As be-
fore, if this is a significant problem, such
higher-dimensional cells can be split into
simplices.

Collapse operations can be used in other
ways as well. As shown in the edge collapse
example in Figure 6B, it is possible to define
operations that are applied only to certain
vertices of a facet. However, these vertices
do not have to correspond to the vertices of
any given cell. For instance, they can be ap-
plied to the vertices surrounding a hole in
the top or bottom facet. This makes it pos-
sible to define operations that correspond
to the removal of a hole of any dimension,
such as in the example in Figure J§.

Once a collapse operation has been per-
formed, it is then often desirable to remove
the degenerate cells from the model, i.e.
those that are infinitesimally small but still
exist in the model. Such cells are those
that have been explicitly collapsed, as well as

(a) Viewed from the top

(b) Viewed from the bottom

Figure 8: Collapsing the vertices surround-
ing both of the holes on the bot-
tom facet of a prism. Note how
in (b) the view from the bottom,
the holes are collapsed into sin-
gle vertices. If a subsequent extru-
sion was applied to this face, they
could then be ignored and reflect
a smoothly changing geometry.

the lower-dimensional ones thatlie on their
boundaries. However, even if this infor-
mation is lost in the process, detecting the
degenerating cells created by this method
is straightforward: such cells are those that
have all their vertices at the same location
in R”. An algorithm can thus iterate over
all the vertices of all the cells of the model
and easily find those that are degenerate.

When a topological data structure is not
used, the degenerate cells can be deleted di-
rectly. However, when a topological data
structure is used, it is better to remove
these cells using algorithms that operate
on a combinatorial level and recomputes
only the topological relationships that have
changed. The exact form of such operations
depends on the specific data structure that
isused. For instance, n-dimensional combi-



natorial and generalised maps already have
a defined dimension-independent removal
operator [Damiand and Lienhardt, 2003,
2014] that corresponds exactly to this re-
quirement.

If such an operation has not been defined,
an alternative approach would be to remove
all the combinatorial primitives belonging
to the deleted cells (and are not used else-
where), and then proceed to recompute re-
construct an object from its boundary, e.g.
using the incremental construction method
presented in Arroyo Ohori et al| [2014].

5 Conclusions

Defining operations that are both
dimension-independent and intuitive
to use can be difficult, as we do not have the
same intuitive understanding of the ma-
nipulation of higher-dimensional objects
that we have in 2D and 3D. Our proposed
solution to this problem is to define some
of such operations on the basis of prismatic
polytopes, as these nD objects are general
enough to represent many phenomena
commonly modelled in GIS but still have
a simple geometry that is analogous to
familiar shapes—2D rectangles and 3D
prisms.

Prismatic polytopes can be easily gener-
ated using dimension-independent extru-
sion [Arroyo Ohori et all, 2o15d], and much
as in 2D, extrusion is particularly appeal-
ing because it has a simple definition and
a relatively easy implementation in arbi-
trary dimensions. Starting from a set of
non-overlapping (n — 1)-dimensional ob-
jects, extrusion guarantees that its output
consists of a set of valid non-intersecting n-
dimensional objects.

Our proposed methodology to define op-
erations on the basis of prismatic poly-
topes is straightforward: (i) an (n — 1)-
dimensional object or set of objects is ex-
truded into a set of n-dimensional pris-
matic polytopes, (ii) a modification oper-
ation is applied to the vertices of the top

or bottom facets of each prismatic poly-
tope, and (iii) simple postprocessing is ap-
plied to fix errors introduced in the model.
Within this paper, we have shown the ap-
plication of this methodology to define two
sets of dimension-independent operations:
the most common transformations applied
to GIS objects (i.e. translation, scaling and
rotation) and collapsing cells. The former
can be used to provide object manipulation
in an interactive environment or to model
objects that move and change shape, while
the latter can be used as a basis for nD gener-
alisation, or when used together with time
to model smooth animations between vari-
ous timestamps.

While we have only shown in this paper
three concrete examples of nD transforma-
tions (translation, rotation and scale), it is
good to point out that the same scheme
readily extends to other affine transforma-
tions, such as shears, reflections and homo-
thetic transformations.

Within this paper, we limit the description
of the operations to the top and bottom
facets of a prismatic polytope, as this type of
operations has a clear and intuitive mean-
ing. However, the general methodology can
be applied to any given facet of a prismatic
polytope, as well as to any bounding cell ofa
general polytope as long as more strict con-
straints are kept, e.g. preserving certain re-
lationships to the higher-dimensional cells
bounded by it and avoiding intersections
caused by misplacing a collapsed point.

An interesting future possibility is to con-
sider how to intuitively define various op-
erations as types of reverse collapses. In addi-
tion to collapsing a set of vertices to a single
point, it is also possible to expand a single
vertex into an arbitrary cell of any dimen-
sion higher than zero. In many instances,
an expansion of a vertex into an i-cell is
trivial to build, as it geometrically results
in an (i + 1)-dimensional pyramid with the
i-cell as its base and the vertex as its apex,
as can be seen by considering an operation
that undoes the collapses in Figures [6d, [
and B This is always true when the result-
ing pyramid lies completely inside or com-
pletely outside the model (i.e. the cell com-
plex).

10



However, if the vertex and the expansion i-
cell lie on the boundary of the model, the
operation is much more complex to imple-
mentand in some cases can be ambiguous—
thus requiring more information from the
user is needed in order to form the desired
combinatorial structure. This can be seen
by trying to define an operation that re-
verses the collapse in Figure 6B. Such an
operation would expand the collapse vertex
into an edge, but in order to do so, it would
need to know which of the three triangles
should be transformed into a quadrangle.

In the future, we plan to devise a more
complete set of operations that provide all
basic functions required in 3D+time and
3D+scale modelling while remaining intu-
itive, as well as to implement proofs of con-
cept based on CGAL combinatorial maps.
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