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One solution to the integration of additional characteristics, e.g. time and scale,
into GIS datasets is to model them as extra geometric dimensions perpendicu-
lar to the spatial ones, creating a higher-dimensional model. Previous work has
beenmostly limited to higher-dimensional rasters andhierarchies of trees, which
grow exponentially with the dimension. As representations with limited topo-
logical relationships quickly become intractable in higher dimensions, a topo-
logical vector approach seemsmost suitable for this purpose, requiring the use of
higher-dimensional topological data structures. We therefore present in this pa-
per an evaluation and classification of the possible data structures for an 𝑛DGIS,
including how they can be implemented to support real-world data aspects, such
as holes, disconnected components and attributes, as well as practical issues that
affect their feasibility, like the availability of algorithms, libraries and software.
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1 Introduction

The representation of points, line segments
and polygons in 2D Geographic Informa-
tion Systems (GIS) can be considered a
solved problem. There are a myriad of well-
known topological data structures to repre-
sent them [Worboys and Duckham, 2004],
such as the DCEL [Muller and Preparata,
1978] and the quad-edge [Guibas and Stolfi,
1985], and despite substantial differences
between them, for practical purposes they
are often considered interchangeable as
long as some minimum practical require-
ments can bemet (e.g. support for holes and
attributes). Furthermore, many GIS appli-
cations use data structureswith very little or
no topology, such as Simple Features [OGC,
2011], and instead compute topological rela-
tionships only when they are needed [ESRI,
2005]. The success of this non-topological
modelling approach can be attributed to the
fact that visualisation does not require ex-
plicit topology, to the relatively small size of
most 2D datasets, and to the possibility of
taking advantage of strong properties that
are intrinsic to the 2D case, such as that
there can be at most two polygons incident
to any edge in a planar partition.

However, many of these properties do not
apply to dimensions higher than two—
compare how there can be arbitrarily many
polygons incident to an edge in a 3D space
partition. Despite this fact, the integra-
tion into a GIS of additional characteris-
tics such as a third spatial dimension, time,
and scale has been so far achieved mainly
by ad hoc adaptations to 2D data struc-
tures rather than by building new, higher-
dimensional ones, effectively limiting the
capabilities of GIS software. For instance,
as first shown in Raper [1989], 3D GIS of-
ten mimic the third dimension by using
a so-called 2.5D structure, essentially treat-
ing the third dimension as an attribute and
limiting the geometries that can be repre-
sented; or represent 3D objects individu-
ally and only implicitly through their 2D
boundary, using a 2D data structure with
no 3D topological relationships1. This im-
1i.e. topological relationships involving 3D prim-
itives, such as adjacencies between two vol-

plies thatmanyoperations are only possible
using expensive searches involving many
more volumes than needed. Spatiotempo-
ral GIS keep multiple representations of
2D [Armstrong, 1988] or 3D [Hamre et al.,
1997] structures, or a list of changes per ob-
ject [Worboys, 1992a; Peuquet, 1994], lim-
iting combined spatio-temporal analysis of
suchobjects; andmulti-scale datasets gener-
ally consist of independent datasets for each
scale with some common IDs to link them,
potentially causing inconsistencies among
them.

An alternative to this use of ad hoc adap-
tations of 2D structures is the represen-
tation of certain parametrisable character-
istics as additional geometric dimensions,
orthogonal to the spatial ones, such that
real-world point to volume (0D–3D) enti-
ties are modelled as higher-dimensional
objects embedded in higher-dimensional
space, which are consequently stored us-
ing higher-dimensional data structures. While
there is no theoretical limit to the num-
ber of dimensions that can be used, the in-
creasing space requirements ofmodelswith
more dimensions limit the practical num-
ber of dimensions to 6–8.

The use of higher-dimensional models is
well grounded in long-standing mathemat-
ical theories and opens the door for prac-
tical applications. Descartes [1637] already
laid the foundation for 𝑛D geometry by
putting coordinates to space, allowing the
numerical description of geometric primi-
tives and the use of algebraic methods on
them, theories of 𝑛D geometry were devel-
oped byRiemann [1868] among others, and
Poincaré [1895] developed algebraic topol-
ogy with a dimension-independent formu-
lation, stating that even if 𝑛D objects could
not be [then] represented, they do have
a precise topological definition, and con-
sequently properties that can be studied.
From an application point of view, Arroyo
Ohori et al. [2013a] show how 4D topolog-
ical relationships between 4D objects pro-
vide insights that 3D topological relation-
ships cannot, McKenzie et al. [2001] con-
tends that weather and groundwater phe-

umes or incidences between a volume and a
vertex/edge/face
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nomena cannot be adequately studied in
less than four dimensions, and van Oost-
erom and Stoter [2010] argue that the inte-
gration of space, time and scale into a 5D
model forGIS canbeused to ease datamain-
tenance and improve consistency, as algo-
rithms could detect if the 5D representation
of an object is consistent and does not con-
flict with other objects.

So far, most research related to higher-
dimensional models and structures in GIS
has been limited to a combination of reg-
ular subdivisions along every axis (𝑛D
grids) and hierarchical subdivisions using
trees [Mason et al., 1994; Varma et al., 1990;
Bernard et al., 1998; O’Conaill et al., 1992],
something that has only recently been im-
plemented in GIS software [Mielke, 2014].
This takes advantage of the fact that most
data structures used for 2D regular and
semi-regular tessellations [Boots, 1999] ex-
tend trivially to higher-dimensions, even if
most research and software are limited to
4D and using time as a fourth dimension.
However, these representations suffer from
the same problems as 2D/3D grids and hi-
erarchical trees in GIS: they are incapable
of representing precise boundaries and are
cumbersome for the representation of ob-
jects [Fisher, 1997], especiallywhen they are
of mixed dimensions, while their space re-
quirements increase exponentially with the
dimension.

Vector representations of 𝑛D objects avoid
these problems: they are generally more
compact, can describe boundaries more
precisely and can represent objects with
their attributes directly. This makes them
particularly interesting forhigher-dimensional
GIS, even if they have been hardly been
explored as the data structures commonly
used in 2D vector GIS do not extend natu-
rally to higher dimensions. However, there
are various higher-dimensional geometric
and topological structures that have been
developed in other fields and can be ap-
plied for this purpose, even if these are sig-
nificantly different from the 2D ones used
in GIS, are complex to implement and use
efficiently, and often need special adap-
tations in order to support some aspects
of real-world data (such as holes or non-
manifold geometries). They are therefore

almost never used in practice.

We believe that this can be overcome with
a better understanding of the possibili-
ties and challenges to apply these higher-
dimensional structures for the represen-
tation of real-world objects. In this pa-
per we therefore summarise the results of
our investigation. For this, we provide
a fully dimension-independent description
of these data structures in Sections 3–5, and
accompany each with 2D/3D examples to
link it to analogous cases in 2D/3D GIS.
While good surveys on higher-dimensional
data structures exist, most notably Lien-
hardt [1991] and Čomić and de Floriani
[2012], these cover fewer data structures, fo-
cus on theoretical aspects in a geometric
modelling context, and do not cover the
more practical aspects that also affect the
implementation of these structures, such as
the availability of algorithms, libraries and
software. This paper is an extension of Ar-
royo Ohori et al. [2013b], in which we dis-
cussed how to model higher-dimensional
objects using real-world data in one partic-
ular data structure, generalisedmaps [Lien-
hardt, 1994].

As explained in detail in Sec. 2, we have
identified three main families of feasible
spatial data structures for the representa-
tion of 𝑛D objects. Each of these groups dis-
cretises space in a similar way, uses simi-
larly shaped primitives and shares most of
their properties, including the techniques
that can be applied to them in order to
support characteristics like holes and at-
tributes. These are therefore analysed sep-
arately: simplicial complexes in Sec. 3, cell
complexes in Sec. 4, and ordered topologi-
cal models in Sec. 5. We finish with a dis-
cussion on the implications of using these
data structures for the representation of 𝑛D
objects in Sec. 6.

Anote on terminology

This paper is meant mainly for a GIS au-
dience who is interested in the representa-
tion of real-world objects in more than 3D.
We have therefore chosen to use 2D/3D GIS
terminology (or terms in their GIS sense)
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whenever possible (e.g. a surface being a 2D
object even when it is non-manifold), and
mathematical terms only when GIS termi-
nology is unclear or ambiguous (e.g. a face
can be of any dimension).

2 Higher-dimensional data
structures and their
classification

Spatial data structures consist of two as-
pects: 1. a combinatorial part, which con-
sists of a set of primitives and some topo-
logical relationships between them, and 2.
an embedding that links these primitives
to their geometry and attributes. This
distinction is commonly used in prac-
tice to separate the problems that are
the domain of geometric modelling from
those of computational geometry [Lien-
hardt, 1994; Mäntylä, 1988], but it is
also useful to describe what differentiates
higher-dimensional structures from 2D/3D
ones.

This is clearer when considering the data
structures that contain only 1D topologi-
cal relationships, which are commonlyused
in GIS. For instance, in the Simple Fea-
tures Specification [OGC, 2011], indepen-
dent 2D primitives are defined as sequences
of points (with coordinates) that are con-
nected using implicit line segments. 3D
primitives are then represented as sets of
such 2D elements, which are otherwise un-
linked. Since the implicit line segments in
a 2D primitive are known to be adjacent
but nothing is known about the relation-
ships between the 2D primitives, such data
structures can be considered to store up to
1D topological relationships only (adjacen-
cies between edges and the incidences be-
tween edges and vertices). While such data
structures can be embedded into any di-
mension (by assigning coordinates in 𝑛D
space to every point), they become expo-
nentiallymore inefficient as the dimension
increases: lower dimensional primitives
need to be encoded multiple times, recur-
sively once for each time they appear in a
higher-dimensional primitive. This means

that even simple geometric and topolog-
ical queries involve searching many ob-
jects [Hazelton, 1998]. For instance, a
Simple Features (-like) representation of a
square does not repeat most vertices, while
one of a cube repeats every vertex at least
three times, one of a tesseract (their four-
dimensional analogue) repeats every vertex
at least 12 times and one of a 5-cube at least
60 times2.

Accordingly, in a similar vein to the defini-
tion of the dimensionality of aGIS inHazel-
ton et al. [1990], we argue that the defin-
ing characteristic of a higher-dimensional
spatial data structure is not the ability to be
embedded into higher-dimensional space,
but being able to explicitly store topological
relationships in a dimension-independent
manner. For this, we assume that the objects
being represented can bemade to function-
ally form a space partition using the stan-
dard topological modelling approach used
in GIS—all objects are overlaid, their inter-
secting boundaries are computed and every
region in the model is considered to belong
to a set of objects [Rossignac andO’Connor,
1989]. Doing so makes it possible to store
a traversable structure containing the ob-
jects, in which the boundaries of the sets are
explicitly represented, and to easily query
the topological relationships that exist be-
tween the objects [Egenhofer and Franzosa,
1991; Worboys, 1992b; Güting et al., 2000]
by checking which objects are in a set.

The most promising structures for higher-
dimensional GIS are therefore those that
starting from a space subdivision, are capa-
ble of storing a well-defined and relatively
broad class of objects of arbitrary dimen-
sion, embedded into Euclidean space of the
same or higher dimension, attributes at-
tached to such objects, and enough topolog-
ical relationships between them to allow for
quick traversal of the structure and the ba-
sic operations, such as testing if two given
objects are identical, adjacent or overlap-
ping.

In most GIS literature, the terms ‘data
2The number of times a vertex is repeated in Simple
Features can be up to doubled since representing a
closed polygon involves repeating its first vertex at
the end.

4



model’ and ‘data structure’ are often used
interchangeably. However, as Frank [1992]
argues, it is useful to separate the data
model, i.e. the particular discretisation of
the world into abstract primitives, from the
data structure used, i.e. their concrete rep-
resentation in a computer. A data model
broadly defines the shape of the primitives
and relationships between them that can ex-
ist, while a data structure explicitly stores
some of these relations and omits others
(which can be computed with an added
computational cost).

This distinction is usually blurred in 2D
structures since these usually have defini-
tions based on explicitly stipulated rules
for the representation of 0D–2D primi-
tives, which might be different for each di-
mension, e.g. separate node, arc, and area
structures in the winged-edge [Baumgart,
1975] and DCEL [Muller and Preparata,
1978] data structures. This effectively
skips the definition of a shared underly-
ing model, with the consequence that these
structures do not have a clear generalisa-
tion to higher dimensions. By contrast,
higher-dimensional models are necessar-
ily defined using dimension-independent
primitives (at least for the higher dimen-
sions). They are therefore able to represent
a mathematically well-defined class of ob-
jects, even if this class of objects is not fully
supported by a particular implementation
in a higher-dimensional data structure, and
can therefore be objectively classified.

A classification of higher-dimensional data
structures into a number of models is not
only of theoretical interest, but it is very
useful for their analysis. Different data
structures using a similar model tend to
have similar properties in terms of space
complexity since they contain a number
of primitives of the same order3. Opera-
tions performed on them also tend to have
the same computational complexity since
they can have similar topological relation-
ships, and when they do not, their cost is
bounded by the conversion cost from one
to the other, which is often easy and can
3The number of primitives might not be the same
since a discretised element in the model might
be implemented as one or multiple separate struc-
tures.

be done primitive by primitive. Since al-
gorithms operate on primitives, which are
defined by a data model, this analysis also
serves to know which fundamental opera-
tions can be applied on a data structure.
For instance, Euler operations are defined
in terms of cell complexes [Mäntylä, 1988]
and stellar operators in terms of simplicial
complexes [Velho, 2003]. Therefore, in gen-
eral terms, any data structure that repre-
sents cell complexes can implement Euler
operations, and the same for stellar opera-
tors and simplicial complexes.

As argued by McKenzie et al. [2001], the
ideal data model to use depends on the
application. An ideal data model is ex-
pected to be both powerful and able to rep-
resent a large class of objects, but unfor-
tunately these properties tend to conflict.
Powerful structures are built on small and
simple primitives of a fixed form with a
fixed (or at least bounded) number of links
to other related primitives, such as axis-
parallel boxes or simplices, enabling them
to have a simple but powerful algebra to
manipulate them and to navigate between
their primitives efficiently, e.g. the quad-
edge in 2D [Guibas and Stolfi, 1985] or the
facet-edge in 3D [Dobkin and Laszlo, 1987].
However, partitioning complex objects into
these simple primitives is non-trivial and
can result in a large number of primitives,
requiring significant preprocessing, mak-
ing them space-intensive and limiting the
types of objects that might be stored. In this
sense, different data models make differ-
ent choices and necessarily involve a trade-
off.

Basedon theprimitives used and their char-
acteristics, we have classified all data struc-
tures that are known to us and are capable of
representing vector objects in 𝑛D into three
categories, which are summarised in Table 1
and explained below:

• Geometric simplicial complexes (Sec. 3)
They decompose objects directly into
simplices (i.e. points, line segments, tri-
angles, tetrahedra, etc.) of dimension
up to 𝑛, all of which have a direct ge-
ometric realisation (i.e. a simplex in
the model represents a simplex in real-
world space), and store themwith a data
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Table 1: Summary of the data structures covered in this paper
Model Data structure Description

Geometric simpli-
cial complexes Simplex-based

Geometrically split objects into sim-
plices, then store simplices + the adja-
cency relationships between them

Incidence graphs
Store the cells of every dimension as
primitives + incidence relationships be-
tween them

Cell complexes Nef polyhedra
Store the local pyramid (projection of
the space) around each vertex to reduce
the dimension by one

Manifold data
structures

Limit the number of incidence relation-
ships to a fixed number (e.g. half-(𝑖 − )-
cell data structure)

Generalised maps /
cell-tuple

Purely combinatorial decomposition of
a cell complex + storage with a simplex-
based data structure

Ordered topologi-
cal models

Combinatorial
maps

The above but without splitting 1-cells
and defining an orientation per con-
nected component

Chains of maps Generalised maps + an incidence graph
for non-manifold situations

structure that uses simplices as prim-
itives. They are more space intensive
and harder to build than other models
but provide a stronger algebra to ma-
nipulate them.

• Cell complexes (Sec. 4) They decom-
pose 𝑛-dimensional objects into parts
that are homeomorphic to 𝑛-balls, and
store them with a data structure that
uses cells as primitives. They are com-
pact and easy to build, but only have a
limited algebra to manipulate them.

• Ordered topological models (Sec. 5)
First create a cell complex, then decom-
pose the cells in it into abstract sim-
plices without a direct geometric reali-
sation (i.e. a simplex in the model does
not have a specific meaning in the real-
world space), and store themwith a data
structure with simplices as primitives.
These therefore combine the strengths
and weaknesses of the previous two,
with other surveys correctly classifying
them both as structures for cell com-

plexes [Čomić and de Floriani, 2012]
and for simplicial complexes [de Flori-
ani and Hui, 2005]. However, they dif-
fer in practical terms from the struc-
tures described above since they allow
a different set of operations and are
therefore covered separately.

These are not all themodels with which it is
possible to represent vector 𝑛D data. Mod-
els containingonlypoints in𝑛Dspace [Pasko
and Adzhiev, 2001] are widely used in the
context of remote sensing and data min-
ing, and are particularly relevant in the rep-
resentation of fields when used together
with an interpolation function [Miller,
1997]. Constructive representations of ge-
ometries, such as Constructive Solid Ge-
ometry (CSG) trees [Samet and Tamminen,
1985; Paoluzzi et al., 2004], and objects de-
scribed as sequences of operations [Čomić
et al., 2014] are also possible and useful in
certain contexts, such as production pro-
cesses and the computation of homolo-
gies [Damiand et al., 2008]. However, none
of these are capable of storing objects and
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their attributes directly, especially those of
lower dimensionality, and therefore have
to be ‘evaluated’ into another, more ex-
plicit model in order for them to be visu-
alised [Mäntylä, 1988] or to perform the
type of computations expected in GIS, such
as geometric intersection operations. They
are therefore less interesting for a higher-
dimensionalGIS andnot consideredwithin
this paper.

3 Geometric simplicial
complexes

An 𝑖-dimensional simplex (𝑖-simplex) is
a combinatorial primitive made from a
set of 𝑖 + 1 vertices, and an 𝑗-simplex,
𝑗 ≤ 𝑖, made from a subset of these is
an 𝑗-dimensional face (𝑗-face) of it. Intu-
itively, an 𝑛-dimensional geometric simpli-
cial complex, also known as a Euclidean
simplicial complex, is a subdivision of 𝑛-
dimensional space into a structure of closed
𝑛-simplices directly embedded in space by
attaching a tuple of coordinates to each
vertex, in a manner that their interiors
are non-overlapping geometrically (pair-
wise disjoint). As shown in Fig. 1, in
an 𝑛-dimensional simplicial complex, an 𝑖-
dimensional object, 𝑖 ≤ 𝑛, is represented as
a set of 𝑖-simplices.
More formally, a simplicial complex can
be defined as a collection of simplices such
that:

• Every face of a simplex is also in the
simplicial complex

• The intersection of any two simplices
is either empty or is a common face of
both of them

Representation

An 𝑖-simplex is easily described by an (𝑖 +
1)-tuple of 𝑖 + 1 affinely independent4 ver-
4That is, that none of them are in the affine space
described by the others. In practical terms: two
points with a different coordinate in 1D, three non-
collinear points in 2D, four non-coplanar points in
3D, etc.

tices (𝑣, 𝑣, … , 𝑣𝑖). Since they are affinely
independent, its geometric realisation is
the convex hull of its vertices. A ver-
tex in an 𝑛-dimensional simplicial com-
plex can be described by an 𝑛-tuple of co-
ordinates (𝑥, 𝑥, … , 𝑥𝑛−), representing its
embedding into 𝑛-dimensional Euclidean
space. Since we are considering a subdivi-
sion of 𝑛-dimensional space, every simplex
in the simplicial complex is a face of at least
one 𝑛-simplex.

Algebra

Simplicial complexes have a simple but
powerful structure and are easy to navigate.
Two 𝑖-simplices are adjacent if they have
a common face, and an 𝑖-simplex and a 𝑗-
simplex, 𝑖 ≠ 𝑗, are incident if either is a
face of the other. In an 𝑛-dimensional sim-
plicial complex, each 𝑛-simplex is adjacent
to at most 𝑛 + 1 other 𝑛-simplices and has
exactly 𝑛 + 1 (𝑛 − 1)-faces on its bound-
ary. To each 𝑛-simplex it is therefore pos-
sible to apply 𝑛 + 1 different boundary and
neighbour operators, where the𝑛-th bound-
ary operator returns the (𝑛 − 1)-face of the
𝑛-simplex on the opposite side of the 𝑛-th
vertex—obtained by removing the 𝑛-th ele-
ment of the tuple of vertices—, and the 𝑛-th
neighbour operator returns the adjacent 𝑛-
simplex on the opposite side of the 𝑛-th ver-
tex, if any, which is also incident to the face
given by the 𝑛-th boundary operator.

Construction

The biggest challenge of using a geomet-
ric simplicial complex for the representa-
tion of 𝑛D objects is the difficulty of tri-
angulating the possibly complex 𝑛D objects
being modelled, i.e. algorithmically divid-
ing them into simplices so that the union
of the simplices representing an object cor-
responds exactly to its original geometry.
While triangulations of sets of points in
𝑛D have been studied extensively and there
is robust software to compute them, e.g.
Quickhull [Barber et al., 1996], such trian-
gulations are generally not applicable to 𝑛D
objects since a triangulation of the vertices
of an object usually results in simplices that
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Figure 1: A group of buildings is represented as a geometric simplicial complex. Each 3D
building is thus split into a set of non-overlapping 3-simplices (tetrahedra), with
their 2D walls and roofs represented as sets of 2-simplices (triangles).

do not conform to the object’s boundary, i.e.
that are partially inside and partially out-
side the object. However, it is possible to
make sure that the boundaries are part of
the triangulation through the use of a con-
strained or conforming triangulation.

Both of these force the triangulation to in-
clude certain simplices as part of the trian-
gulation in the form of constraints, which
in this case would be the boundaries of the
objects, with the difference that the con-
straints in constrained triangulations are
directly part of the structure, while in con-
forming triangulations they are allowed to
be split into smaller simplices. While the
properties of 𝑛Dconstrained triangulations
have been described [Shewchuk, 2008] and
algorithms to construct them in some cases
have been developed [Shewchuk, 2000],
their construction in the general case is very
difficult in practice, having to deal with ro-
bustness issues and possibly requiring the
addition of a large number of additional
vertices (Steiner points) and subsequently
additional simplices, as not every object of
dimension 3 or higher is triangulable with-
out additional vertices [Ruppert and Seidel,
1992]. Unfortunately, while there are ro-
bust and reliable constrained and conform-
ing triangulation libraries existing in 2D
and 3D, such as Triangle [Shewchuk, 1996],
CGAL [Boissonnat et al., 2002], and Tet-
gen [Si andGärtner, 2005], we are not aware
of any software or algorithm capable of per-

forming a constrained or conforming trian-
gulation in more than 3D.

Holes, attributes and disconnected
components

Assuming that the objects have been trian-
gulated successfully, managing holes and
disconnected components in a simplicial
complex becomes trivial since these be-
come integrated into the combinatorial
structure of the triangulation [Ledoux et al.,
2014]. Generally, a triangulation algorithm
works initially on the basis of a set of points
and ensures that the entire convexhull of all
of the points is triangulated, something that
can be done using the concept of a ‘big tri-
angle’ or faraway point [Liu and Snoeyink,
2008], and therefore connects formerly dis-
connected components or components that
were not connected by highest-dimensional
simplices. Similarly, as the interiors of
polytopes with holes are triangulated, ad-
ditional simplices connect the void regions
representing holeswith the rest of the struc-
ture. In this manner, 2D holes can be rep-
resented as sets of triangles marked as void,
3D holes as sets of tetrahedra, and similarly
so for higher (and lower) dimensions. This
ensures that it is always possible to navigate
between all the simplices in the complex.
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Operations

Another advantage of simplicial complexes
is that many operations on them are effi-
cient and easy. For instance, a simplicial
complex can be traversed efficiently with-
out any external data structure. Starting
from any simplex, it is possible to ‘walk’
the simplicial complex in the desired di-
rection in order to find e.g. in which sim-
plex a point would be located [Devillers,
2002], with each step taking only constant
time. Comparing objects composed of sets
of simplices is also trivial, assuming that
they have been triangulated in a determin-
istic way5, since they can be compared one
by one (in order) after finding a common
simplex, which can be done by walking the
respective simplicial complexes. Checking
if two objects are adjacent or intersect geo-
metrically are examples of other operations
that can be done simplex by simplex.

Simplex-based data structure

Since the number of vertices, (𝑛 − 1)-faces
and adjacent simplices of an 𝑛-simplex
in an 𝑛-dimensional simplicial complex is
fixed and known, it is easily represented
in a computer using simple arrays, rather
than linked lists or other variable-length
data structures. Most commonly, this is
done through the use of an 𝑛-simplex based
data structure, shown in Fig. 2 for 2D,
where 𝑛-simplices are the main primitives.
It is sometimes called as the adjacency
or incidence model, depending on the di-
mensions of the simplices that are repre-
sented in the structure—only the highest-
dimensional ones in the adjacency model,
but possibly all in the incidence model.
An 𝑛-dimensional simplicial complex is
represented as a collection of primitive 𝑛-
simplices, each containing 𝑛 + 1 links to
its adjacent 𝑛-simplices. For the models de-
scribed above, it also includes information
containing:

5Note that this is not trivial. Also, if the triangulations
are different, such a comparison would necessarily
require geometric operations.

• Adjacency model For every 𝑛-simplex,
𝑛 + 1 links to vertex primitives con-
taining the coordinates and attributes
of its 𝑛 + 1 vertices, or alternatively this
information stored directly in the 𝑛-
simplex. The simplices of dimensions
1 to (𝑛 − 1) and the incidence relation-
ships between them, are therefore not
represented explicitly.

• Incidence model For every 𝑖-simplex,
∀0 < 𝑖 ≤ 𝑛, 𝑖 + 1 links to primi-
tives containing the geometry and at-
tributes for its (𝑖 − 1)-faces, or alterna-
tively this information stored directly
in the 𝑖-simplex. All simplices of ev-
ery dimension, together with all their
incidence relationships, can therefore
be represented explicitly, or as part of
a simplex of a higher-dimension.

The adjacency model thus forms an (𝑛 + 1)-
regular graphwith the 𝑛-simplices as nodes,
i.e. a graph where every vertex has degree
𝑛 + 1. The incidence model is a graph with
a maximum degree 𝑛 + 1, where the degree
of a node representing an 𝑖-simplex is 𝑖 + 1.
Note that the adjacency model is therefore
more compact, but only allows for the ex-
plicit representation of 𝑛-dimensional ob-
jects, while the incidence model is more
verbose but supports the representation of
objects of any dimension.

Other data structures

Other possibilities involve describing sim-
plices more compactly using the strong al-
gebraic properties of simplicial complexes,
although this has been hardly explored in
more than 3D. For instance, in 2D and
3D it is possible to: store the geometry
of only some of the vertices of every sim-
plex [Blandford et al., 2005] (the rest be-
ing stored in other incident simplexes), use
a collection of adjacent simplices (e.g. the
star of a vertex) as a primitive instead of a
single one, use progressive representations
that approximate the simplicial complex in-
crementally [Popović and Hoppe, 1997], or
compress it as a sequence of simple op-
erations from which the original structure
can be deduced [Rossignac and Szymczak,
1999].
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(a) (b) (c)

(d) (e) (f)

Figure 2: Some of the possible relationships between primitives and storage of geometry
in a 2-simplex (triangle) based data structure. (a) Adjacency relationships of a
2-simplex. (b) Boundary relationships of a 2-simplex. (c) Vertices of a 2-simplex.
(d) Star (co-boundary) relationships of a 1-simplex. (e) Boundary relationships
of a 1-simplex. (f) Embedding of a 0-simplex. In addition to these, it is also pos-
sible to store attributes for the 0-, 1-, and 2-simplices in embedding structures.
The adjacency model uses at least (a), (c) and (f), while the incidence model uses
at least (b), (e) and (f), plus usually (a) to navigate the structure. Many other com-
binations are possible.

Moreover, since a simplex is also a cell,
it is also possible to use any data struc-
turemeant formore general cell complexes,
such as those described in Secs. 4 and 5.
This is commonly used in practice during
the process of triangulating a cell complex
(since at that point the structure is not a
simplicial complex and cannot by defini-
tion be stored in a data structure for simpli-
cial complexes only), but it is a very ineffi-
cient approach when it has already been tri-
angulated.

Applications

Simplicial complexes in more than 3D are
commonly described in theory but rarely
put in practice. Within GIS, Paoluzzi et al.
[1993] described the winged scheme in or-
der to describe arbitrary polytopes as sim-
plicial complexes, and Karimipour et al.

[2010] uses lists of vertices to store sim-
plices of any dimension in order to do spa-
tial analysis using Delaunay triangulations
as an example.

4 Cell complexes

An 𝑛-dimensional cell complex, related to
the concept of a CW complex in topology,
is a subdivision of 𝑛-dimensional space into
non-overlapping (pairwise disjoint) cells so
that for all 0 ≤ 𝑖 ≤ 𝑛 an 𝑖-dimensional cell (𝑖-
cell) is an object homeomorphic to an open
𝑖-ball (i.e. point, open arc, open disk, etc.).
A 𝑗-dimensional face (𝑗-face) of an 𝑖-cell is a
𝑗-cell, 𝑗 ≤ 𝑖, that lies on the boundary of the 𝑖-
cell. Similarly to simplicial complexes, two
𝑖-cells are adjacent if they have a common
face, and an 𝑖-cell and a 𝑗-cell, 𝑖 ≠ 𝑗, are inci-
dent if either is a face of the other.
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More formally, a cell complex can be de-
fined inductively as in Hatcher [2002]. An
𝑛-dimensional cell complex is built by start-
ing from a set of isolated vertices, and ∀0 <
𝑖 ≤ 𝑛 an 𝑖-cell is built by attaching itself
to the (𝑖 − 1)-faces (facets) on its boundary,
these facets having been previously added
to the complex. That is, an edge is built
by linking the vertices on its boundary, a
surface by linking the edges on its bound-
ary, a volume by linking the surfaces on
its boundary, and so on. Like in a sim-
plicial complex, a facet of a 𝑛-cell in an 𝑛-
dimensional cell complex lies between it
and an adjacent 𝑛-cell, unless it is on the
boundary of the complex.

Algebra

Cell complexes differ from simplicial com-
plexes in two related aspects: 1. there is a
variable number of facets on the bound-
ary of a cell, each of which has also a dif-
ferent number of facets, continuing recur-
sively down to the vertex level; 2. there is not
a simple geometric interpretation of a cell
that does not require looking recursively at
its facets. This leads cell complexes to have
a much more complex representation and
algebra to manipulate them compared to
simplicial complexes. For instance, simpli-
cial complexes can be easily constructed by
adding and removing simplices expressed
by sets of vertices, or by splitting and merg-
ing existing ones, but cell complexes re-
quiremuchmore complex operations in or-
der to add or remove cells as these have to
be described based on their facets [Arroyo
Ohori et al., 2014]. Traversing a cell com-
plex (e.g. to find in which cell a point lies
or to see which cells intersect a given geom-
etry) is also much more difficult [de Berg
et al., 1997].

Construction and attributes

An 𝑖-dimensional object with attributes can
generally be represented directly as an 𝑖-
cell with attached attributes in the cell

complex—requiring minimal preprocess-
ing as long as it is homeomorphic to an 𝑖-
ball or can bemodified so that it is function-
ally so using simple ‘tricks’ or combinato-
rial operations only. Also, the lower num-
ber of cells in a cell complex compared to
the simplices in a simplicial complex repre-
senting the same set of objects means that
they can store objects more efficiently, as
long as an adequate data structure is used.

Representation

Cell complexes are usually modelled based
on techniques that represent them based
on their (𝑛 − 1)-dimensional boundary (i.e.
boundary representation), unlike simpli-
cial complexes in which objects are usually
modelled using mainly primitives of the
same dimension (i.e. object representation,
but better known by its 3D name as solid
or volume representation). This is a subtle
distinction, but it implies that cells are de-
scribed (and stored) in amore implicitman-
ner based on a recursive definition, unlike
simplices which can be stored explicitly as
a tuple of vertices. Since this can slow down
many operations, access to cells can be im-
proved by adding indexing structures stor-
ing links to all the cells of a given dimen-
sion and/or to all the cells in a given spatial
extent.

Incidence graph structures

The most common data structures for arbi-
trary cell complexes are incidence graphs
and other related structures [Rossignac
and O’Connor, 1989; Masuda, 1993; Sohan-
panah, 1989], which store all the cells (of ev-
ery dimension) in a complex as individual
embedding primitives containing geomet-
ric information and attributes. Just as with
simplicial complexes, if only linear geome-
tries are required, the only geometric in-
formation needed is the coordinates of the
points for the 0-cells. However, since a set of
vertices is not enough to describe a cell, all
the embedding structures of every dimen-
sion need to exist (albeit they can be as sim-
ple as a unique ID or memory address per
cell). As shown in Fig. 3, these are connected
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through a combinatorial structure contain-
ing the incidence relationships between the
cells, such as an 𝑖-cell having an (𝑖−1)-cell on
its boundary, vice versa (known as the co-
boundary or star), or both. Since the num-
ber of these incidences is generally not fixed
or bounded, unlike in a simplicial complex,
they are more difficult to integrate into the
cell primitives. One solution involves using
variable length data structures (e.g. a linked
list of the facets of a cell). Another would
be to store instead combinatorial primitives
consisting of pairs of an 𝑖-cell and an (𝑖 − 1)-
cell—an approach well-suited to a database
implementation.

While incidence graphs are efficient in
terms of space, they are difficult to nav-
igate and manipulate because of the lim-
ited topological information contained in
them. This greatly complicates many rela-
tively simple queries that are trivial in sim-
plicial complexes, such as: obtaining the or-
der of a sequence of 0- and 1-cells around
a 2-cell; or checking if two 𝑛-cells have the
same geometry (since their facets, each rep-
resented implicitly by its own facets, might
be stored in any order).

Half-space structures andNef polyhedra

Another approach involves representing
cells as unions of intersections of half-
spaces, something that can be achieved
by performing (alternate) decompositions
into convex parts [Bulbul and Frank, 2009;
Lien and Amato, 2006]. Most data struc-
tures that implement this concept therefore
store cells implicitly as trees of operations
on half-spaces, as shown in Fig. 4, each of
which is stored as a tuple containing the
coefficients of a hyperplane equation plus
an up/down direction [Naylor, 1990]; or as
a collection of hyperplanes that represent
all the facets of all the cells, and each cell
is represented as a set of tuples of Boolean
values, where each value states whether the
cell is on the up or down side of a spe-
cific hyperplane [Tammik, 2007]. While
this is rather cumbersome and does not
scale well to higher-dimensions and com-
plex geometries, Nef polyhedra [Bieri and

Nef, 1988] follow a similar approach but ex-
tend it with the concept of a local pyramid,
which stores the neighbourhood informa-
tion for every vertex as shown in Fig. 5, con-
taining all its incident cells of every dimen-
sion, by projecting them on an infinites-
imally small hypersphere around the ver-
tex and storing this information in using
hyperspherical geometries on an (𝑛 − 1)-
dimensional data structure, essentially re-
ducing the dimensionality of the cell com-
plex by one. A set of polygons can thus
be reduced to a set of circular intervals,
a set of polyhedra to a set of faces on a
sphere, and so on to higher dimensions.
This means that the global arrangement of
hyperplanes is only stored locally at the ver-
tex level, which scales much better to com-
plex geometries and allows the storage of
attributes (in the vertices, circular inter-
vals, spherical faces, etc.). This technique
is very useful already in 3D, since it allows
one to use any of the many 2D data struc-
tures available to represent volumes. While
in theory this method can be repeated in
decreasing dimension in order to have a
complete description of the cell complex,
the practical benefits of doing do decrease
as the dimension increases and the navi-
gation becomes more cumbersome. More-
over, it is very complex to implement this
in a fully dimension-independent manner,
requiring a hyperspherical projective ker-
nel capable of computing point-set intersec-
tions. In fact, all existing implementations
that are known to us are limited to 3D, such
as the one in CGAL [Hachenberger, 2006;
Granados et al., 2003].

Manifold data structures

One more possibility involves limiting
the representation to cell complexes with
stronger algebraic properties, such as those
with a manifold domain. Manifolds are
objects that locally resemble the Euclidean
space of a certain dimension, even if
globally they do not. More precisely,
an 𝑛-dimensional manifold (or simply 𝑛-
manifold) 𝑀 is a topological space for
which every point 𝑥 ∈ 𝑀 has a neighbour-
hood homeomorphic to ℝ𝑛. Most impor-

12



(a) (b) (c)

(d) (e) (f)

Figure 3: The cells in a cell complex, the most common relationships that are be stored
in an incidence graph and similar data structures up to 2D, and the embedding
of the 0-cells so as to support a geometry. (a) Three adjacent polygons. (b) The
cells in the cell complex. (c) Boundary relationships of a 2-cell. (c) Boundary
relationships of a 2-cell. (d) Co-boundary relationships of a 1-cell. (e) Boundary
relationships of a 1-cell. (f) Co-boundary relationships and embeddingof a 0-cell.
Note that (c), (d) and (e) correspond to an 𝑖-cell that is linked to the (𝑖 − 1)-cells on
their boundary or vice versa.

tantly for a spatial data model, manifolds
have two very useful properties:

• An 𝑛-manifold with boundary has the
property that its boundary is a (𝑛 − 1)-
manifold, ensuring that an𝑛-dimensional
object can be represented recursively by
its (𝑛 − 1)-dimensional boundary using
a manifold data structure.

• An (𝑖 − 1)-cell is incident to at most
two 𝑖-cells within an (𝑖 + 1)-cell6, lim-
iting the number of links required be-
tween primitives in a boundary repre-
sentation based model of the complex.

Some data structures for cell complexes in
2D and 3D are thus restricted to mani-
folds, or split objects into manifold sec-
tions [Pesco et al., 2004; Lopes and Tavares,

6This is the definition of a quasi-manifold, a combi-
natorial interpretation of the topological concept of
a manifold. Quasi-manifolds are always manifolds
up to 2D, but not necessarily in higher dimensions.

1997], which allows such data structures
to be more efficient as they need to han-
dle simpler configurations [Aguila and
Ramírez, 2003]. For instance, if we restrict
the representation to a 𝑛-dimensional cell
complex with manifold domains for each
cell, an (𝑛 − 2)-cell is incident to at most
two (𝑛 − 1)-cells, (𝑛 − 2)-cells can be used as
primitives or pointed to while being able to
navigate around them. This results in data
structures based onhalf-edges in 2D, such as
the DCEL [Muller and Preparata, 1978], and
in 3D, such as the CIEL [Lévy et al., 2001],
but the concept generalises to any dimen-
sion. Various ‘half-(𝑛 − 2)-cell’ data struc-
tures for manifold 𝑛-dimensional cell com-
plexes are therefore possible, which would
consist of linked pairs of (𝑛 − 2)-half-cell
primitives. However, note that this is inde-
pendent from the problem of the represen-
tation of the individual (𝑛 − 1)-cells, which
is solved by directed edges in the DCEL and
a loop of directed edges in the CIEL.
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(a) (b)

(c)

Figure 4: (a) A polygon is stored as a union
of convex polygons. (b) & (c) Each
convex polygon is represented as a
set of intersected half-planes.

(a) (b)

Figure 5: The same polygon is stored based
on the local pyramids at the ver-
tices using Nef polyhedra. (a) The
local pyramids shown as circles.
(b) The views from the local pyra-
mids are projected to the surface of
the circles and parametrised based
on their angle, reducing the di-
mensionality of the 2D polygon to
1D. A local pyramid thus becomes
a set of adjacent intervals.

While it is generally possible to use man-
ifold data structures to represent non-
manifolds using various tricks, like those
shown in Fig. 6, such as duplicate elements
in a combinatorial structure linked to a sin-
gle embedding, there is often an ambigu-
ity in the representation (e.g. due to dupli-
cate cells) or a loss of navigability around
the ‘non-manifold parts’ of a model.

Holes and disconnected components

One major difficulty with data structures
based on cell complexes is dealing with
holes and disconnected objects, both of
which would ordinarily result in a discon-
nected graph using any of the data struc-
tures as described above. Since 𝑛-cells in a
cell complex are assumed to be homeomor-
phic to open 𝑛-balls, holes violate themath-
ematical definition of a cell complex. How-
ever, an 𝑛-dimensional hole that is home-
omorphic to an 𝑛-ball in an 𝑛-dimensional
cell can be generally handled in an ad hoc
manner using any of the following tech-
niques:

• Splitting cells The cell containing a
hole is subdivided into multiple cells,
all of which are adjacent to it. This solu-
tion is conceptually simple and is effec-
tively equivalent to what is done with
simplicial complexes. This also best
respects the definition of a cell, since
the subdivided cells can be homeomor-
phic to balls and the hole is a cell like
any other but representing an empty re-
gion. However, finding a way to split a
cell accordingly requires geometric op-
erations and can be difficult in practice,
especially in dimensions 3 and higher.

• Bridge cells A hole is connected to the
rest of the combinatorial structure us-
ing a ‘bridge’ cell of lower dimensional-
ity than the hole. This bridge cell usu-
ally takes the form of an edge connect-
ing the hole with the cell where it is
contained. This solution is simpler to
implement, usually requiring only the
finding of an appropriate bridge (e.g.
an edge that lies entirely in the inte-
rior of the cell). The cell containing the
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(a) (b) (c)

Figure 6: (a) A 2-cell is non 2-manifold as the space around the vertex highlighted in a
circle is not homeomorphic to the plane. (b) & (c) It can still be represented
using a loop of oriented (half-) edges by having a duplicate vertex at that location
(shown as two half balls), but there are two ways in which it can be done. Note
that (c) results in a disconnected graph.

hole is no longer homeomorphic to a
ball, but most computations work with
few or no changes [Bryant and Singer-
man, 1985]. However, mainly topologi-
cal queries might need the addition of
special cases to handle it (e.g. not dis-
playing such an edge when visualising
the cell or accounting for the fact the
bridge will have the same cell on all
sides).

• Holes as attributesHoles can be stored
as fully independent cells, linked as
special attributes of the objects inside of
which they are, or vice versa, something
that can be extended so as to have full
hierarchies of objects in a tree [Wor-
boys, 2012]. This solution might be the
simplest to implement in terms of stor-
age, but it goes against the mathemat-
ical definition of a cell complex and
will break or require a complex spe-
cial treatment for topological computa-
tions. It is also very simple to create
invalid holes in this manner, such as
holes lying (partially) outside the cell
that is supposed to contain them.

However, it is worth noticing that complex
holes that are not homeomorphic to 𝑛-balls
can exist, e.g. tori, and finding a good sub-
division that can be used to deal with such
a hole might be very complex. The lat-
ter two methods can be applied for discon-
nected components as well. Two discon-
nected components can be connected by a

bridge cell, or all components can be con-
sidered as holes of the (empty) universe
cell.

Applications

Cell complexes in more than 3D have been
rarely described or implemented. Hazel-
ton et al. [1990] described how incidence
graphs can be put into a relational database
schema in order to store 4D polytopes, on
which 4D topological relationships can be
queried [Hazelton et al., 1992]. However,
to the best of our knowledge, this has never
been put into practice in a working sys-
tem.

5 Ordered topologicalmodels

Ordered topological models are a represen-
tation method that combines characteris-
tics of both simplicial complexes and cell
complexes. They work on the basis of a cell
complex, but subdivide each cell into ab-
stract simplices using a purely combinato-
rial operation, a concept derived from what
is known as an abstract simplicial complex
in algebraic topology.

The exact subdivision that is used depends
on the data structure, but as shown in Fig. 7,
it is similar to a barycentric triangulation
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of a convex polytope, consisting of abstract
vertices representing cells of different di-
mensions (i.e. not only the 0-cells), and sim-
plices that connect these vertices in a spe-
cific manner. The vertices representing the
cells of dimensions higher than 0 do not
have a defined location in space (although
they are usually depicted lying somewhere
in the cells they are supposed to repre-
sent), but the simplices nevertheless form a
combinatorially correct subdivision of the
space. For instance, adjacency and inci-
dence do have meaning and can be defined
just as in a geometric simplicial complex.
Considering that a 𝑗-face of an 𝑖-simplex, 𝑗 ≤
𝑖, is a 𝑗-simplex made from a subset of the
vertices of the 𝑖-simplex, two 𝑖-simplices are
adjacent if they have a common face, and an
𝑖-simplex and a 𝑗-simplex, 𝑖 ≠ 𝑗, are incident
if either is a face of the other.

Representation

In an ordered topologicalmodel, objects are
represented by sets of simplices, similarly to
a simplicial complex. However, unlike in a
geometric simplicial or cell complex, where
an 𝑖-dimensional object is represented as
a set of 𝑖-simplices or cells, as shown in
Fig. 7(c), all objects in an 𝑛-dimensional or-
dered topological model are represented by
𝑛-simplices. More concretely, a cell is rep-
resented as the set of simplices that have a
vertex at that cell. In this manner, even ver-
tices are represented as possibly large sets of
simplices.

Attributes

Attributes and geometry can be attached to
the simplicial complex in an ordered topo-
logical model in a similar way as in a geo-
metric simplicial complex. Since the ver-
tices of each simplex have a known order,
and eachvertexof each simplex represents a
cell, it is possible to link each simplex in an
ordered topological model to a tuple of at-
tributes and geometric information for the
cells that its vertices represent. Many oper-
ations that are possible on a geometric sim-
plicial complex are also possible in an or-
dered topological model, even considering

that many of its vertices do not have a spe-
cific location in space. Topological queries
can be handled in an identical way, and
some geometric operations require min-
imal changes. For instance, the length,
area, volume, etc. of a cell, can be com-
puted using the inclusion-exclusion prin-
ciple, which works similarly to the compu-
tation of the area of a polygon using the
‘shoelace formula’. Comparing objects can
also be done simplex by simplex [Gosselin
et al., 2011] taking advantage of the ordering
properties of ordered topological models.

Construction

Since this simplicial decomposition per-
formed in an ordered topological model is
done only combinatorially, it is not neces-
sary to build a constrained triangulation of
the input, which as stated in Sec. 3, might
be very difficult to accomplish. However,
using an ordered topological model still
allows one to use the stronger algebraic
properties present in a simplicial complex,
which are used in order to traverse and ma-
nipulate a cell complex. The resulting sim-
plicial complex can have a larger or smaller
number of simplices compared to one tri-
angulated geometrically, but it also has the
advantage that the number of vertices and
simplices in it is known in advance anddoes
not depend on the geometry.

We are aware of two different simplicial
decomposition schemes used in ordered
topological models, one for the cell-tuple
structure [Brisson, 1989] and generalised
maps [Lienhardt, 1994], and one for 𝑛-
dimensional combinatorial maps [Lien-
hardt, 1994]. Assumingan input𝑛-dimensional
cell complex that is in the form of an inci-
dence graph containing all the cells (of ev-
ery dimension) as nodes, and the incidence
relationships from each 𝑖-cell to the (𝑖 −
1)-faces on its boundary as directed edges,
the simplicial decompositions are shown in
Fig. 7 and explained as follows:

• Cell-tuple / generalised maps Each
possible path in the graph from an 𝑛-
cell to a 0-cell directly yields the ver-
tices of one simplex. Each 𝑛-simplex
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Figure 7: The simplicial decomposition applied in order to obtain the simplices for a 2D:
(a) generalisedmap, (b) combinatorial map. (c) All cells are represented as sets of
2-simplices, such as the vertex shownhere, which is formed of a set of 4 triangles.
Note that the locations of the vertices for the 1- and 2-cells are arbitrary, those for
the 1-cells has been defined as the midpoint of the edge, and those for the 2-cells
have been set so that the resulting simplices lie entirely in the interior of their
corresponding 2-cell.

can be thus defined by a unique 𝑛-tuple
(𝑐, 𝑐, … , 𝑐𝑛), where 𝑐𝑖 is a vertex rep-
resentation of an 𝑖-dimensional cell in
the cell complex, all of which are inci-
dent to each other. Such an 𝑛-tuple is in
fact equivalent to an 𝑛-simplex. It can
be seen as a generalisation of the lath-
based structures [Joy et al., 2003] some-
times used in 2D and 3D GIS.

• 𝑛-dimensional combinatorialmapsEach
possible path in the graph from an 𝑛-
cell to a 1-cell yields one simplex, with
the vertices for the cells from dimen-
sion 𝑛 to 2 used directly, prepended
with the two vertices corresponding to
the two 0-cells incident to the 1-cell
(i.e. the vertices at the endpoints of the
edge). Each 𝑛-simplex can be thus de-
fined by an 𝑛-tuple (𝑐, 𝑐′, … , 𝑐𝑛), where
𝑐 and 𝑐′ are the two 0-cells incident to
the 1-cell, and for 𝑖 > 0, 𝑐𝑖 is also a ver-
tex representation of an 𝑖-dimensional
cell in the cell complex, all of which
are incident to each other and to the
two 0-cells. As the two 0-cells could be
given in any order, the order is set by
specifying an orientation for the cell
complex (or for each connected compo-
nent) by specifying which vertices are
respectively 𝑐 and 𝑐′ in one simplex,
and then building the 𝑛-tuples for the

other simplices so that adjacent sim-
plices have them in the opposite order.
As Fig. 8 shows, this can result in two
possible orientations for each cell com-
binatorial map (or connected compo-
nent). In practice, this means that if we
consider the 1-faces formed by 𝑐 and
𝑐′ as directed edges from 𝑐 to 𝑐′, sur-
faces form loops of directed edges, and
opposite surfaces have opposite orien-
tations, just as in most 2D/3D struc-
tures that are based on half-edges, e.g.
DCEL [Muller and Preparata, 1978].

(a) (b)

Figure 8: There are two possible consistent
orientations that can be set for
each connected component in a
combinatorial map.
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Data structures

The cell-tuple structure [Brisson, 1989], and
generalised maps and 𝑛-dimensional com-
binatorial maps [Lienhardt, 1994] support
this model directly. Chains of maps [El-
ter andLienhardt, 1994] supplement the ap-
proach followed by generalised maps with
an incidence graph in order to support non-
manifolds, but they are rarely used because
of their very high space requirements.

Holes, disconnected components and
attributes

Holes and disconnected components in an
ordered topologicalmodel can be dealt with
any of the techniques described for cell
complexes in Sec. 4, with bridge edgesmod-
elled as a pair of simplices with the same
vertices but opposite orientations as shown
in Fig. 9. Attributes can be handled using
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Figure 9: (a) A polygon with a hole is rep-
resented using a bridge edge to
connect the hole with the exterior
boundary. (b) The simplices in
the combinatorial maps represen-
tation of the situation in (a). There
are two simplices with the same
vertices representing each side of
the bridge edge. As in Fig. 7, the
location of the vertex for the 2-cell
shown in (b) is arbitrary but cho-
sen so as to lie in the interior of the
polygon. The combinatorial trian-
gles are shown with curved lines
so as to form a planar embedding
to show that they are able to form
a partition of the space.

an attributes tuple that links each cell of the

vertices tuple to a corresponding structure
to store an attribute for it.

Applications

While ordered topological models are rel-
atively difficult to implement, they have
nevertheless been implemented in several
open source libraries and software, includ-
ing CGAL [CGAL, 2014], Moka [Damiand,
2014], and CGoGN [Kraemer et al., 2014].

In Arroyo Ohori et al. [2013b], we discussed
how generalised maps can be implemented
to support various characteristics of real-
world data, such as such as markers, locks
(for parallel algorithms), simple construc-
tion operations and indexing of darts and
attributes for the objects of all dimensions.
Fradin et al. [2002] used generalised maps
in architecture building models such that
the level of detail is effectively a geomet-
ric dimension. Thomsen et al. [2008] used
generalised maps in order to manage topol-
ogy in 2D/3D GIS in a unified (not dimen-
sion dependent) manner. Le [2013] used
Gocad [GOCADProject, 2011] (which inter-
nally uses generalised maps) to create 4D
geological models by interpolating separate
3D models at various points in time.

6 Conclusions and discussion

Using higher-dimensional representations
of objects offers a solution to the integra-
tion of parametrisable characteristics, such
as time and scale, into GIS in a generic
manner. This approach is well-founded on
long-standing mathematical theories, and
so is able to deal with complex cases and
the special requirements of each dimen-
sion more robustly than solutions in which
parametrisable characteristics are handled
in an ad hoc manner.

This approach has been pursued in the past
using higher-dimensional rasters and hier-
archies of trees [Mason et al., 1994; Varma
et al., 1990; Bernard et al., 1998; O’Conaill
et al., 1992; Mielke, 2014], but these are
only capable of achieving rough approxi-
mations of the objects’ boundaries and grow
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in size exponentially as the dimension in-
creases. Vector data structures with lim-
ited topological information, such as Sim-
ple Features [OGC, 2011], and the compu-
tation of topology on the fly [ESRI, 2005]
also become intractable in higher dimen-
sions. We have therefore argued for a topo-
logical vector approach that allows for the
representation of real-world objects of het-
erogeneous dimension with holes and at-
tributes, which requires the use of higher-
dimensional topological data structures.

Just as in 2D and 3D, there is not a single
data structure that works best for all pur-
poses and applications, so choosing an ap-
propriate one is critical. We have classi-
fied the dimension-independent data struc-
tures that are able to support this approach
into three broad data models. Each discre-
tise space in a similar way and use similar
combinatorial primitives: geometric sim-
plicial complexes, cell complexes and or-
dered topological models. The data struc-
tures belonging to each of these have like
characteristics and support a comparable
set of operations.

On one end, geometric simplicial com-
plexes have the most powerful algebra and
are the easiest to manipulate, but require
the subdivision of each object into sim-
plices using a constrained or conforming
triangulation, which is very hard to do in
more than 3D and for which there is no
known available software. Cell complexes
are on the other end, as they are trivial to
construct but only support a much weaker
set of fundamental operations, which in-
creases the complexity of many computa-
tions. Ordered topological models, such as
the cell-tuple/generalised maps and com-
binatorial maps, combine characteristics
of the previous two and have both a rel-
atively powerful algebra and are easy to
construct, although they are also the most
space-intensive and the most complex to
implement. However, this last point is
easily overcome in practice since there are
good implementations of them in several
open source libraries and software, includ-
ing CGAL [CGAL, 2014], Moka [Damiand,
2014], and CGoGN [Kraemer et al., 2014].
All of these models and their correspond-
ing implementations can then be supple-

mentedwith the techniqueswe described in
Sec. 3, Sec. 4 and Sec. 5 in order to support
real-world objects with holes, disconnected
components and attributes.

Using a higher-dimensional representation
of objects enables combined geometric and
topological queries across all dimensions.
For instance, applied to 4D BIM [Sawyer,
2014] models that include the construction
process of a building, it is possible to ef-
ficiently do safety checks (e.g. dangerous
work is not being performed concurrently
and close to other activities, or ensuring
that all building components are connected
properly at all times) by performing well-
defined 4D queries rather than by doing
many 3D tests that might not encompass all
possible undesirable cases. Asmore higher-
dimensional computational geometry and
topology algorithms and libraries become
available, such as the recent additions in
CGAL [CGAL, 2014] and Gudhi [GUDHI,
2011], this approach also makes it possible
to utilise them directly, taking advantage of
new developments.

On a final note, we hope that this paper
serves to encourage the development of
good software libraries to perform key tasks
that are currently unavailable in both geo-
metric modelling and GIS, such as geomet-
ric computationswith simplicial complexes
inmore than 3D, management of large such
complexes, robust Boolean operations on 𝑛-
polytopes (perhaps on the basis of Nef poly-
hedra), and general geometric operations
on ordered topological models.
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