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Sut. ..
how can nD objects be constructed in practice?




Sackground

- The
191
to a
con
bou

Jordan-Brouwer separation theorem (Lelbesgue

1, Brouwer 1911): a subset of space homeomorphic
N (n-1)D sphere S 'in R" divides the space into two
nected components: the interior, which is the region
nded by the sphere, and the exterior.

- Thus, an n-cell in a cell complex can be described (and

ther

efore constructed) based a set of (n-1)-cells that are

known to form its complete (closed) boundary.



Constructing an nD topological representation from
a soup of (n-1)D faces




Alternative formulations
of the same problem

- Do these (n-1)-cells form a
closed (quasimanifold) object?

- Compute the adjacency
relations between a set of
(n-1)-cells, i.e. the common
pairs of (n-2)D ridges.




One difficulty

Boundary elements can have
different orders, starting points and
orientations

Here, a tesseract (4-cube)
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Background  2p combinatorial maps




Background 3D combinatorial maps




Sackground

- Gosselin et al. (2011) describe a method to check if two
combinatorial maps are isomorphic using signatures.

Based on the ordering properties of a combinatorial map,
It Is possible to traverse the darts of a cell In a manner
that Is always consistent, yielding a canonical
representation.

By following parallel traversals of this type, an algorithm
can verify that two cells or maps are isomorphic in O(n?)
time on the number of darts in a cell/map.




The Incremental construction method

- Ensure that every element (as defined by its geometry) is
only created once

- For the construction of a given n-cell based on a set of
(n-1)-cells (faces), quickly find their common (n-2)-cells
(ridges)

- For a quasi-manifold, ridges should form pairs, which are
linked

- Reverse orientations whenever needed



As an algorithm

+ Check for element equality by testing for isomorphism
and equal vertex embeddings in R"

- SImple index on the lexicographically smallest vertex of
every cell

- Complexity is O(n?) with n the number of darts per cell,
but close to linear in practice



Incrementa
constructio

Unigque points

N: O

3
2



Incremental construction: 2D




Incremental construction: 3D and higher




Implementation

- C++11 with recursive templates
- CGAL Combinatorial Maps and Linear Cell Complex

- std: :map for iIsomorphism checks



Tests

2D+scale as 3D




Tests

Simple 4D objects






Speed gains from the use of indices
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Read more

- Constructing an n-dimensional cell complex from a
soup of (n-1)-dimensional faces. Ken Arroyo Ohori,
Guillaume Damiand and Hugo Ledoux. In Prosenjit Gupta
and Christos Zaroliagis (eds.), Applied Algorithms, ICAA
2014, Kolkata, India, January 13-15, 2014. Lecture
Notes in Computer Science 8321, Springer International
Publishing Switzerland, January 2014, pp. 37-48.




Thank you!

Ken Arroyo Ohori
tudelft.nl/kenohori


http://tudelft.nl/kenohori
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