Incremental construction of $n \mathrm{D}$ objects

Ken Arroyo Ohori

GeoBuzz
's-Hertogenbosch
25.11.2014

TUDelft

The 24-cell

 a "simple" 4D object
The 24-cell

 a "simple" 4D object24 OD vertices 96 1D edges 96 2D faces
24 3D volumes
1 4D hypervolume

objects in more than 3D are complex!

Defining 0D-3D
 objects in nD space

0D: a vertex

OD: a vertex

1D: an edge

1D: an edge

1D: an edge

1D: an edge

$\bigcirc\left(x_{0}, x_{1}, \ldots\right)$

a 1D object can be described by its OD boundaries

$$
\left(x_{0}, x_{1}, \ldots\right)
$$

2D: a face

2D: a face

2D: a face

2D: a face

2D: a face

2D: a face

2D: a face

2D: a face

2D: a face

3D: a volume

3D: a volume

3D: a volume

a "soup"
 of faces

3D: a volume

3D: a volume

Incremental construction

- Start from a set of OD vertices
- Connect them to create 1D edges
- Connect 1D edges, forming 2D faces by finding common OD vertices
- Connect 2D faces, forming 3D volumes by finding common 1D edges
- Connect nD cells, forming ($n+1$)D cells by finding common ($n-1$)D cells

Building two tetrahedra

Build a tesseract

Build a tesseract

build each cube separately

Build a tesseract

build each cube separately,

then join them

Build a tesseract

done!

Thank you!

Ken Arroyo Ohori
g.a.k.arroyoohori@tudelft.nl tudelft.nl/kenohori

Images from:

- http://commons.wikimedia.org/wiki/ File:Stereographic polytope 24cell faces.png
- http://blogs.lt.vt.edu/foundationdesignlab/category/ materials/
- http://commons.wikimedia.org/wiki/ File:Schlegel wireframe 8-cell.png

More info

Ken Arroyo Ohori, Guillaume Damiand and Hugo Ledoux. Constructing an n-dimensional cell complex from a soup of ($\mathrm{n}-1$)-dimensional faces. In Prosenjit Gupta and Christos Zaroliagis (eds.), Applied Algorithms, Volume 8321 of Lecture Notes in
Computer Science, Springer International Publishing Switzerland, January 2014, pp. 37-48.

