A triangulation-based approach to
automatically repair GIS polygons

Hugo Ledoux Ken Arroyo Ohori ~ Martijn Meijers

This is an author’s version of the paper. The authoritative version is:

A triangulation-based approach to automatically repair GIS polygons.
Hugo Ledoux, Ken Arroyo Ohori and Martijn Meijers. Computers € Geo-
sciences 66, May 2014, pp. 121-131. ISSN: 0098-3004.

DOTI: 10.1016/j.cage0.2014.01.009

Related source code is available at
https://github.com/tudelft3d/prepain

Although the validation of a single GIS polygon can be considered a solved is-
sue, the repair of an invalid polygon has not received much attention and is still
in practice a semi-manual and time-consuming task. We investigate in this paper
algorithms to automatically repair a single polygon. Automated repair algorithms
can be considered as interpreting ambiguous or ill-defined polygons and return-
ing a coherent and clearly defined output (the definition of the international stan-
dards in our case). We present a novel approach, based on the use of a constrained
triangulation, to automatically repair invalid polygons. Our approach is concep-
tually simple and easy to implement as it is mostly based on labelling triangles.
It is also flexible: it permits us to implement different repair paradigms (we de-
scribe two in the paper). We have implemented our algorithms, and we report
on experiments made with large real-world polygons that are often used by prac-
titioners in different disciplines. We show that our approach is faster and more
scalable than alternative tools.

http://dx.doi.org/10.1016/j.cageo.2014.01.009
https://github.com/tudelft3d/prepair

1 Introduction

While there are different definitions for
a polygon, most geographical informa-
tion systems (GISs) use that of the Open
Geospatial Consortium (OGC) and the In-
ternational Organization for Standardiza-
tion (ISO [OGQ, ko11; [SO, TC211], and
provide validation functions to ensure that
a given polygon conforms to the definition.
There are small variations between differ-
ent implementations [van Oosterom et al,
2004, but we can consider the validation of
a two-dimensional polygon a solved prob-
lem. Having one definition together with
validation tools ensures that practitioners
can exchange datasets and use spatial anal-
ysis operations in their downstream ap-
plications. Validity is indeed a prerequi-
site for many GIS operations—invalid poly-
gons will either yield wrong results or, even
worse, could make the software crash.

When a polygon is invalid—that is, it does
not respect a given definition—then one
has to repair it. While most validation tools
give users a list of errors and locations (see
for instance Figure fil), they usually still have
to manually fix them. This can become in

File View Edit Options Help

=[] 4[] 0] SB[

ot redicaes| Functons Val |

vatigy [

[Selfintersection at or near point (122857
18.7382695903, 1589070.7373000782, N

[1228528.7382605003
¥[1580070.7573000782

SetMark Clear Mark

1226528, 1689071
Case o1 e odel set

@

Figure 1: The Java Topology Suite (JTS) inter-
face that helps users locate errors
in invalid polygons.

practice a very tedious and time-consuming
task for large polygons.

These are almost identical, see Section P.

We investigate in this paper automatic meth-
ods for repairing GIS polygons. Surpris-
ingly, it is a topic that so far has received
little attention. As we discuss in Section B,
most GIS packages perform some form
of implicit cleaning/repairing (e.g. delet-
ing “unwanted parts” for display purposes)
when reading invalid input, but how this
is done is (often) not documented and the
user has little control over it. An example
of this cleaning, and of how the interpre-
tation of the input can differ, is shown in
Figure P for two well-known packages. To
our knowledge, the only fully automatic re-
pair tool available is the one in PostGIS (the
ST_MakeValid function). In our context, a
repair tool explicitly takes a polygon as in-
put, repairs it, and gives it back to the user;
this is in contrast with the cleaning func-
tions that are automatically used on the in-
put as a means to enable its conversion to
another (internal) representation. As ex-
plained in Section §, ST_MakeValid is not
documented (one has to read the code and
try with different inputs) and does not per-
form well for polygons having a large num-
ber of boundaries. It should be said that the
repair of polygons is not an exact science,
i.e. different persons could repair one in-
valid polygon in different ways. As a con-
sequence, we describe in Section g different
algorithms and paradigms that can be used,
each one of these has pros and cons. We
believe that the most suitable paradigm is
application-dependent.

We present in this paper a novel approach to
automatically repair invalid GIS polygons.
As described in Section [4], it is conceptually
simple and is based on the properties of a
constrained triangulation (CT) of the input
polygon. Our CT-based approach permits
us to implement efficiently different repair
paradigms, and adding new ones is easily
done. We also discuss in Section [j a prepro-
cessing step to our approach to snap points
and lines to each other if they are within
a tolerance. Doing so can destroy (modify
and invalidate) the topology of the input,
but we show that with our approach we can
recover from these errors, and that the re-
paired polygons are free of spikes and more
robust. We have implemented our approach
and we report in Section [0 on experiments

BEasH BT QL (Bime B8

(b)

Figure 2: Different interpretations of the polygon p3, as shown in Figure . [a) ArcGIS con-
siders the overlapping region as a hole, but the non-overlapping part of the hole
as a new polygon (QGIS and FME do this as well). [b] GRASS removes the over-
lapping part from the polygon, becoming a new polygon with a different shape.

we ran with large and complex real-world
GIS polygons used by practitioners in dif-
ferent disciplines related to the geosciences.
It can be seen that our implementation is
efficient in practice, and that it scales bet-
ter than a graph-based approach (that of
PostGIS’s ST_MakeValid) for very large poly-
gons. Finally, in Section [, we elaborate on
the advantages of our method and discuss
how other paradigms can be implemented
on it.

2 Whatis a (robust) polygon?

We use the definition as found in the Simple
Features specifications (SFS) [OGC, 2011]:

[A] planar Surface defined by 1 exte-
rior boundary and o or more interior
boundaries. Each interior boundary
defines a hole in the Polygon.

A boundary is defined by a (clockwise or
counterclockwise) oriented ring. Different
rules are provided, the most relevant being
the following (examples of polygons break-
ing the rules are given between brackets,
they refer to those in Figure §):

1. Each ring defining the exterior and in-
terior boundaries should be simple, i.e.

non-self-intersecting (p; and pyg). No-
tice that this prevents the existence of
rings with zero-area (pg), and of rings
having two consecutive points at the
same location. It should be observed
that the polygon p; is not allowed by
the SFS (in a valid representation of the
polygon, the triangle should be repre-
sented as an interior boundary touch-
ing the exterior boundary), but some
implementations do allow it (e.g. ESRI’s
Shapefile).

. Each ring should be closed (p;1): its first

and its last points should be the same.

. The rings of a polygon should not cross

(p3, p7, ps and py,) but may intersect at
one tangent point (the interior ring of
p» is a valid case, although p, as a whole
is not since the other interior ring is lo-
cated outside the interior one).

. A polygon may not have cut lines,

spikes or punctures (ps or pg); removing
these is known as the regularisation of a
polygon (a standard point-set topology
operation).

. The interior of every polygon is a con-

nected point set (py).

. Each interior ring creates a new area

that is disconnected from the exterior.

interior
boundary

exterior
boundary

]

o

1 p2

]
W)

P4 Ps

|
[

b7 ps

X
[

D3
T
Pe
=
Py
P1o P11 D

Figure 3: Several invalid polygons; this is
not a complete list of all prob-
lematic polygons, but rather an
overview of common cases. Poly-
gon ppp has its exterior and in-
terior rings defined by the same
geometry.

Thus, an interior ring cannot be located
outside the exterior ring (p,) or inside
other interior rings (pg).

Furthermore, the exterior boundary of a
polygon must be oriented counterclock-
wise, and the interior boundaries clock-
wise.

The ISO/OGC definition of a polygon as-
sumes an implementation of the rules with
an arbitrary-precision representation (real
numbers), while most commonly these are
done using floating-point, which offers
only an approximation [Hoffmann, 1989].
The coordinates of the vertices of a poly-
gon are therefore most often rounded to the
closest possible value in the computer. This
can have serious consequences as the topol-
ogy of a polygon can be modified and a valid
polygon can become invalid; Figure [f shows
an example. In the ISO/OGC rules, if two
rings touch at location g, only one of the

rings is required to have a vertex at location
g. If both rings had a vertex at location g (if
a fifth vertex was added to the exterior ring
of the polygon in Figure [f(a)), this problem
would be avoided.

To facilitate operations (including valida-
tion) on polygons when finite-precision
representations is used, Van Oosterom et al.
[2004]] define the concept of robustness of
a polygon. Each vertex of a polygon is as-
signed a tolerance: the maximum distance
this vertex can be moved (in any direction)
while the polygon is guaranteed to remain
valid. As an example, the polygon in Fig-
ure [4f(a) is not very robust, but if, as shown
in Figure [(c), the exterior ring explicitly
had a vertex where both rings touch than
the robustness would be greatly increased.
Van Oosterom etal! [2oo4]] use the tolerance
for validation: a polygon is valid only if it re-
spects the ISO/OGC rules and if its robust-
ness is greater than a given user-defined tol-
erance (see Figure [f(d)). Observe here that
this definition has the advantage of not al-
lowing ‘spikes’ in polygons. As Figures [4(c)
and (d) show, calculating the robustness im-
plies calculating distances between vertices
and other vertices, and between vertices and
edges. We describe in Section | one method
to improve the robustness of polygons and
to remove spikes from polygons.

3 Related work

3.1 Algorithms to identify the
interior of a polygon

The automatic repair of a polygon is akin to
the identification of the interior of a poly-
gon. Given one simple and closed boundary
in the plane, finding its interior is straight-
forward since, as the Jordan curve theorem
states, the boundary divides the plane into
two distinct regions: the interior and the ex-
terior [Jordan|, 1887].

Iftheboundary is non-simple then there are
two commonly used algorithms in vector-
based graphic software [Foley et all, 1994]:

Figure 4: (a)(b) Two polygons, appearing to be identical, having an interior ring touching
the exterior ring. However, because of the use of a finite-precision representa-
tion, the vertex cannot be located directly on the segment, and will thus be either
slightly (a) inside or (b) outside the exterior ring. (c) A more robust representa-
tion of the polygon. Its robustness is equal to the length of the red line. (d) If
a given minimum tolerance for a valid polygon is given (red circles), then the

polygon becomes invalid.

1

Figure 5: Three non-simple polygons; grey represents the interior of the polygon. (a) The
odd-even rule. (b) The non-zero winding rule. (c) The odd-even rule when ap-
plied to a polygon having an interior ring. (d) Top: input polygon. Bottom: result
ofthe odd-even rule algorithm is formed by 3 polygons (having no interior rings).
(e) Top: input polygon. Bottom: result of the non-zero winding rule algorithm

is formed by 1 polygon.

(1) the odd-even rule; (ii) the non-zero wind-
ing rule. In brief, both approaches first re-
quire us to construct the planar graph G
of the boundary to identify faces, and then
two similar rules are used to determine if a
face is an interior or an exterior region of
the boundary. Figure { illustrates both ap-
proaches. With the odd-even rule, a face F
is an interior region if for any point p in-
side F the segment po (where o is a distant
point located outside the boundary) inter-
sects an odd number of edges in G. The
non-zero winding rule counts the number
of times the boundary makes a full revolu-
tion around a point p in a given direction
(changing direction can cancel out previous
rotations), let us assume counter-clockwise.
If the count is non-zero, p is located in-
side. It is implemented by adding 1 when
the segment po, as above, intersects an edge
of G that is oriented from left to right, and
subtracting 1 when the edge is in the other

direction; p is an interior point when the
count is non-zero.

Both algorithms can be generalised to GIS
polygons (i.e. having interior rings). Fig-
ure ff(c) shows one polygon having one in-
terior ring (light grey boundary) whose in-
terior has been defined as the interior of
the polygon with the odd-even rule (the in-
put polygon has actually been split into sev-
eral polygons). While this behaviour is pre-
dictable (so a practitioner can predict eas-
ily how her polygons will be repaired), it is
perhaps not suited for all applications, es-
pecially when rings overlap. As shown in
Figure g(d), with the odd-even rule all rings
are considered equal and interior rings be-
come new polygons when located outside
the exterior ring. We describe in Section [4
an implementation of this paradigm where
degeneracies (e.g. when two rings are shar-
ing an edge, or when they overlap) are han-

dled.

We also propose in Section [an alterna-
tive approach to odd-even in which the in-
terior of interior rings is always considered
as the exterior of the polygon. This offers
another option for practitioners, one where
the information of whether a ring is inner
or outer is deemed to be correct. As shown
in Figure ff(e), it follows a point-set topology
approach in which a polygon p having an
exterior ring r and n interior rings r; (where
0 <i<mn)isdefinedasp = r\(ryUr U...Ur,).
We are not aware of other software imple-
menting this approach explicitly.

3.2 How practitioners repair their
invalid polygons

As seen in the Introduction, most GIS pack-
ages have algorithms to automatically clean
invalid polygons. These algorithms are usu-
ally used implicitly as soon as an invalid ge-
ometry is read by the software so that the
geometries can be stored in a specific data
structure and then drawn on the screen. As
shown in Figure P, the rules for the han-
dling of extreme cases differ greatly from
one package to the other. While there ex-
ist also specific functions to repair invalid
polygons (e.g. in ArcGIS one can define
rules based on a tolerance for the allowed
distances between rings and how they can
interact), these are usually applied after the
invalid geometry has been cleaned auto-
matically. Therefore, the user has no direct
control over these (some parts of a polygon
could be unpredictably deleted), and per-
haps worse, these are not documented.

To explicitly repair polygons automatically,
i.e. in a manner where the output can be
controlled and/or predicted, practitioners
often resort to ad hoc solutions and tricks.
Ramsey [201d] gives an excellent overview
of these, his examples are PostGIS-related
only, but since it uses other open-source li-
braries such as GEOS we believe this is rep-
resentative of what practitioners do. The
most known is the “buffer-by-o” operation:
a buffered geometry is built, constructed by
offsetting lines from the original geometry
by nothing (zero). To construct a buffer, the

planar graph of the input is built; in other
words the topology is built, which will be
structurally identical to the original input.
While this trick works fine for solving a few
simple cases (polygon p, in Figure g for in-
stance), parts of a polygon can disappear
for some input polygons: it removes half
of the bow-tie of p1y. Repairing it correctly
(i.e. with two polygons) requires using three
functions in PostGISE. All these functions
are based on the construction of a planar
graph of the input, and on identifying loops
in this graph to form rings. Some of them
reconstruct all the possible loops, while oth-
ers stop after one loop has been found.

The script cleanGeometry. sq1l was the first
attempt to formalise the decision tree based
on a given input. Unfortunately, polygons
with interior rings are not properly han-
dled.

The PostGIS function ST_MakeValidd is an
attempt to build a high-level function to re-
pair any input polygon. It uses the func-
tions of GEOS and PostGIS, and depending
on the topological and geometrical config-
uration of the input rings, different func-
tions are used to repair. Basically, first a
planar graph of the input is built, and then
one face in the graph is found and a ring
is built (at this point it is unknown if it is
an exterior or an interior ring). Then, for
all the other faces in the graph the result-
ing polygon is obtained by the symmetric
difference of this ring and the one already
found. Each symmetric difference requires
building a new independent graph where
the topological relations of the rings are ex-
tracted (to detect which ring is the exterior
and which are the interior). As a conse-
quence, ST_MakeValid is inefficient for in-
put containing a large number of points
and/or interior rings, as Section (§ demon-
strates with real-world large polygons. Even
if the function is not documented, after
reading the code and testing it we can con-
clude that it operates according to the odd-
even rule, as explained above. The main dif-
ference is that it attempts to create a valid
representation of a given invalid geometry

2ST_ExteriorRing + ST_Union + ST_BuildArea

3Available at: trac.osgeo.org/postgis/wiki/
UsersWikiCleanPolygons

4Since PostGIS version 2.0

trac.osgeo.org/postgis/wiki/UsersWikiCleanPolygons
trac.osgeo.org/postgis/wiki/UsersWikiCleanPolygons

without losing any of the input vertices, i.e.
ifa ring collapses to a line segment, this line
segment is also returned to the user as a sep-
arate geometry.

4 Repairing a polygon with a
constrained triangulation

We present in this section a triangulation-
based approach to implement the two au-
tomatic repair paradigms described in Sec-
tion B:

odd-even paradigm: the odd-even rule
when interior rings are present.

setdiff paradigm: the polygon p = r\(ry U
r U...Ur,), where r is the exterior ring
and r; are interior rings.

We demonstrate that both paradigms can be
implemented simply and efficiently using
a constrained triangulation (CT) as a sup-
porting data structure. Because the input
polygons can be invalid and thus contain
special cases (e.g. two rings sharing an edge
or partly overlapping), we have generalised
the two paradigms so that they have a con-
sistent behaviour. The overall layout of the
two algorithms is very similar, and in brief
has the following three steps (Figure (g illus-
trates the steps for a polygon having two er-
rors):

1. construction of the CT of the segments
of the input polygon;

2. labelling of each triangle as either out-
side or inside;

3. reconstruction of the repaired polygon
according to the SFS.

Notice that the valid representation of an
invalid input polygon can be either:

- nothing (e.g. the only ring of a polygon
is a line segment);

- one polygon (potentially with interior
boundaries);

- several polygons (e.g. polygons p,, p4, Po
and pyg in Figure f).

4.1 Properties of a constrained
triangulation

Given a set S of points and (straight-line)
segments in the plane (such as that in Fig-
ure [{(b)), a constrained triangulation (CT)
decomposes the convex hull of S into trian-
gles that are non-overlapping, and every in-
put segment appears as an edge of CT(S). If
S contains segments forming a face (which
defines one boundary of a polygon in our
case), it permits us to triangulate the inte-
rior of this face (i.e. a triangulation of the
polygon). Notice here that for the sake of re-
pairing a polygon, we cannot use algorithms
to triangulate a single polygon (e.g. Chazelle
[1982]) as these often assume that the input
is simple and forms only one polygon.

Observe that while the shape of the trian-
gles constructed is important for many ap-
plications [Shewchuk, 1997], here any CT
can be used (the constrained Delaunay trian-
gulation can be used but is not necessary).
A CT can be built efficiently with a vari-
ety of approaches [Guibas and Stolfi, 1985;
Clarkson et all, 1992]. Once the CT is con-
structed, it can be used for solving quickly
the point-location problem [eventually with
an extremely light auxiliary data structure,
cf. Miicke et all, 199g], which is useful to
identify double vertices and intersections
of segments.

4.2 Advantages of a constrained
triangulation for the automatic
repair

The two algorithms described in this section
can in theory be implemented with a planar
graph approach where each input segment
becomes one edge in the graph. While this
would decrease the memory usage (since
the CT contains several additional uncon-
strained edges), there are in practice several
advantages to using a CT. First, we can ex-
ploit the properties of the CT to perform
some cleaning that is otherwise rather cum-
bersome to implement. One example is
that if two input segments intersect, they
are split into two sub-segments and thus a
new vertex is added at their intersection.

dangling plec
ring not closed

© @ (e

Figure 6: Workflow of our approach for repairing a polygon. In (a) the input polygon has
2 problems; (b) the interior ring is closed; (c) the CT is constructed; (d) triangles
are labelled as inside (grey) or outside (white); (e) the repaired polygon.

This step is performed efficiently since the
CT is used as a spatial index to identify the
candidate segments intersecting; no brute-
force computations or auxiliary spatial in-
dex structures are thus necessary. Another
example is that no two vertices or edges of
a CT can be at the same location, which
means that if two identical segments are
in the input, only one will be kept in the
CT. Also, the handling of rings collapsed
to points or lines is trivial as these have
no area and are thus not labelled. Second,
the CT permits us to embed together in the
same structure both the geometry and the
topology of the input polygons, which al-
lows us to perform less operations when re-
pairing. For instance, ST_MakeValid, anim-
plementation of a planar graph approach,
needs to perform extra geometrical opera-
tions to detect topological relationships be-
tween rings, while with a CT this is not nec-
essary because the extra edges of the CT
ensures that the graph is always connected
(even when a polygon has interior rings).
Third, implementation-wise, several stable
and fast constrained triangulation libraries
exist (including CGAL [CGAL, 2011], Trian-
gle [Shewchuk, 1997] and GTS [GTS, 2006])
and we can simply build over them as the
approach involves mostly the labelling of

triangles.

4.3 Odd-even paradigm

The algorithm for the odd-even paradigm is
shown in Algorithm fil. Its main steps are de-
scribed in the following.

Algorithm 1 The ODDEVEN algorithm.

Require: an invalid polygon p havmg an
exterior ring r and n interior rings r;
(where 0 <i<n)

Ensure: p is valid (potentially formed by
none or several valid polygons)

1: for eachr; do

if first vertex != last vertex then
add first vertex as last vertex

end if

end for

7 « construct CT of all segments of r

and the r;

7: label each triangle in .7 as either outside

or inside

8: reconstruct p as a SFS polygon

Closing eachring The SFS require that the
first and the last point of a ring be the same

(a triangle has thus 4 points). This is in
practice often ignored, and most GIS pack-
ages will recover from that (small) error by
adding the missing point. We believe that
this is consequent with the intention of the
user: if a shape was defined as a ring, it is
probably a mistake that it is not closed.

Labelling triangles To label each triangle
as either outside or inside, we start at one
triangle located outside any input ring, we
label it as outside and we expand to all
triangles reachable from it without pass-
ing through a constrained edge of the CT
(this is akin to performing a breadth-first
search (BFS) on the dual graph of the tri-
angulation). When these are exhausted, all
remaining triangles reachable by passing
once through a constrained edge are known
to be in its interior. From the remaining tri-
angles, those that can be reached by passing
through two constrained edges are in its ex-
terior, and so on.

The fact that we start from the outside is
key to ensuring that the algorithm performs
correctly. To find a triangle located outside
any ring, we exploit the “far-away point”
(also called the “big triangle”) that is used
by several CT implementations [Liu and
Snoeyink, 2oog; Facello, 1995]. In brief, ev-
ery edge on the border of the convex hull
has a triangle incident to it, and this trian-
gle is formed by the edge and a special “in-
finite” point.

Thus, to label the triangles, the algorithm
performs several passes. First the trian-
gles incident to the infinite point and the
reachable ones are labelled as outside. Then
this operation is expanded to triangles fur-
ther in the interior of the polygon (labelling
them as inside). If all the triangles have
been flagged (if there are no interior rings)
then the process if finished, otherwise the
labelling continues the same way, alternat-
ing between outside and inside, until all tri-
angles have been labelled.

From the CT to a polygon To reconstruct
the polygon(s)—according to the SFS—
from the labelled CT, we need to remove

all the edges (both constrained and non-
constrained) whose left and right labels are
the same. If we performed that operation,
then the reconstruction of the polygon(s)
(and the identification of the exterior and
interior rings of each) would be computa-
tionally expensive. We use a more efficient
alternative: we construct a path (a polyline)
that runs along the boundary segments of
the polygon, on the inside of it. In a nut
shell, as Figure [j illustrates, we traverse one

Figure 7: The polyline generated from a
given triangle in the interior of the
ring joins all holes with the exter-
nal boundary, always while keep-
ing the interior connected and
on the same side of the line (left
in this case). A separate poly-
line is always generated for each
different interior connected com-
ponent. Note that the ‘bridges’
generated involve passing through
them twice in the polyline.

[

=

area formed by several triangles labelled as
interior (or exterior) in a depth-first search
order, always going counter-clockwise. In
this process, so-called ‘bridges’ are gener-
ated to connect the exterior and interior
rings. These are later removed in a rather
complex procedure that also ensures that
inner and outer rings are generated and
nested correctly. More details can be found
in Arroyo Ohori et al! [2012].

4.4 The setdiff paradigm

The algorithm to repair a polygon accord-
ing to the setdiff paradigm is shown in Al-
gorithm P It is conceptually similar to
ODDEVEN, the two major differences are
that: (i) each input ring must be repaired

Algorithm 2 The SETDIFF algorithm.
Require: an invalid polygon p having an
exterior ring r and m interior rings r;
(where 0 <i<m)
Ensure: p is valid (potentially formed by
none or several valid polygons)
: 7 < ODDEVEN
: for each 7; do
7; < ODDEVEN
: end for
7 « construct CT of all segments of 7/
and the 7
: label each trianglein .7 as either outside
or inside, taking the orientation of rings
into account
7: reconstruct p as a SFS polygon

&(]-b-kﬁNr—l

(o)

individually and properly identified (exte-
rior or interior); (ii) the labelling step is
performed differently. The other steps (the
construction of the CT and the reconstruc-
tion of the polygon in SES) are exactly the
same as in ODDEVEN.

Repairing each ring To ensure that every
input ring is valid, the algorithm ODDEVEN
is used separately for every ring (a ring be-
comes a polygon for this step). If an input
ring is non-simple (e.g. po in Figure §) then
it is split into simple rings.

Labelling triangles while considering the
orientation As is the case for ODDEVEN,
one CT is constructed with the segments of
all the repaired rings. Since the exterior
and interior rings have to be handled differ-
ently, the constrained edges of the CT are
oriented and have an attribute for the type
of ring. If two rings share an edge, the in-
formation is kept for both directions of the
edge.

The labelling is performed in three steps, as
shown in Figure B for two polygons. First
the triangles incident the “far-away point”
are labelled as outside, with exactly the same
procedure as with ODDEVEN. Second, the
interior triangles of the exterior ring are la-
belled as inside; during the labelling pro-
cedure the constraints in the CT are never

crossed. Finally, the interior of every inte-
rior ring is labelled as outside; during this
step, constrained edges representing the ex-
terior ring can be crossed and triangles al-
ready labelled as inside can be re-labelled as
outside. This is to properly handle the spe-
cial cases such as p;, in Figure § or when an
interior ring surrounds the exterior ring, as
Figure § shows.

4.5 Time complexity

The time complexity of ODDEVEN is defined
by the complexity of constructing the CT,
O(vlogv), and by the reconstruction of the
polygon(s), O(vrlog r), with v the number of
vertices in all the rings and » the number of
rings. It should be noticed that constructing
the CT can take O(v?) in the worst case since
a quadratic number of edge-edge intersec-
tions are possible (e.g. in certain star poly-
gons). However, for single polygons com-
monly found in GIS applications the num-
ber of intersections is usually much smaller
than v. As an example, the 100 real-world
GIS polygons used for the experiments in
Section contain no intersections. The
other operations (i.e. closing rings and la-
belling) are performed in linear time or
lower. Therefore, the total running time is
O(vlogv + vrlogr). If v is several orders
of magnitude larger than r (as it is most al-
ways the case with polygons used in prac-
tice), the algorithm is dominated by the tri-
angulation time, O(vlogv).

For SETDIFF, each ring is similarly repaired
in O(nlogn), where n is the number of
points in a ring. Since every input ver-
tex is only repaired once (vertices belong-
ing to more than one ring appear in the
input once per ring), this is equivalent to
O(X' nlogn) < O(vlogv). The SETDIFF re-
pair process is therefore also performed in
O(vlogv).

This matches the experimental results in
Section [§, where SETDIFF is slower by a fac-
tor of about 2. This is explained by the
fact that the ODDEVEN steps have to be per-
formed roughly twice: once for each ring,
and once for all the rings together.

10

CT +
labelling universe

input

labelling inside

labelling interior output

rings

input

labelling

inside

labelling output

outside

Figure 8: The steps of the SETDIFF algorithm for two invalid polygons.

4.6 Example of repaired polygons

Figure |J shows examples of invalid poly-
gons that were repaired with the approach
described in this section. The following
should be noticed:

Dangling pieces These are ignored because
the labels on the left and the right are
the same.

Disconnected interior This is handled
properly and one new polygon is
created per interior-connected part.

Collapsed area These areas are simply ig-
nored in the output (same labels on
left and right). However, if they in-
tersected another boundary, then the
point(s) added during the construction
of the CT is present in the output. It is
possible to post-process segments and
merge two consecutive collinear ones,
but we have not implemented it.

Overlapping boundaries Such boundaries
are merged / dissolved together.

Self-intersections Self-intersections, such
as p; in Figure j, are repaired as an in-
terior boundary is constructed.

4.7 Repairing a MultiPolygon

A MultiPolygon is a collection of m poly-
gons in which no two polygons overlap or

11

are edge-adjacent [OGQG, 2011]. The first ob-
vious approach to repairing a MultiPolygon
is to use either ODDEVEN or SETDIFF sepa-
rately for each polygon; this doesn’t necessi-
tate any changes to the algorithms. An sec-
ond approach is to use one of the two algo-
rithms with all the rings of the polygons to-
gether when labelling. Special cases such as
when an interior ring of a polygon p; is lo-
cated outside the exterior ring of p;, but in-
side the exterior ring of another polygon p,,
will yield totally different outcomes. In our
implementation of the two algorithms (pre-
sented in Section [§), we have favoured the
latter. Our main motivation is that if one
MultiPolygon was created by a user (and not
several separate polygons), this is because
the polygons “belong together” (and share
the same set of attributes), and thus it makes
more sense to repair them in an integrated
manner.

5 Computing the robustness
and improving it with
snapping

The use of a CT as a base to automatically
repair polygons can also help to efficiently
compute the robustness of a given polygon,
before and after repair. Indeed, the trian-
gulation itself serves as a spatial index, and

ODDEVEN

SETDIFF

N

ViE

b
N

3
3

[/

3|
3

E’

e/

Py

X

P1o

|/

P12

L

P13

Figure 9: Some polygons from Figure fand how ODDEVEN and SETDIFF repair them; poly-

gon pq3 is new.

12

[

no auxiliary spatial index structures (such
as an R-tree) need to be used. The algorithm
works by doing a breadth-first search (BFS)
from every vertex v belonging to a polygon,
visiting up to the closest vertex ¢ or edge
e also belonging to a polygon or until the
robustness (initialised at infinity) has been
reached. The robustness is updated to the
smallest distance between v and c or e if it
smaller than the current robustness. Notice
that these vertices or edges are found as con-
straints in the input polygon, but after re-
pair (labelling) they are instead defined as
being incident to two triangles having dif-
ferent labels.

If the robustness of a given polygon is
not high enough, it is possible to im-
prove it by preprocessing the polygon with
a well-known method to convert its seg-
ments from an arbitrary-precision repre-
sentation to a finite-precision one: snap
rounding [Goodrich et al}, 1997]. As shown
in Figure [id, the method is based on the
subdivision of the plane into a grid of a
resolution s. Each vertex, and each inter-
section between two or more segments, are
moved to the centre of the grid cell they are
located in (these grid cells are labelled as
‘hot’). While this ensures that the distance
between two vertices is at least s, the dis-
tance between a vertex and a segment not
incident to that vertex can be very small. It-
erated snap rounding (ISR) solves that prob-
lem and ensures that any vertex is at least
s/2 from a segment. As Figure idc shows,
it splits segments overlapping a hot cell by
adding a new vertex at the centre of the
cell; as a result, the segment is not straight
anymore. The details of the algorithm are
out-of-scope for this paper, the reader is re-
ferred to Halperin and Packey [2002].

While the ISR algorithm allows us to in-
crease the robustness of a polygon, its topol-
ogy can be significantly changed. For in-
stance, the polygon in Figure id is now
split into two polygons, but other cases such
as the collapsing of a small area into a
line can also arise. One example is the
polygon in Figure [§d where the two spikes
would potentially become segments, and
thus be removed by our triangulation-based
approach. ISR can thus be used not only
to improve the robustness of polygons, but

13

also to remove spikes since these collapses
to lines, which are deleted.

Notice that the origin of the virtual grid
used for ISR influences the outcome of Fig-
ure [d: it is possible that the vertex and the
segment be located in different grid cells
and the spike would stay in the repaired
polygon. However, the ‘base’ of the spike
would be larger (the interior angle of the
vertex at the right would be greater).

6 Experiments and
comparison with other
tools

We have implemented in C++ the two al-
gorithms described in Section |§. The pro-
totype, called prepair, is open-source and
freely available under a GPL licencel. Two
libraries are used: (1) CGALB (we use its
constrained triangulation module and its
robust geometric operations); (2) the OGR
Simple Features Libraryll (which allows us
to read and write from a large variety of GIS
data formats). In its current form, the pro-
totype reads one Polygon and returns one
valid MultiPolygon; different GIS formats
are supported for the input/output.

We describe in this section experiments
that were run with different datasets. We
compare our implementation of ODDEVEN
to that of PostGIS (version 2.0.2) and the
function ST_MakeValid. Both implemen-
tations have the same behaviour, and pre-
processing with ISR was not used. Since
ST_MakeValid first validates a polygon (with
the function ST _IsValid()), we have sub-
tracted from the total running time the val-
idation time. All the experiments were run
on a laptop with Mac OS X 10.8, 2.5GHz and
4GB of main memory.

Swww.github.com/tudelft3d/prepain
GWWW.anl.Or‘q
7www.gdal.org/ogn

www.github.com/tudelft3d/prepair
www.cgal.org
www.gdal.org/ogr

/ |

/

[

=

(o)

(d)

Figure 10: (a) Input polygon with one interior ring. (b) ‘Hot cells are in grey. (c) The poly-
gon after vertices have been moved to the centre of the grid cells. Observe that
one hot cell contains a line segment. (d) The result of the ISR algorithm.

6.1 Unit tests

All the polygons shown in Figure B, and
other similar ones, were tested. The situa-
tions depicted in these purposefully involve
many degenerate cases, both with regards to
interpretation and implementation. They
are meant as a sort of unit testing poly-
gons to compare how they fare in different
tools [Burns, 2oo1]. We are able to repair
all of these, with the behaviour explained in
Section [f. ST_MakeValid repairs these cor-
rectly also, and the results are the same as
ODDEVEN, except that the collapsed geome-
tries are also returned to the user. These
polygons are very small and the running
time is comparable.

6.2 Corine 2006 dataset

To test the efficiency of prepair, we have
tested it with complex real-world poly-
gons from the CORINE land cover dataset

(CLC2006)8. Since they are constructed
from reclassified raster imagery, they can
be very large, both in terms of number of
points and of rings. As a test dataset, we
used the 100 largest (in terms of number
of points) invalid polygons in the CLC2006
dataset. The smallest of these 100 polygons
(ID = EU-2018418) contains 44 o051 points
and 126 rings; the largest (ID = EU-199949)
contains 1 189 903 points and 7 672 rings.
The average numbers of points and rings
per polygon are respectively 146 478 and
776; the median values are 9o 526 and 434.
Figure] shows one example of a polygon,
the errors in the polygons are generally the
self-intersection of a boundary and differ-
ent interior boundaries touching at more
than one location. It should be noticed that
with these 100 polygons, no new vertices
were added during the construction of the
CT; in other words there were no intersec-
tions between straight-line segments in the
input. The number of vertices in the CT is
in fact in each case lower than the number

8lyww.eea.europa.eu/publications/

CORO-1landcoven

14

www.eea.europa.eu/publications/COR0-landcover
www.eea.europa.eu/publications/COR0-landcover

gl

v v

AN
o
-

~

Figure 11: The polygon EU-180927 from the CLC2006 dataset. It covers an area of about
26 ooo km? in the North of Norway and Sweden, and contains 102 272 points and
299 rings. The polygon contains a typical error that is found in several polygons
of the CLC2006 dataset: self-intersection of the exterior boundary.

of points in the input (ranging from 2 to 9o
vertices); the main explanation for this is
that several points were duplicated, an ex-
ample is shown in Figure fi1.

Figure [i2 shows the results of the exper-
iments for the odd-even paradigm. Ob-
serve that for polygons with less than 400K
points, the running time appears similar,
although prepair is on average 6 times
faster. The bottom plot in Figure 2 shows
that ST_MakeValid follows roughly a poly-
nomial of degree 2,and prepair hasalinear
behaviour. The results corroborates the the-
oretical analyses for the two algorithms, as
previously explained in Section g and Sec-
tion [4.§. For the polygons having between
500K and 1M points it is about 11 times
faster. The exception is the biggest polygon:
ST_MakeValid takes more than 100 times
more time to repair.

The comparison of the running times for
ODDEVEN and SETDIFF is shown in Fig-
ure 3. It can be seen that both algorithms,
have a close-to-linear behaviour, and that
in practice ODDEVEN runs on average about
twice as fast as SETDIFF.

15

7 Conclusions

We have demonstrated that a triangulation-
based approach for automatically repair-
ing GIS polygons yields in practice a fast
and scalable implementation (with a be-
haviour that in practice is linear in terms of
the number of points in the polygon), and
has several benefits over a graph-based ap-
proach. The main benefits are: (i) many
of the cleaning operations can be per-
formed locally on the CT; (ii) the graph
of the polygons with interior rings is al-
ways connected, which facilitates the de-
tection of topological relationships between
rings; (iii) it is robust, thanks to the several
robust triangulators that have been devel-
oped in several disciplines. We can further
claim that our implementation is fully ro-
bust since we rely on CGAL (which uses ex-
act arithmetic when needed) and our repair
operations are expressed solely in terms of
labelling of triangles (no complex geomet-
ric computations are involved).

While designing our approach we had to
make several—often arbitrary—choices for
its behaviour when special cases are present

2500

+ prepair O ST_MakeValid

2000

1500

Running time (sec)

[=]
=]
o

500

600K

Number of points

60
°
°
° °
°

45 °
g °s ©
N2
o °
£ o
= 30 &
2 °
5 °
=3
o °

o o
)
o °°o °
15 g o
° 9
© o8y °
©70 0° o
%%’ o +
£F
0
0K 100K 200K 300K 400K

Number of points
Figure 12: Running time of prepair (ODDEVEN algorithm) and ST_MakeValid for the 100

largest polygons in the CLC2006 dataset. The bottom plot is for the part in the
ellipse at the top.

16

80

+ OddEven O SetDiff

60

40

Running time (sec)

20

200K 400K

Number

600K

800K 1000K 1200K

of points

Figure 13: Running time for the CLC2006 polygons for the prepair implementations of
ODDEVEN and SETDIFF. Both display a linear behaviour.

in the input polygon. While the way
polygons are repaired in prepair is per-
haps not always consistent with what one
might do manually, we believe that the two
paradigms we have proposed to automati-
cally repair polygons are consistent and suf-
ficient for most applications. The two re-
pair paradigms can be described in a simple
manner, and that permits users to predict
easily how their polygons will be repaired.
Since the two paradigms can be translated to
properties of a CT and labelling of triangles,
it is relatively easy for practitioners to mod-
ify the code so that different application-
specific rules are used.

Acknowledgements

This research was financially supported by:
(i) the Dutch Technology Foundation STW,
which is part of the Netherlands Organi-
sation for Scientific Research (NWO), and
which is partly funded by the Ministry of
Economic Affairs (project code 11300); (ii)
the European Location Framework (ELF)

17

project, EC ICT PSP Grant Agreement No
325140.

References

Ken Arroyo Ohori, Hugo Ledoux, and Mar-
tijn Meijers. Validation and automatic
repair of planar partitions using a con-
strained triangulation. Photogrammetrie,
Fernerkundung, Geoinformation (PFG), 1(5):
613-630, October 2012.

Tim Burns. Effective unit testing. ACM
Ubiquity, 2001, issue January(Article no.
1), 2001.

CGAL. CGAL 3.8 User and Reference Manual.
CGAL Editorial Board, 2011.

Bernard Chazelle. A theorem on polygon
cutting with applications. In Proceedings
23rd Annual Symposium on Foundations of
Computer Science, pages 339-349, Wash-
ington, DC, USA, 1982. IEEE Computer
Society.

Kenneth L. Clarkson, Kurt Mehlhorn, and
Raimund Seidel. Four results on random-

ized incremental constructions. In Alain
Finkel and Matthias Jantzen, editors, Pro-
ceedings of the gth Annual Symposium on
Theoretical Aspects of Computer Science, vol-
ume 577 of Lecture Notes in Computer Sci-
ence, pages 461-474. Springer Berlin / Hei-
delberg, 1992.

Michael A. Facello. Implementation of a
randomized algorithm for Delaunay and
regular triangulations in three dimen-
sions. Computer Aided Geometric Design,

12:3497376, 1995-

James D. Foley, Andries Van Dam, Steven K.
Feiner, and John FE. Hughes. Computer
Graphics: Principles and Practice. Addison-
Wesley, 1996.

M. Goodrich, L. J. Guibas,]. Hershberger,
and P. Tanenbaum. Snap rounding line
segments efficiently in two and three di-
mensions. In Proceedings 13th ACM In-
ternational Symposium on Advances in GIS,

pages 284-293, 1997.

GTS. GIS Library Reference Manual, 2006.
URL http://gts.sourceforge.net/
reference/bookl.html.

Leonidas J. Guibas and Jorge Stolfi. Prim-
itives for the manipulation of general
subdivisions and the computation of
Voronoi diagrams. ACM Transactions on
Graphics, 4(2):74-123,1985.

Dan Halperin and Eli Packer. Iterated snap
rounding. Computational Geometry: Theory
and Applications, 23(2):209-225, 2002.

C. M. Hoffmann. The problems of accu-
racy and robustness in geometric compu-
tation. Computer—IEEE Computer Society
Press, 22:31-42,19809.

ISO(TC211). ISO 19107:2003: Geographic
information—Spatial schema. Interna-

18

ISO(TC211). ISO 19107:2003: Geographic
information—Spatial schema. Interna-
tional Organization for Standardization,
2003.

M. C. Jordan. Cours d’analyse de I’Ecole Poly-
technique, Paris, volume Tome troisiéme.
Gauthier-Villairs, 1887.

Yuanxin Liu and Jack Snoeyink. The “far
away point” for Delaunay diagram com-
putation in EY. In Proceedings 2nd In-
ternational Symposium on Voronoi Diagrams
in Science and Engineering, pages 236-243,
Seoul, Korea, 2005.

Ernst P. Miicke, Isaac Saias, and Bin-
hai Zhu. Fast randomized point loca-
tion without preprocessing in two- and
three-dimensional Delaunay triangula-
tions. Computational Geometry—Theory
and Applications, 12:63-83, 1999.

OGC. OpenGIS implementation specifica-
tion for geographic information—simple
feature access. Open Geospatial Consor-
tium inc., 2011. Document 06-103r4.

Paul Ramsey. PostGIS: Tips for power

users. Presentation at the FOSS4G
2010 Conference, Barcelona, Spain,
2010. http://2010.foss4g.org/

presentations/3369.pdf.

Jonathan Richard Shewchuk. Delaunay Re-
finement Mesh Generation. PhD thesis,
School of Computer Science, Carnegie
Mellon University, Pittsburg, USA, 1997.

Peter van Oosterom, Wilko Quak, and Theo
Tijssen. About invalid, valid and clean
polygons. In Peter F. Fisher, editor, Devel-
opments in Spatial Data Handling—11th In-
ternational Symposium on Spatial Data Han-
dling, pages 1-16. Springer, 2004.

http://gts.sourceforge.net/reference/book1.html
http://gts.sourceforge.net/reference/book1.html
http://2010.foss4g.org/presentations/3369.pdf
http://2010.foss4g.org/presentations/3369.pdf

	Introduction
	What is a (robust) polygon?
	Related work
	Algorithms to identify the interior of a polygon
	How practitioners repair their invalid polygons

	Repairing a polygon with a constrained triangulation
	Properties of a constrained triangulation
	Advantages of a constrained triangulation for the automatic repair
	Odd-even paradigm
	The setdiff paradigm
	Time complexity
	Example of repaired polygons
	Repairing a MultiPolygon

	Computing the robustness and improving it with snapping
	Experiments and comparison with other tools
	Unit tests
	Corine 2006 dataset

	Conclusions

