How to build an ndimensional object?

Ken Arroyo Ohori

ABE010: Capita Selecta 20.11.2014

The 24-cell

 a "simple" 4D object
The 24-cell

 a "simple" 4D object24 OD vertices 96 1D edges 96 2D faces
24 3D volumes
1 4D hypervolume

objects in more than 3D are complex!

Some background

0D: a vertex

OD: a vertex

1D: an edge

1D: an edge

1D: an edge

1D: an edge

$\bigcirc\left(x_{0}, x_{1}, \ldots\right)$

a 1D object can be described by its OD boundaries

$$
\left(x_{0}, x_{1}, \ldots\right)
$$

2D: a face

2D: a face

2D: a face

2D: a face

2D: a face

2D: a face

3D: a volume

3D: a volume

a 3D object can be described by its 2D boundary

3D: a volume

3D: a volume

3D: a volume

3D: a volume

which can be described by their OD boundaries

$4 D, 5 D, \ldots$

however, there is a problem in practice...

2D: a face

2D: a face

2D: a face

> a 2D object is described by a set of 1D objects

2D: a face

2D: a face

2D: a face

2D: a face

2D: a face

 nextnext
build an object!
, next next
next

2D: a face

3D: a volume

3D: a volume

a "soup"
 of faces

3D: a volume

3D: a volume

build a volume from a set of faces

The solution:
 incremental construction

- Start from a set of OD vertices
- Connect them to form 1D edges
- Connect these to form 2D faces
- Connect these to form 3D volumes

Building two tetrahedra

Build a tesseract

Build a tesseract

build each cube separately

Build a tesseract

build each cube separately,
then join them

Build a tesseract

done!

Methodology

- Analyse the problem
- Split it into small, manageable subproblems
- Try sketches/ideas on paper
- When mature enough, build a program to test these
- Start with simple shapes, move towards more complex ones

Thank you!

Ken Arroyo Ohori
g.a.k.arroyoohori@tudelft.nl tudelft.nl/kenohori

56

Images from:

- http://commons.wikimedia.org/wiki/ File:Stereographic polytope 24cell faces.png
- http://blogs.lt.vt.edu/foundationdesignlab/category/ materials/
- http://commons.wikimedia.org/wiki/ File:Schlegel wireframe 8-cell.png

More info

Ken Arroyo Ohori, Guillaume Damiand and Hugo Ledoux. Constructing an n-dimensional cell complex from a soup of ($\mathrm{n}-1$)-dimensional faces. In Prosenjit Gupta and Christos Zaroliagis (eds.), Applied Algorithms, Volume 8321 of Lecture Notes in
Computer Science, Springer International Publishing Switzerland, January 2014, pp. 37-48.

