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Typical error: polygon is self-intersecting
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Typical error: polygon is self-intersecting
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error: BGT has gaps and/or overlaps
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Typical error: BGT has gaps and/or overlaps
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Typical error: BGT has gaps and/or overlaps
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Big and complex datasets: it quickly gets out-of-control
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Big and complex datasets: it quickly gets out-of-control
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Errors in CityGML datasets
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Errors in CityGML datasets

Wrong orientation of faces
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Errors in CityGML datasets

Dangling face
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Errors in CityGML datasets
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How do we deal with these problems?

We have solved our own problems by developing 3 prototypes:
m prepair: automatic repair of single polygons
m pprepair: automatic repair of planar partitions

m val3dity: validation and “simple repair” of 3D objects
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prepair

repair of single polygons




Validation of a polygon = a solved problem
exterior interior
D boundary {j b(:undary
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OGC Simple Features and
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If it's broken then repair it. But how?
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Our approach = constrained triangulation (CT)

Repairing = 3 simple steps:
CT of input polygon
labelling of triangles (outside or inside)

reconstruction of the rings by depth-first search on the dual
graph

/
dangling piece

ring not closed
~
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Faster than PostGIS by a factor 3—4 in practice
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pprepair

repair of planar partitions




One “common” repairing solution: snapping

m Tolerance (threshold) is
used for snapping vertices

m Tolerance based on scale of
datasets

m Works fine for simple
problems
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Snapping is error-prone and “dangerous”

Spikes and punctures can create invalid polygons
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Snapping is error-prone and “dangerous”

Splitting of polygons into several polygons
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Our solution = constrained triangulation (CT)

Construct CT of input polygons

Label each triangle with label of its polygon
Problems = triangles with no label or > 1 labels
Repair gaps/overlaps locally by changing labels
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Local control with simple rules
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Experiments with large real-world datasets

3

CORINE dataset: land-use of Europe
tiles of 100km X 100km
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Experiments with large real-world dataset

(c) 16tiles (d) Mexico
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Experiments with large real-world datasets

7 pts avg # pts

# polygons # pts largest polygon per polygon
E41N27 14 969 496 303 26 740 34
4tiles 4 984 365 702 16 961 75
16tiles 63 868 6 622 133 95 112 104

Mexico 26 866 4 181 354 117 736 156
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Comparison with other GIS packages

pprepair

# pts memory time

E41N27 406 303 145 MB 19s
4tiles 365 702 116 MB 17s
16tiles 6 622 133 1.45 GB 4mA4Ts
Mexico 4181354 1.01 GB 3m3ls
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val3dity
validation of 3D solids




invalid valid valid invalid
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ISO 19107 rules also in 3D

distinct vertex

closedness of the rings of every surface

orientation of points within a surface (with inner rings)
planarity of surfaces

non-self intersection of surfaces

&

non-overlapping inner rings on a surface

N &

orientation of normal vectors
“watertightness” of every shell

“connectedness” of the interior

H B A

how inner/outer shells interact with each others

=
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ISO 19107 rules also in 3D

None of the (commercial) tools are
ISO compliant
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The implementation

m As compliant to ISO 19107 as possible

m Use of CGAL: robust and fast

m C++

m Be kind to the user

m Try to automatically repair invalid solids (work in progress)
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Validation is performed hierarchically

One solid
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Automatic repair = our current work

a) b o)
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Thanks for your attention

www.github.com /tudelft-gist/ prepair

pprepair
val3dity
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