Validation and automatic repair of
two- and three-dimensional GIS datasets

M. Meijers H. Ledoux K. Arroyo Ohori J. Zhao

o]
TUDelft

0OSGeo.nl dag 2013, Delft
2013-11-13

1/26

Typical error: polygon is self-intersecting

LT RO ew W RYes Emat e v S YU e T AR e
e x [o 5
i r 1 mm

2/26

Typical error: polygon is self-intersecting

LA PO RRPPRURP O TR EH S
FRBort008 o » eI PRE T BRLL- PR s0NARE

2/26

error: BGT has gaps and/or overlaps

4 1

2 L Aol

26

Typical error: BGT has gaps and/or overlaps

b _ Sy S
\ ! -
X
t N
h A) k!
/ ~ A [

3/26

Typical error: BGT has gaps and/or overlaps

3/26

Big and complex datasets: it quickly gets out-of-control

Big and complex datasets: it quickly gets out-of-control

=
(@)
(2]
=
Q
o0
=
g
O
=
(on
=
5
)
[
v
T
-
T
O
X
)
o
£
(@)
(&)
)
(=
(g0]
.o0
oM

4/26

Big and complex datasets: it quickly gets out-of-control

10 em
4/26

Errors in CityGML datasets

5/26

Errors in CityGML datasets

Wrong orientation of faces

5/26

Errors in CityGML datasets

Dangling face

5/26

w0
)
Q
n
(g}
-+
(9}
-
—
=
O
>
=
)
=
wn
—
(©)
P
—
L

f—

5/26

Errors in CityGML datasets

5/26

How do we deal with these problems?

We have solved our own problems by developing 3 prototypes:
m prepair: automatic repair of single polygons
m pprepair: automatic repair of planar partitions

m val3dity: validation and “simple repair” of 3D objects

6/26

prepair

repair of single polygons

Validation of a polygon = a solved problem
exterior interior
D boundary {j b(:undary

as

OGC Simple Features and
1SO19107 rules:

no self-intersection

o7

P2 Pp3

closed boundaries

rings can touch but not
overlap 1 s 6

[T 17
)
[/

no duplicate points
no dangling edges

|57
e
£/

@ connected interior
etc

p7 23 P9

X
=
| /

P1o P11 1o
8/26

If it's broken then repair it. But how?

“ =lofx|
0 !
Errors are highlighted, but

|| #|%| ¢ 2|®
not repaired. One has to

ot prediates| Functions Vai |
manually fix them.

2

a2 [i

elfintersection at or near point (122657

7332695903, 1589070.7373000782, N

1228528, 1689071
set

228528.7382695003

X
¥[1589070.7373000782
SetMark Clear Mark

Case i o1 Precision Mode! |
INarme [
Tests A[LZ31917. 65602527 1569605 616e4z17, 1291935, 24912947 1S6d L 20saonda, & |
1231837.07177629 1589816. 43405192, 1231972.42399173 1589836. 853625, S|E
1231095, 58998149 1563351, 90886135, 1232026 90393525 1563875, 08697885, |

Resull
=8

Our approach = constrained triangulation (CT)

Repairing = 3 simple steps:
CT of input polygon
labelling of triangles (outside or inside)

reconstruction of the rings by depth-first search on the dual
graph

/
dangling piece

ring not closed
~

10/26

Our approach = constrained triangulation (CT)

Repairing = 3 simple steps:
CT of input polygon
labelling of triangles (outside or inside)

reconstruction of the rings by depth-first search on the dual
graph

10/26

Our approach = constrained triangulation (CT)

Repairing = 3 simple steps:
CT of input polygon
labelling of triangles (outside or inside)

reconstruction of the rings by depth-first search on the dual
graph

10/26

Our approach = constrained triangulation (CT)

Repairing = 3 simple steps:
CT of input polygon
labelling of triangles (outside or inside)

reconstruction of the rings by depth-first search on the dual
graph

10/26

Our approach = constrained triangulation (CT)

Repairing = 3 simple steps:
CT of input polygon
labelling of triangles (outside or inside)

reconstruction of the rings by depth-first search on the dual
graph

10/26

Our approach = constrained triangulation (CT)

Repairing = 3 simple steps:
CT of input polygon
labelling of triangles (outside or inside)

reconstruction of the rings by depth-first search on the dual
graph

10/26

Faster than PostGIS by a factor 3—4 in practice

11/26

Faster than PostGIS by a factor 3—4 in practice

2500

+ preparr ST Makevaid /

500
0 K —m—;//r
oK 00K 400K,

2 600K 800K 1000K. 1200K
Number of points

o ot ot 11/26

pprepair

repair of planar partitions

One “common” repairing solution: snapping

m Tolerance (threshold) is
used for snapping vertices

m Tolerance based on scale of
datasets

m Works fine for simple
problems

13/26

One “common” repairing solution: snapping

m Tolerance (threshold) is
used for snapping vertices

m Tolerance based on scale of
datasets

m Works fine for simple
problems

13/26

One “common” repairing solution: snapping

m Tolerance (threshold) is
used for snapping vertices

m Tolerance based on scale of
datasets

m Works fine for simple
problems

13/26

Snapping is error-prone and “dangerous”

Spikes and punctures can create invalid polygons

14 /26

Snapping is error-prone and “dangerous”

Spikes and punctures can create invalid polygons

14 /26

Snapping is error-prone and “dangerous”

Splitting of polygons into several polygons

14 /26

Snapping is error-prone and “dangerous”

Splitting of polygons into several polygons

14 /26

Our solution = constrained triangulation (CT)

Construct CT of input polygons

Label each triangle with label of its polygon
Problems = triangles with no label or > 1 labels
Repair gaps/overlaps locally by changing labels

15/26

Our solution = constrained triangulation (CT)

Construct CT of input polygons

Label each triangle with label of its polygon
Problems = triangles with no label or > 1 labels
Repair gaps/overlaps locally by changing labels

15/26

Our solution = constrained triangulation (CT)

Construct CT of input polygons

Label each triangle with label of its polygon
Problems = triangles with no label or > 1 labels
Repair gaps/overlaps locally by changing labels

\

15/26

Our solution = constrained triangulation (CT)

Construct CT of input polygons

Label each triangle with label of its polygon
Problems = triangles with no label or > 1 labels
Repair gaps/overlaps locally by changing labels

15/26

Our solution = constrained triangulation (CT)

Construct CT of input polygons

Label each triangle with label of its polygon
Problems = triangles with no label or > 1 labels
Repair gaps/overlaps locally by changing labels

15/26

Our solution = constrained triangulation (CT)

Construct CT of input polygons
Label each triangle with label of its polygon
Problems = triangles with no label or > 1 labels

15/26

Our solution = constrained triangulation (CT)

Construct CT of input polygons

Label each triangle with label of its polygon
Problems = triangles with no label or > 1 labels
Repair gaps/overlaps locally by changing labels

\

15/26

Our solution = constrained triangulation (CT)

Construct CT of input polygons

Label each triangle with label of its polygon
Problems = triangles with no label or > 1 labels
Repair gaps/overlaps locally by changing labels

15/26

Local control with simple rules

Local control with simple rules

Local control with simple rules

Local control with simple rules

Local control with simple rules

Experiments with large real-world datasets

3

CORINE dataset: land-use of Europe
tiles of 100km X 100km

17 /26

Experiments with large real-world dataset

(c) 16tiles (d) Mexico
18/26

Experiments with large real-world datasets

7 pts avg # pts

polygons # pts largest polygon per polygon
E41N27 14 969 496 303 26 740 34
4tiles 4 984 365 702 16 961 75
16tiles 63 868 6 622 133 95 112 104

Mexico 26 866 4 181 354 117 736 156

19/26

Comparison with other GIS packages

pprepair

pts memory time

E41N27 406 303 145 MB 19s
4tiles 365 702 116 MB 17s
16tiles 6 622 133 1.45 GB 4mA4Ts
Mexico 4181354 1.01 GB 3m3ls

20/26

val3dity
validation of 3D solids

invalid valid valid invalid

Sg Se S8
invalid invalid valid invalid

3
[N
[.

/:’I -tl ad

P
//_/_/_/é- ;1 -

p
So S10 S12

invalid invalid valid invalid

22/26

ISO 19107 rules also in 3D

distinct vertex

closedness of the rings of every surface

orientation of points within a surface (with inner rings)
planarity of surfaces

non-self intersection of surfaces

&

non-overlapping inner rings on a surface

N &

orientation of normal vectors
“watertightness” of every shell

“connectedness” of the interior

H B A

how inner/outer shells interact with each others

=

22/26

ISO 19107 rules also in 3D

None of the (commercial) tools are
ISO compliant

22/26

The implementation

m As compliant to ISO 19107 as possible

m Use of CGAL: robust and fast

m C++

m Be kind to the user

m Try to automatically repair invalid solids (work in progress)

YES >

:;; — [VALIDATE <

|
[B
|
|

23/26

Validation is performed hierarchically

One solid
ettt '
'
Rings and 1 2D validation rules applied to !
Surfaces | primitives embedded in 3D space !
L '
invalid valid
A FTTTTTTTTT T T T T H
. planarity of surface !
| 2. combinatorial consistency 1
Shells H N 5 H
H 3. geometric consistency H
14. orientation of normals H
—— ! H
invalid
valid

y 1
'
'
: interactions between the shells with 1
Solid | Nef polyhedra and Boolean |
! operations H

'
| '
invalid L

valid
Solid is Valid

Solid is Invalid

24 /26

Automatic repair = our current work

a) b o)

25 /26

Thanks for your attention

www.github.com /tudelft-gist/ prepair

pprepair
val3dity

26/26

