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Real-world phenomena have traditionally been modelled in 2D/3D GIS. How-
ever, powerful insights can be gained by integrating additional non-spatial di-
mensions, such as time and scale. While this integration to form higher-
dimensional objects is theoretically sound, its implementation is problematic
since the data models used in GIS are not appropriate. In this paper, we
present our research on one possible data model/structure to represent higher-
dimensional GIS datasets: generalised maps. It is formally defined, but is not
directly applicable for the specific needs of GIS data, e.g. support for geometry,
overlapping and disconnected regions, holes, complex handling of attributes, etc.
We review the properties of generalised maps, discuss needs to be modified for
higher-dimensional GIS, and describe the modifications and extensions that we
have made to generalised maps. We conclude with where this research fits within
our long term goal of a higher dimensional GIS, and present an outlook on future
research.
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1 Introduction

Spatial data modelling refers to the creation
of abstract mathematical representations of
real world objects embedded in space. This
includes not only purely spatial aspects,
such as the objects’ geometry and topology,
but also other characteristics required for
their use, such as the ability to attach at
tributes (both for storage and for thematic
aspects), mark visited objects, or to have
efficient access to the objects within a re-
gion.

Spatial models have been developed largely
independently in the disciplines that re-
quired information on spatial objects, in-
cluding computer graphics, computer-aided
design and manufacturing (CAD/CAM), ge-
ology, and geographic information systems
(GIS) [Frank, 1992]]. Because of their inde-
pendent creation, they are a reflection of
the idiosyncrasies of their domains and dif-
fer significantly in key issues. One conse-
quence of this is that in many fields sup-
port for 3D data has been long widespread
and the theoretical foundations for higher
dimensions are well established. However,
GIS still has limited support for 3D data, and
higher-dimensional GIS, despite decades of
frequent mentions in literature [Hazelton
et all, 1990; Hansen, 2001; O’Conaill et all,
1992; Rapet, 2000], remains in most cases a
theoretical discussion.

This slow progress in the GIS world is not
due to a lack of applications in higher
dimensions. While being limited to 3D
space is acceptable to many users of geo-
graphic information, substantial work has
been done regarding the integration of non
spatial-dimensions [Worboys, 1994], such
as time [Goodchild, 1992; Peuquet, 2002
and scale [van Oosterom and Meijers, 2011
Li, 1994], to spatial data models. This is
done either by creating specific models for
these non-spatial dimensions, or by treat-
ing them as additional spatial ones [Raper,
2000], yielding a higher dimensional spatial

*Among the implementations that do exist, this term
is most often used as a catchphrase for any process-
ing involving 3D space and time. However, time
is usually treated as a mere attribute, and true 4D
space is almost never used

model. The latter case is more extensible and
generic, allowing us to manipulate objects
in a dimension independent manner [Karim-
ipour et all, 2o1d]. It is also the focus of this
paper, and therefore the notion of a higher
dimensional spatial model is first explained
in detail in Section [

Since there is both a need for higher-
dimensional GIS, and an availability of such
data models from other fields that are able
to support higher-dimensional data, there
is great potential in finding a suitable model
and adapting it to the specific needs of real-
world (GIS) data, such as: support for over-
lapping regions, holes, and complex han-
dling of attributes and metadata; and pro-
viding the specific operations that are re-
quired for its use, such as good construc-
tion and querying operations, buffering
and overlays [Albrecht, 1995]. A short sum-
mary of the most remarkable representa-
tions for higher dimensional objects devel-
oped in other fields and that could thus be
adopted is given in Section f§.

Among these, we propose the use of gen-
eralised maps, which are explained in Sec-
tion [f, a model capable of representing a
wide class of objects in arbitrary dimen-
sions. It has several advantageous proper-
ties, such as support for unbounded objects
(useful for time and other unbounded di-
mensions [Thompson and van Oosterom,
2011]), avoiding problems with incompati-
ble orientations (a common problem when
objects are built independently), and pro-
viding a simple manner to attach attributes
to the objects of every dimension (e.g. ver-
tex, edge, facet, etc.). Practically, it also has
the advantage of having been implemented
in 3D (it is used in GOCAD® for geologi-
cal modelling and in Mokaf for geometric
modelling).

However, generalised maps by themselves
cannot support all the characteristics of
real-world spatial data. To bring our ideas
into practice, in Section [ we therefore ex-
plain how we have modified and imple-
mented generalised maps for this purpose,
and how some specific challenging aspects
of GIS data can be handled. We finalise with

2http://www.gocad.org/
3http://moka-modeller.sourceforge.net/
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our conclusions, discussion and our plans
for future work in Section .

2 Higher-dimensional spatial
information

The simplest technique to handle addi-
tional dimensions in spatial information,
both in GIS and other fields, is using mul-
tiple independent representations. In prac-
tice, this means that these dimensions are
considered as simple attributes which are
attached to 2D or 3D objects. Such is the
case in so-called 2.5D models for height,
the ‘snapshot’ model for time [Basoglu and
Morrison, 1978] and most approaches to
multi-scale data, including CityGML [OGG,
2008]. This approach is simple to under-
stand and implement, but it also has impor-
tant disadvantages:

« There is only a fixed (discrete) num-
ber of representations, which means
that the objects being represented only
have a known value at certain prede-
fined points along the dimension. For
example, a moving object’s position is
only known at certain moments.

« There is no link between the same ob-
ject at different representations, which
makes it difficult to maintain consis-
tent representations after updates and
precludes topological queries along this
dimension. For instance, finding a
moving object involves a brute force
search, and checking if two objects at
different scales are equivalent can only
be inferred indirectly.

- The geometric and topological infor-
mation is stored multiple times, which
is wasteful in memory and can easily
lead to changes being propagated incor-
rectly (or not at all), resulting in incon-
sistencies.

Many other approaches add some topology
and additional information to these inde-
pendent 2D or 3D representations. For in-
stance, event-based models [Peuquet and
Duar, 1995] connect successive moments
in time with the changes that occurred

in them, object-relationship models [Clara
munt et all, 1999]] add information to model
the changes themselves, and the original
tGAP structure [van Oosterom, 2005 links
appropriate 2D objects at different lev-
els of detail. These representations are
lightweight and sufficient for many appli-
cations, but they do not solve any of the
above mentioned problems in their en-
tirety: there is still a fixed number of points
along a dimension (e.g. levels of detail or
moments in time), some topological rela-
tions are not possible to keep in an ef-
ficient manner (especially along the ad-
ditional dimensions), and inconsistencies
are easy to generate when combining data
sources or manipulating objects without
special care.

Because of this, others have proposed to
treat all dimensions as spatial ones (see
[Tessebro and Nygérd, 2o11] for time and
[van Oosterom and Meijers, 2012]] for scale).
This solution is more complex, but it means
that objects have known geometry, topology
and attributes at all possible values within
a range. Alternatively, this can be seen
as having access to all the topological re-
lationships between the objects, down to
the vertex-to-vertex level. This helps to
avoid redundancies and inconsistencies in
the data. What we mean by treating all di-
mensions as spatial ones is explained as fol-
lows.

For simplicity, let us first consider a case
with 2D space, time as the third dimension,
and only linear (flat) geometries. At any
one point in time, an object would be rep-
resented as a polygon in 3D space, and it
would be parallel to the 2D space plane and
orthogonal to the time axis. Every object ex-
isting (and not moving or changing shape)
during a time period would then be a prism,
with its base and top parallel to the 2D space
plane and the other facets orthogonal to it.
An example of this situation is shown in

Figure fil.

Extending this to a 4D representation of 3D
space and time, every object at one point in
time would be a polyhedron in 4D space,
and an object that exists for a period of
time would be a polychoron, i.e. the four-
dimensional analogue of a polygon/polyhe-
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Figure 1: A 2D space (x,y) + time (vertical
axis) perspective view of the foot-
print of two separate buildings at
time ty, which were connected by a
corridor (red) from time ¢; to time
t, and then became disconnected
again when the corridor was re-
moved until time f5. The moments
in time are shown along the thick
line representing the front right
corner of the right building.

dron. If this object is not moving or chang-
ing shape, it would take the form of a pris-
matic polychoron, i.e. the four-dimensional
analogue of a prism. A simple example of
such an object, generated by successive ex-
trusions of a 2D footprint from the GBKNY
data set, is shown in Figure B.

3 Higher-dimensional data
models

There are several data models that are
able to support higher-dimensional objects.
However, most of these are limited to point
or raster data, which have trivial or no
topology, and are thus much more straight-
forward to use and implement. Higher-
dimensional point clouds are common in
data mining [Casali et all, 2oo3], while
higher-dimensional rasters are common
in medical imaging [McInerney and Ter-
zopoulos, 1995], among other examples.

For vector data consisting of closed poly-
topes (i.e. the higher-dimensional analogue

4http://www.gbkn.nl, a Dutch large-scale topo-
graphic data set

(b) After extruding it
to create a block
shaped polyhedron

(a) The GBKN foot
print of the Aula
Congress Centre in

Delft (perspective  pro-
jection of edges and
facets only)
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(c) After extruding it again (double
perspective projection of the edges
only)

Figure 2: A 4D (3D+time) representation of
the Aula Congress Centre in Delft.

of a polygon/polyhedron), there are fewer
options. A deceptively simple one in-
volves the geometric subdivision of an n-
dimensional polytope into n-dimensional
simplices, i.e. an n-dimensional simplicial
decomposition or n-dimensional triangula-
tion, which can be easily represented and
stored using an incidence model, as shown
in Figure B. In its simplest form, a data
structure for this could be a list of vertex
coordinates, and a list of simplices, each
containing the n + 1 vertices that define it
and the n + 1 simplices that are adjacent
to it. This option has several advantages:
the data structures are simple to use and
implement, it can be compressed with rel-
ative ease [Snoeyink and van Kreveld, 1997;
Blandford et all, 2005], and operations be-
tween simplices are much more straight-
forward than those between arbitrary poly-
topes (e.g. the intersection of two simplices
of a certain dimension can yield only a lim-
ited number of different configurations).

However, doing this subdivision is ex-
tremely difficult in practice, since it re-
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(a) Triangle based repre-(b) Tetrahedron-based
sentation representation

Figure 3: n-simplex based data structures in
2D and 3D. Black arrows represent
pointers from the element shown,
while red arrows show the ones
from other elements that point to
this one.

quires the creation of an n-dimensional
constrained triangulator, which has been
described in theory [Shewchuk, 2000, 2008]
for some cases, but has never been imple-
mented. Doing so for the general case, espe-
cially in a robust manner, would prove very

difficult.

Another option, and the one further dis-
cussed in this paper, is using ordered topo-
logical models [Lienhardt, 1991], a type of
boundary representations that are based on
a single type of fundamental constructing
element (e.g. a half-edge), on which a usu-
ally small number of pre-defined functions
act. The more complex elements and con-
nected components of such a model are
only defined implicitly, e.g. as a set of fun-
damental elements. This allows objects to
be represented as is, at least from a high
level perspective, not needing to conform
to a particular shape (unlike decomposition
models like rasters).

Such data models also have the advantage
of separating the topology of the objects
(which is dealt with in the model directly),
and their geometry (which is dealt with in
an embedding model). This is a useful prop-
erty, since it distinguishes the problems in
geometric modelling from those in compu-
tational geometry [Mintyld, 1988]. Algo-
rithms and methods from both fields can
then be applied indistinctly to solve specific
problems.

There are other possible models which
are not discussed further in this paper
but still represent interesting possibilities.
Constructive models based on construc-

tive solid geometry, alternate decomposi-
tions [Bulbul and Frank, 2oog] or intersec-
tions of half-spaces have a strong theoreti-
cal background, but attaching attributes to
individual elements is difficult, and real-
ising an object involves complex geomet-
ric computations. Nef polyhedra [Bieri and
Nef, 1988] are very powerful, but require
the construction of an n-dimensional hy-
perspherical projective kernel, which is also
a very complex task in practice [Granados
et all, oo3].

4 Generalised maps

Generalised maps (sometimes shortened
as G-maps) are an ordered topological
model developed by Liendhardt Lienhardt
[1994] based on the concept of a combi-
natorial map, also known as a topological
map, which was described by Edmonds Ed-
monds [1960]. They are roughly equiv-
alent to the cell-tuple structure of Bris-
son Brisson [1984]], but were shown to be
able to represent the topology of a wider
class of objects, i.e. orientable or non-
orientable cellular quasi-manifolds with or
without boundary—manifolds partitioned
into cells [Hatcher, 2oo2] that allow cer-
tain types of singularities, as long as every
i-dimensional cell (i-cell) is incident to no
more than two (i + 1)-cells in a (i + 2)-cell.

A generalised map is composed of two ele-
ments: darts and involutions («). The precise
definition of a dart is complex [Lienhardt,
1994)], but since for our application we are
only interested in representing linear (flat)
geometries, a dart can be intuitively seen as
a unique combination of a specific i-cell (a
vertex being a o-cell, an edge is a 1-cell, a
facet is a 2-cell, and so on) in each dimen-
sion, all of which are incident to each other.
Meanwhile, involutions are bijective opera-
tors connecting darts that are related along
a certain dimension. In this manner, «
joins darts into edges, @ connects consec-
utive edges within a facet, a, connects ad-
jacent facets within a volume, and so on.
An example of a 3D generalised map (3-G-
map) representation of two adjacent cubes
is shown in Figure [, where a; thus joins



vertices to form edges, @ connects consec-
utive edges within a facet, a, connects adja-
cent facets within a volume, and so on.

(a) A Gmap representa- (b) The y{

i operator ob-
tion of a cube. tains all the darts be-

longing to a specific i-
cell. Thus, ?{0 obtains
the darts belonging to
a vertex, 511 those be-
longing to an edge,
and #, those belong-
ing to a facet.

v X

(c) A G-map representation of two cubes. Note how the
individual cubes have identical involutions to those
of (a), with the addition of an @3 involution that con-
nects the two cubes at their common face. In the
other darts, this involution is not used.

Figure 4: A 3D G-map representation of a
pair of adjacent cubes, showing
the ay (dashed red), a; (solid blue),
a, (double green), a3 (triple pur-
ple), and &; operators.

One can traverse the combinatorial struc-
ture by the use of the orbit operator, which
returns a set of darts that are reachable by
following certain involutions only. To ob-
tain the darts that are part of a certain i-cell
only, one can start from any dart d belong-
ing to the i-cell, following all involutions ex-
cept for a;. This is commonly denoted an
< &; > orbit of d [Lévy and Mallet, 1999].
Since a; connects adjacent i-cells, not fol-
lowing it means staying within the same i-
cell. For simple construction, the sew oper-
ation is used, connecting two objects of the
same dimension along the common face,

i.e. (i — 1)-cell, in their boundaries. Analo-
gously, the unsew operation can be used to
unset these involutions.

More formally, a n-dimensional gener-
alised map is defined by a (n + 2)-tuple G =
(D,ag, a1, ... ,a,), where D is a non-empty
set of darts, and ¢; is an involution (i.e. Vd €
D,YO < i < n,aiaid) = d) that con-
nects objects of dimension 7, and Y0 < i <
n—2,¥i+2 <j<n,aia;d))is also an invo-
lution.

In order to traverse a G-map, the orbit oper-
ator< A > (d) =< aj1,ap, ..., a;, > (d) ob-
tains all the darts that can be reached from
dart d by successive applications of the op-
erators a;1, &, .., &;; € A. For convenience,
the operator < &; > (d) is defined as well,
which traverses all a involutions except for
a; [Lévy and Mallet, 1999], obtaining all the
darts that are part of the same i-cell as d.

The construction of objects in its simplest
form is based on the sewing operator, which
joins two i-cells along the (i — 1)-cell that
lies in their geometric common boundary.
Thus, it takes two corresponding darts d;
anddZ(VO S] < Tl,i i] = dl
and d, belong to the same j-cell) on oppo-
site sides of the common (i — 1)-cell, com-
putes their < ag,ay,..,a;.1 > (d;) and <
ag, a1, ., i_1 > (dy) orbits, performs a par-
allel traversal of both, and connects them
by adding «; involutions that connect the
corresponding darts from each orbit along
the i-th dimension. Note that this implies
the use of consistent ordering criteria in
the orbit operator, such as always follow-
ing the lowest possible a involution first.
The unsew operator similarly uses a single
< ag,aq, ..., ;1 > (d) orbit (since the (i - 1)-
cells are now linked) to remove all the invo-
lutions between any darts in the orbit along
the i-th dimension.

5 Implementation

There are many possible realisations of gen-
eralised maps as a data structure. For in-
stance, a minimal data structure that stores
the combinatorial aspect of an n-G-map
could involve a single type of object, a Dart



with 7 + 1 pointers to other darts represent-
ing its involutions. However, another op-
tion could be to have a set of Involutions
that store the identifiers of the two darts that
each of them link. These two options are
presented in Figure .

Nevertheless, these data structures by them-
selves do not store any geometry or support
many of the characteristics of GIS data. An
implementation for use in GIS requires:

1. Geometry and topology Storing not
only topological relationships, but also
the geometry of the objects. Atleastlin-
ear (flat) objects should be supported.

2. Attributes Storing complex attributes
of different types (e.g. numeric, text, an
element of a discrete set of classes, etc.),
possibly at every dimension (e.g. vertex,
edge, face, etc.). Every i-cell can have a
tuple of attributes of different types, but
all the cells of a certain dimension gen-
erally have the same attribute types in
their tuples.

3. Construction Constructing a model
from both topological or non topolog-
ical data. Topological data might need
to be checked (in case the topologi-
cal information does not match the ac-
tual geometry of the objects), while non
topological construction should be per-
formed in a consistent manner, gener-
ating valid topological information and
ensuring that objects that are geomet
rically equivalent are only generated
once.

4. Queries Answering geometric, topolog-
ical and attribute based queries effi-
ciently. In order to do this, all neces-
sary links between the objects should be
kept, and an external data structure for
spatial indexing might be required as
well.

5. Holes Storing and efficiently accessing
void regions in possibly every dimen-
sion higher than o. To ensure a consis-
tent model, these holes should fit inside
their containing object, which implies
that they should be of the same dimen-
sionality or lower.

6. Disconnected and overlapping objects
Keeping track and traversing objects
even when they form topologically dis-
connected groups. They might be dis-
connected by virtue of being geometri-
cally disconnected, or also by being in a
configuration that is not directly repre-
sentable using generalised maps. This
implies that a higher level structure that
somehow maintains this information is
required. This data structure can how-
ever have many possible forms.

The data structures presented previously
are only sufficient to represent the com-
binatorial structure (topology) of a gener-
alised map, equivalent to the topological re-
lationships in a partition of space without
holes. However, to represent the geome-
try and other characteristics of the model,
some modifications and additional struc-
tures are needed. These are shown in Fig-
ure [G and explained as follows.

To store geometry, embedding structures are
used; each one of these containing the ge-
ometry of a specific i-cell. Since only lin-
ear geometries are required, only the o-
dimensional point embeddings are strictly
necessary, which store the coordinates of
each vertex. The geometry of the higher-
dimensional embeddings can then be in-
ferred from the points in their boundary.
Since each dart represents a unique combi-
nation of an i-cell of each dimension, a dart
can be linked to its corresponding embed-
ding structure for each dimension. On the
other direction, itis sufficient tolink an em-
bedding to any one dart representing part of
its boundary.

Attributes and holes work in a similar man-
ner. Since the tuples of attribute types of all
i-cells (cells of equal dimension) are equal,
one embedding data structure per dimen-
sion storing the attributes of that dimen-
sion, is sufficient. A list of holes present in
that i-cell can be then kept as an additional
attribute, its only practical requirement be-
ing that the dimensionality of the hole (rep-
resented as an embedded cell as well) should
be equal or lower than that of the containing
cell, and that its geometry should be fully in-
side the containing cell.



struct Dart (
Dart *involutions[n+1];

)

struct Involution (
id dartl, dart2;
)

(a) Based on darts

(b) Based on involutions

Figure 5: A minimal G-maps implementation

Meanwhile, queries and disconnected ob-
jects are handled through the use of a spa-
tial index. For this purpose we have inves-
tigated several options, among which the
most promising options are R-tree variants
like the R*-tree, or a simple index using a
single vertex per cell, such as the lexico-
graphically smallest one. Usual R-tree im-
plementations are not practical since they
have problems when dealing with objects
of heterogeneous dimension (e.g. an object
with zero-length along a particular dimen-
sion has a volumeH of zero in higher dimen-
sional space). The most important aspect of
such a spatial index is that it allows us to
maintain a connected graph.

Finally, we have developed two construc-
tion operators: a higher dimensional ana-

structure that is not much more complex
than a basic implementation, but one that
is able to support the real-world character-
istics that are found in GIS data.

Our future work will cover: the visualisa-
tion of higher-dimensional data, efficient
construction techniques, improved spatial
indexing, keeping the consistency and va-
lidity of data, and improving the memory
consumption of generalised maps.
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