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The concept of duality is used to understand and characterise how geographi-
cal objects are spatially related. It has been used extensively in 2D to qualify the
boundaries between different types of terrain, and in 3D for navigation inside
buildings, among others. In this paper, we explore duality in four dimensions,
in the context where space and other characteristics (e.g. time) are modelled as
being in four dimensional space. We explain what duality in 4D entails, and we
present two data structures that can be used to store the dual graph of a set of 4D
objects. We also discuss applications where such data structures could be useful
in the future.
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1 Introduction

The concept of duality is used in geograph-
ical information systems (GIS) to under-
stand and represent how things are con-
nected, and to characterise spatial relation-
ships. In two dimensions, one application
is qualifying the spatial relationships be-
tween adjacent objects: as shown in Fig-
ure [, Gold [1991] uses two connected data
structures to store simultaneously a polyg-
onal map (where each polygon has certain
attributes) and its dual (the boundaries be-
tween two map objects having certain at-
tributes, e.g. the boundary type or the flow
direction). He argues that the boundaries
do not characterise per se any of the ob-
jects, but rather the adjacency relationships
that exist between them. The data struc-
ture used was the quad-edge structure of
Guibas and Stolfi [1985]. In three dimen-
sions, duality also permits us to under-
stand how different solids are spatially re-
lated (e.g. two rooms in a building are adja-
cent). Arguably the most known use of the
dual is to model navigational paths inside
three-dimensional buildings. Lee and Zla-
tanova [2008] and Lee and Kwan [2005] ex-
tract from a 3D building a graph that can
be used in case of emergency, and Bogus-
lawski et all [2011] and Boguslawski [2011]
perform the same using a data structure,
the dual half-edge (DHE), which simultane-
ously represents the buildings (the rooms
and their boundaries) and the navigation
graph. With the DHE, the construction
and manipulation operations update both
representations at the same time, permit-
ting the simultaneous modelling and char-
acterisation of buildings. There are several
other examples of duality in GIS: the De-
launay triangulation and the Voronoi di-
agram are often used to model continu-
ous phenomena, these two structures be-
ing dual to each other. Dakowicz and Gold
[2003] use them for terrain modelling, Lee
and Gahegan [2002] for interactive analy-
sis, and Ledoux and Gold [2008] for three-
dimensional fields in geosciences.

In this paper, we are interested in the con-
cept of duality in four-dimensional space to
model four dimensional objects. These ob-

jects are the result of the integration of a
non-spatial dimension to the three dimen-
sions of space, to create 4D objects where
all dimensions are treated as spatial [Raper,
2000]. Examples of the non-spatial dimen-
sions that can be used are: time [Peuquet,
2002}; Worboys, 1994, scale [van Oosterom
and Meijers, 2011; Li, 1994] and attributes
(beyond 2.5D-type modelling). As van Oos-
terom and Stoter [2010] argue, the main ad-
vantage of such an integration is the consis-
tency of data, both across space and the other
dimensions modelled—with the proper val-
idation functions, one can ensure that all
the data for a given region is consistent
across time or across different scales, for in-
stance.

Adding an extra dimension implies that
a 4D primitive has to be modelled: the
polychoronfl, which is the 4D analogue of
a polygon or polyhedron. To understand
and characterise the spatial relationships
between polychora (and between these and
the lower-dimensionality primitives from
which they are built), the dual graph of a set
of polychora can be constructed and anal-
ysed. For example, in a 3D model of a
building where rooms are represented by
polyhora we could locate people inside the
building. With the dual graph, a user would
be able to know where in 3D space a given
user was at any time, when this person
moved from a given room to another one,
or the shortest path between any two rooms
at any given time.

We first describe in Section P our terminol-
ogy, the kinds of objects we are modelling
in 4D, and the concept of duality. We then
present in Section B potential data struc-
tures to store the dual graph of a partition-
ing of'a 4D space. We first describe how gen-
eralised maps [Lienhardt, 1994] can be used
to extract and store the graph, and then we
discuss how the DHE [Boguslawski et al),
2011; Boguslawski, 2011]] can be modified
to store simultaneously both the partition-
ing and the dual in 4D. We analyse in Sec-
tion |4 the storage of each structure, as one
of our aim is to efficiently implement a 4D
structure where the dual is available, and we

*Also called a 4-polytope or a 4-polyhedron.



Figure 1: (a) Six map objects and their boundaries. (b) The same map stored as a graph and
its dual (dotted lines). (c) The dual graph is used to describe the relationships
between adjacent polygons. (Figure after Gold [1991])

briefly discuss in Section [ potential appli-
cations of such data structures.

2 The four-dimensional
Euclidean space, and
duality

If we denote the three axes of the three spa-
tial dimensions by x, y and z, then the axis
w of the fourth dimension is perpendicular
to that of all the spatial dimensions. In 4D
Euclidean space (denoted R*), the simplest
4D primitive, called a simplex, is a 5-vertex
polychoron and it is analogous to the trian-
gle in 2D and to the tetrahedron in 3D. More
generally, a d-dimensional simplex, also de-
noted as a d-simplex, is the convex hull of
a set of (d + 1) linearly-independent points
in R?. Constructing a 4-simplex can be per-
formed hierarchically: from a tetrahedron,
we first embed its 4 vertices in 4D (with four
coordinates each), then one new vertex is
added, and finally 4 new edges must be con-
structed (these join the new vertex to the ex-
isting 4 of the tetrahedron). The resulting
polychoron has 5 vertices, 10 edges, 10 trian-
gular faces (2-simplices), and its boundary
is formed by 5 tetrahedra (3-simplices).

By integrating 3D space and the extra di-
mension into 4D space, we ensure that there
are no gaps or overlaps. This implies that
we create a partitioning of R*. This can be
achieved by keeping a so-called “universe
polychoron” which encloses all the other

polychora present in the model, in a man-
ner similar to Liu and Snoeyink [2005]. The
structure we create is thus a partitioning
into cells, where a o-cell is a vertex, a 1-cell
an edge, a 2-cell a polygon, a 3-cell a polyhe-
dron, and a 4-cell a polychoron. Currently,
no holes inside cells are allowed in our def-
inition. We name a (k — 1)-cell incident to a
k-cell a facet of it; a facet of a 4-cell is thus a 3-
cell that lies in its boundary. This resulting
partitioning forms a cell complex C, which is
a finite set of cells having the following two
conditions:

1. A facet of a k-cell in C is also in C;

2. The intersection of two cells 0; and o,
in C, denoted 01 N gy, is either empty or
isin C.

A cell complex in R* can be represented by a
graph where the vertices and edges are em-
bedded in R* such that a set of vertices and
edges implicitly represent a cell. Observe
that since there are no holes allowed, the
graph is connected.

Duality can have many different mean-
ings in mathematics, but it always refers to
the translation or mapping in a one-to-one
fashion of concepts or structures. We use
it here in the sense of the dual of a given
graph. Let G be a planar graph (thus embed-
ded in R?), as illustrated in Figure B (solid
edges); observe that G can also be seen as a
cell complex in R?. The duality mapping is
defined as follows. The dual graph G* has
a vertex for each face (polygon) in G, and
these vertices are linked by an edge if and



Figure 2: A graph G (solid lines), and its
dual graph G* (dashed lines). For
the sake of simplicity the dual
edges to the edges on the boundary
of G are not drawn.

only if their two corresponding dual faces
in G are adjacent (in Figure P, G* is repre-
sented with dashed lines). Notice also that
each polygon in G* corresponds to a vertex
in G, and that each edge of G* (arcs in Fig-
ure P) is dual to an edge in G.

The concept of duality is valid in any di-
mension, as we consider a graph embed-
ded in R? as a d-dimensional cell complex.
The mapping between the elements of a cell
complex in IR is simple: let C be a k-cell, the
dual cell of C in R is denoted by C* and is a
(d — k)-cell. As a result, in four dimensions,
a o-cell becomes a 4-cell, and vice versa; a 1-
cell becomes a 3-cell, and vice versa; and a
2-cell stays a 2-cell. Figure f shows the dual-
ity of a cell complex in R3.

3 Potential data structures

There are several data structures that
are able to represent models in four or
more dimensions. Notable ones include:
simplex-based ones [Paoluzzi et all, 1993;
Shewchuk, 200d], polytopal meshes [So-
hanpanah, 1989], (convex) decompositions
of polytopes [Bulbul et al, 2009], and Nef
polyhedra [Bieri and Nef, 1988]. How-
ever, despite the fact that they maintain
various topological relationships, none of
them provide efficient access to the dual
graph of a model. We have nevertheless
identified two candidate data structures
that are able to do so, generalised maps and
the dual half-edge. In this section, these

are first introduced in their general form,
and afterwards we specifically analyse how
they could handle the dual graph in four
dimensions.

3.1 Dual half-edge

The dual half-edge (DHE) structure, as pro-
posed by Boguslawski et al. [Boguslawski
et all, bo11; Boguslawski, ko11], is a data
structure that is able to represent a set of
connected polyhedra forming a cell com-
plex. It does so by simultaneously storing
both the primal and the dual graphs of the
objects, in a similar manner as the quad-
edge structure of Guibas and Stolfi [1985] in
2D.

As shown in Figure gd, with the DHE
each polyhedron is represented indepen-
dently with an edge-based structure (a b-rep
model), and adjacent polyhedra are linked
together by their shared faces, which are
represented by half-edges joining 3-cells.
These form a graph of connections in the
dual of the original (primal) graph. Both
the primal and the dual graphs are identi-
cal in terms of structure (i.e. their basic el-
ements and connections). Figure 4bj shows
an idea of the relationships that are stored
for each edge. Since these graphs conform
to the duality concept as explained in Sec-
tion ), the only cells that are needed to build
a 3D model are the o-cells (nodes) and 1-
cells (edges); the nodes store the vertex co-
ordinates, while the edges store the connec-
tions between the nodes. Meanwhile, the 2-
cells (faces) and 3-cells (volumes) are only
implicitly represented, but their attributes
can be stored in their dual counterparts, the
1-cells and o-cells in the dual graph.

However, an edge is not an atomic element
in the DHE. Each edge consists of two half-
edges, each of them being permanently con-
nected with its corresponding half-edge in
the dual. This pair, half-edge in the pri-
mal graph and half-edge in the dual one,
is called the dual half-edge, and forms the
atomic element in this model. Each half-
edge is represented with five pointers which
keep references to: an associated vertex, the
next edge around a shared vertex, the next
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Figure 3: Duality in a 3D cell complex.

(a) The DHE models 3D subdivisions by representing the

She.S.V

(b) The DHE pointer based data structure;

boundary of each polyhedron separately with a graph
(edges are black lines), and two adjacent polyhedra are
linked together by the dual graph (edges are dashed
lines).

Figure 4: The dual half-edge

the primal graph (solid lines) is con-
nected permanently with the dual graph
(dashed lines); he - original half-edge;
S,Ny,Ng, D,V - pointers.

data structure in 3D.

edge around a shared face, the second half-
edge of the edge, and to the dual half-edge.

These five pointers are necessary to rep-
resent complex models including non-
manifold cases—when two cells are only
linked by a shared vertex or edge. How-
ever, the number of pointers can be reduced
by one if only cells linked by a shared face
are taken into consideration. Additionally,
a primal and dual half-edge pair can be
merged and stored as a single record, since
they are permanently connected—the num-
ber of pointers is reduced by one.

Using the data structure directly, without
higher level construction operators would

be extremely difficult—manual’ updating
of pointers while edges are added to a model
can easily cause many mistakes. Therefore,
it is preferred to use the construction oper-
ators from Boguslawski [2011]. They allow
for model construction in an easy way, edge-
by-edge, like in various CAD systems. Addi-
tionally, the dual graph is created automat-
ically as the edges are added to the model
and single cells are linked into a complex.
These operators, used for modifications of
the existing model, make only local changes
in the primal and dual graph, and thus the
whole dual graph does not need to be recon-
structed after each modification.



During the construction process, the exter-
nal cell, which encloses cells in a complex
representing a modelled object, is automat-
ically created. It can be considered as ‘the
rest of the world’. This external cell prevents
topological inconsistencies at the boundary
of the complex, where cells do not have an
adjacent cell to connect to. Also, naviga-
tion can be implemented without testing if
aboundary of the complex is approached.

Figure [ shows one possible way to con-
struct two cubes linked into one complex. It
is based on CAD-like operators—Euler op-
erators [Baumgart, 1975; Braid et all, 1980c;
Mintyld, 1988] and extended Euler oper-
ators [Masudd, 1993]. First, two separate
cubes are created (see Figure gd). Then,
they are linked by a shared face (see Fig-
ure gB). It is possible to define different se-
quences which results in the same model. It
should be noted that the external cell and
dual graph are present at each step of the
process, but for the sake of clarity the exter-
nal cell and dual graph are not shown. The
final model consists of three cells: two in-
ternal cubes and one external cell (see Fig-

ure d).

The DHE was originally designed for 3D
models. However, a single polychoron can
be represented using the DHE without any
modifications, except for the use of 4D co-
ordinates. This is done by instead repre-
senting the polyhedra that lie on its bound-
ary, in a similar manner as a 2D data struc-
ture is commonly used to represent a single
polyhedron by storing the polygons in its
boundary, cf. Baumgart [1975]. While this
is not sufficient to represent a 4D cell com-
plex with adjacent 4-cells or a non-manifold
object, we believe that the data structure can
be extended to represent objects in 4D. The
biggest challenge is to correctly manage all
the connections between the 4-cells, so as to
fulfil the 4D duality rules.

3.2 Generalised maps

Generalised maps (G-maps) are an ordered
topological model developed by Lienhardt
[1994] based on the concept of a combina-
torial map, also known as a topological map,
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(c) The resulting

model consists of
two internal (solid
lines) and one
external (dotted
grey lines) cells.

Figure 5: Cell complex construction pro-
cess.

which was described by Edmonds [1960].
They are roughly equivalent to the cell-tuple
structure of Brisson [1989], but have been
shown to be able to represent a wider class of
objects known as cellular quasi-manifolds—
manifolds that allow certain types of singu-
larities, as long as every n-cell is incident to
no more than two (1 + 1)-cells.

Intuitively, a G-map is composed of two el-
ements: a set of darts, each of which is de-
fined by a unique combination of a spe-
cific n-cell from every dimension, and are
often represented visually as half-edges or
oriented edges; and involutions (a), bijective
operators connecting darts that are related
along a certain dimension. In this manner,
ap joins vertices to form edges, a; connects
consecutive edges within a face, a, connects



adjacent faces within a volume, and so on.

One can obtain the connected darts that
form a specific cell by the use of the or-
bit operator, which returns a (possibly or-
dered) set of darts that are reachable by fol-
lowing certain involutions only. To obtain
the darts that are part of a certain i-cell
only, one can start from any dart d belong-
ing to the i-cell, following all involutions ex-
cept for @;. This is commonly denoted as
< &; > (d) [Lévy and Mallet, 1999]]. Since
a; connects adjacent i-cells, not following it
means remaining in the same cell. For sim-
ple construction, the sew operation is used,
connecting two i-cells of the same dimen-
sion along the common part of their bound-
ary. It does parallel traversals of two or-
bits, adding involutions that connect corre-
sponding darts from each. Note that this
implies certain ordering criteria in the orbit
operator. Analogously, the unsew operation
removes these involutions. An example of
a 3D G-map representation of two adjacent
cubes is shown in Figure [d.

The aforementioned elements and opera-
tions represent the combinatorial structure
of a generalised map. However, to repre-
sent the geometry of the model, an addi-
tional embedding structure is used. If only
linear geometries are required, only the o-
dimensional point embeddings are actually
needed. These store the coordinates of each
vertex.

Since an ¢; involution connects adjacent i-
cells in the primal graph of a d-dimensional
model, per definition a,;_; does so in the
dual graph. These can therefore be easily
swapped to convert a graph into its dual. For
the 4D case, @4 connects corresponding in-
volutions for the dual of the nodes (o-cells),
az for the edges (1-cells), a, for the faces (2-
cells), a; for the volumes (3-cells), and a, for
the 4-cells.

Unlike the DHE that permits us to represent
both the primal and the dual graph simulta-
neously, G-maps permits us to directly rep-
resent either one or the other. Transform-
ing a 4D cell complex into its dual is how-
ever a straightforward operation, the com-
binatorial part of it being performed in lin-
ear time. Alternatively, any cell’s dual can

da=< ag, a5 >
L

(a) A G-map representa- (b)The

; operator ob-
tains all the darts be-
longing to a specific i-
cell. Thus, ¢, obtains
the darts belonging to
a vertex, #1 those be-
longing to an edge,
and #, those belong-
ing to a face.

tion of a cube.
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(c) A G-map representation of two cubes. Note how the
individual cubes have identical involutions to those
of (a), with the addition of an @3 involution that con-
nects the two cubes at their common face. In the
other darts, this involution is not used.

Figure 6: A 3D G-map representation of a
pair of adjacent cubes, showing
the a (dashed), a; (solid), @, (dou-
ble), a3 (triple), and &; operators.

be directly obtained from the graph by in-
terpreting an «; involution as an a,;_; one.
This is similar to how a Voronoi diagram
is instead often manipulated from a Delau-
nay triangulation, cf. Boots [1974]. Duality
in the combinatorial structure of G-maps is
therefore trivial to obtain, and can be done
in real time.

Meanwhile, a geometric interpretation of
the dual graph is also simple to get. Assum-
ing linear geometries, only the point em-
beddings for the dual of the 4-cells need to
be generated, e.g. using the centroid of the
4-cell, or simply an average of the point em-
beddings of the o-cells in the boundary of
the 4-cell. These are both easy to obtain us-
ing the < & > orbit corresponding to the



4-cell. Note that if the initial model (pri-
mal graph) is bounded, the dual represen-
tation will have unbounded cells. The run-
ning time of the geometric part of the dual-
ity transformation depends on the manner
in which new point embeddings are com-
puted. When each of these can be computed
in constant time (e.g. using a few darts in
their orbit), the entire transformation can
be done in linear time. Otherwise, the com-
plexity will be higher.

The process of the duality transformation of
a 4D G-map is shown in Algorithm [|. For
simplicity of explanation, three things are
assumed to exist: an additional pointer to
store the new point embeddings, a global
list of embeddings, and a pointer from each
embedding to a dart in its boundary. Note
however that these are not strictly neces-
sary. Their existence depends on the man-
ner in which G-maps are implemented.

Algorithm 1: DUALTRANSFORM(G)
Input : A 4D G-map G
Output: The dual transformation of G
foreach 4-Cell cin G do
p « the centroid of ¢
O < ay > (c.dart)
foreach Dart d in O do
| d.embedding,p < p
end
end
foreach Dart d in G do
swap(d.ag, d.ay)
swap(d.aq, d.ay)
swap(d.embeddingop, d.embedding,p)
end

For consistency in our dual representation,
we assume that there is an external (un-
bounded) cell. This ensures that applying
the dual operation twice returns a model
that is topologically equivalent to its origi-
nal representation. The transformation of
a 2D G-map into its dual is shown step by
step in Figure [J.

Figure 8: A 3D projection of a tesseract:
a) a tesseract is a simple poly-
choron; b) a tesseract is bounded
by eight cubes, and can be rep-
resented as a cellular complex of
these cubes. Note that they have
different shapes due to the projec-
tion used.

4 Storage ofa 4D cell
complex and its dual

In this section we consider a 4D cell com-
plex consisting of adjacent tesseracts and its
dual. A tesseract, also known as a 4-cube or
cubic prism, is the four dimensional ana-
logue of a cube. As shown in Figure §, itis a
closed four-dimensional polytope bounded
by eight cubes. It contains 8 cubical 3-cells,
24 square 2-cells, 32 1-cells, and 16 o-cells.

4.1 Dual half-edge

Using the 3D DHE, a single tesseract can
be represented as a complex of seven inter-
nal and one external 3-cells. This perfectly
fits to the DHE concept of models enclosed
by the external cell. Once each tesseract is
created individually, it is necessary to link
them into a 4D complex. Using the DHE,
at this moment only adjacency by a shared
3-cell (a cube) is taken into consideration—
other relationships between lower dimen-
sional cells (i.e. by a shared face, edge, and
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a) A 2D G-map representation of 3
adjacent triangles.

(b) @y and a, are swapped, and a
point embedding for each tri-
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(c) The final result after linking to
the new point embeddings.

angle is created.

Figure 7: A step by step transformation of a 2D G-map into its dual representation.

vertex) are not allowed. This significantly
simplifies the problem.

To extend the concepts of the original 3D
DHE to 4D, it is necessary to introduce the
concept of an external 4-cell into the model.
In a model with only one object, e.g. a single
tesseract, there will be two 4-cells—internal
and external—connected into a complex by
adjacent 3-cells. Thus, in the dual of this
model, there would be two vertices, which
correspond to the internal and external 4-
cells. The vertex corresponding to the in-
ternal one can be calculated as the centroid
of the tesseract; while the node for the ex-
ternal one may be located at infinity—these
two dual nodes are connected by eight dual
edges representing all the bounding 3-cells
of the internal and external 4-cells. Techni-
cally, each 3-cell is represented by a bundle
of dual edges, but since the bounding nodes
of'the edges in the bundle are geometrically
the same, and the edges are connected in a
radial cycle, they are considered as a single
edge. Each cube in this example is repre-
sented by a bundle of 12 dual edges. Since
every primal half-edge is associated with a
dual half-edge, the number of dual edges is
the same as the number of primal edges of

the cell.

A simple calculation determines that the

number of atomic elements, dual half-
edges, required to represent the above
model is 384: there are two tesseracts (inter-
nal and external) consisting of eight cubes
each; each cube consisting of 12 edges; and
each edge consisting of two DHEs. It should
be noted that the 3D dual graph originally
used to connect 3-cells of a complex is re-
placed by the new 4D graph connecting 4-
cells. However, at the current stage of our
research we cannot determine all the DHE
connections between the dual edges, and
the exact number of pointers necessary to
represent these connections.

4.2 Generalised maps

A complex of two or more adjacent tesser-
acts can be represented using a 4D gener-
alised map (4-G-map), in which each dart
has 5 involutions (ag to a4). The construc-
tion of the model proceeds incrementally,
starting from the vertex level. A vertex is
defined by a point embedding, where its 4D
coordinates are stored. An edge is defined
by creating a pair of darts, linked to each
other along the a; involution. Four of these
edges, linked along their shared vertices at
the @; involution, form a square face. Six of
these faces, linked along their shared edges



at the a, involution, form a cube. Eight
of these cubes, linked along their shared
faces at the @3 involution, form a tesser-
act. The resulting tesseract is thus formed
of2-4-6-8 = 384 darts and 16 point em-
beddings. Since each dart requires 6 point-
ers (one for each involution plus one for its
point embedding), there are 2304 pointers
in the combinatorial structure.

The a4 involutions have not been used up to
this point. These are however used to link
3D-adjacent tesseracts together. Since no
additional pointers are required, the total
storage used for a cell complex of 4D tesser-
acts is the sum of the storage for each indi-
vidual tesseract.

To obtain the dual of this model, the proce-
dure described in Section B.2 may be used.
The a; and a;_; involutions are first swapped
in the combinatorial structure. In this man-
ner, @y becomes o, and vice versa, and a;
becomes a3 and vice versa. Afterwards, a
new point embedding at the centre of each
tesseract is created and linked to the darts
on its boundary.

5 Discussion

We have shown how it is possible to store
the dual graph of a 4D object by applying
and extending existing data structures. G-
maps already offer this possibility, although
simultaneous storage of both graphs is not
possible. The dual half-edge offers this pos-
sibility and is thus a promising alternative,
especially as the dual graph is updated auto-
matically while the primal is modified.

We also envision being able to use the 4D
dual graph for various applications, navi-
gation in 4D being an interesting possibil-
ity. For instance, it would make it possi-
ble to create a 3D indoor and outdoor way-
finding application, where a user can select
any given start and end points, and be given
the best 3D route at any point in time, taking
into account topological changes (e.g. a con-
necting corridor being only open during of-
fice hours).

We also plan to work on duality when
holes/cavities are allowed in any dimen-
sion, up to 4D. An example of a 4D hole
could be a section of a building being closed
due to refurbishing work and thus inacces-
sible and removed from the graph. Note
however that this assumption might not be
true for all applications, e.g. emergency re-
sponse In a 3D representation, there would
not be a natural connection between the
building before and after the construction
work, but it would be there in the 4D dual
graph. This will allow us to fully utilise ex-
isting spatial datasets, and at the same time
be able to represent a greater variety of situ-
ations.
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