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Real-world phenomena have traditionally been modelled in a GIS in two and
three dimensions. However, powerful insights can be gained by the integration
of additional non-spatial dimensions, such as time and scale, in a higher dimen-
sional spatial model. While this theory is conceptually sound, there is a lack of
understanding of its consequences when applied to real world geographic infor-
mation. In this paperwe therefore analyse these consequences, aswell as the tech-
niques that are necessary in order to extractmeaningful 2D/3D information from
it, which can be used with existing algorithms and software.
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1 Introduction

There is substantial interest in the use of
higher-dimensional (≥4D) digital objects
that are built from real-world data. Within
GIS, such objects can be produced when ex-
isting 2D/3D data is integrated with tem-
poral information [Tøssebro and Nygård,
2011] or scale [van Oosterom and Meijers,
2012], among others. If these character-
istics are considered as fully independent
spatial dimensions (axes), objects in higher
dimensional space are created. This power-
ful technique, explained fully in Section 2,
is more complex than other representa-
tions [Peuquet and Duan, 1995; Claramunt
et al., 1999; van Oosterom, 2005], but it is
easily extensible to integrate other dimen-
sions, andpreserves all topological relation-
ships within and between objects down to
the vertex level. Doing so makes it possi-
ble to store continuously changing objects
in time and scale, as well as other complex
object relationships, and at the same time
reduces redundancy and helps to avoid in-
consistencies [van Oosterom and Meijers,
2012].

Conceptually, these objects are hypervol-
umes of arbitrary shape. They can be
closed (bounded) or open (unbounded),
connected or not, with flat or curving
boundaries, with or without holes, of equal
or different dimension than the space
they are contained in, orientable or unori-
entable, etc. However, in practical terms
we are mostly interested in relatively sim-
ple orientable objects with flat geometry
(polytopes), possibly with holes and possi-
bly open (to support objects extending to in-
finity e. g. in time), in Euclidean space of the
same or higher dimension than the objects.
This is but an extension to higher dimen-
sions of the typical objects currently found
in 2D/3DGIS.Wehave therefore limited our
scope to this class of objects, andwithin this
paper, we will therefore only be concerned
with them.

Since it is difficult to visualise and analyse
objects in more than three dimensions, we
are also interested in extracting 2D or 3D
objects from a higher dimensional repre-
sentation. This is easily done at a concep-

tual level by computing the intersection of
two sets of objects. However, computing
these intersections for the general case is
extremely difficult and computationally ex-
pensive. In fact, to the best of our knowl-
edge, there is no software that is able to com-
pute the intersection of two arbitrary poly-
topes in more than three dimensions. We
have therefore defined a simplified ‘slicing’
operation for this purpose—a limited form
of point set intersection—which could real-
istically be implemented, and is covered in
detail in Section 3.

The goal of this paper is to establish a foun-
dation for handling 𝑛-dimensional (𝑛D)
spatial information in a GIS context: a de-
scription of the 𝑛Dgeometries involved and
how to reduce its dimensionality to 2D/3D.
For this, we describe thenecessary concepts,
terms and definitions, both those common
in 2D/3D GIS, and those derived from ge-
ometric modelling and mathematics (espe-
cially topology), and present their signifi-
cance in the frame of reference of higher
dimensional GIS. We finalise by showing
some examples in Section 4, and our con-
clusions and plans for future work in Sec-
tion 5.

2 Higher dimensional spatial
models

To understand what we mean by consider-
ing all characteristics as independent (or-
thogonal) dimensions, let us first consider
a case with 2D space, and time as the third
dimension. At any one point in time, an ob-
ject would be represented as a polygon in 3D
space, parallel to the 2D space plane (𝑥, 𝑦)
and orthogonal to the time axis. Every ob-
ject existing (and not moving or changing
shape) during a time period would then be
prism shaped, with identical base and top
facets parallel to the 2D space plane and the
other facets orthogonal to it. An example of
this situation is shown in Figure 1.

Extending this to a 4D representation of
3D space and time, every 3D object at one
point in time would be a (3D) polyhedron
in 4D space, and an object that exists for a
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Figure 1: A 2D space (𝑥, 𝑦) + time (verti-
cal axis) view of the footprint of
two separate buildings at time 𝑡􏷟,
which were connected by a cor-
ridor (red) from time 𝑡􏷠 to time
𝑡􏷡 and then became disconnected
again when the corridor was re-
moved until time 𝑡􏷢. Themoments
in time are shown along the thick
line representing the front right
corner of the right building.

period of time would be a polychoron, i. e.
the four-dimensional analogue of a poly-
gon/polyhedron. If this object is not mov-
ing or changing shape, it would take the
form of a prismatic polychoron, i. e. the
four-dimensional analogue of a prism.

Another relevant application is the integra-
tion of scale as a spatial dimension. This
concept is introduced in [Meijers and van
Oosterom, 2011] in the variable-scale geo-
information technique, and it is shown in
Figure 2. Such approach enables the gener-
ation of an infinite number of continuous
levels of detail, and provides a more consis-
tent structure. The integration of scale can
extend this concept to higher dimensions,
e. g. to 4D in 3D city modelling [Stoter et al.,
2012a,b].

An 𝑑-dimensional spatial model is thus de-
fined by a set of spatial objects embedded in
𝑑-dimensional space. This notion has been
extensively studied and is universally used
inGIS for 𝑑 ≤ 3, but its logical consequences
in 𝑑 ≥ 4have not been sufficiently explored.
In particular, the distinction between the
dimension of a spatial object and that of the
space it is embedded in is not widely used

Figure 2: A 3D representation of 2D space
(horizontal plane) and scale (ver-
tical axis). The vertical edges con-
necting corresponding features
have been omitted for legibility
reasons. Adapted from Meijers
and van Oosterom [2011].

or known in the GIS domain1. Even worse,
4D is often used as a catchphrase for 3D +
time modelling, regardless of whether time
is actually treated as an additional spatial di-
mension or not, and generally without cre-
ating any 4D objects.

To understand the difference between the
dimension of a spatial object and that of the
space it is embedded in, it is useful to con-
sider themanner inwhich a topology-based
approach is used in geometric modelling.
In such an approach, two semi-independent
models are used:

• A combinatorial or topological model
that describes the topological relation-
ships between and within spatial ob-
jects. To do this, certain assumptions
about the topology of the objects are
made, e. g. homeomorphism of an 𝑛-
dimensional cell (𝑛-cell), representing
the topology of an 𝑛-dimensional spa-
tial object, to an 𝑛-dimensional ball.

1See Gold [2005] for an exception
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• An embedding or geometric model
that describes how these objects are
embedded into geometrically defined
space. Analogously, assumptions about
the geometry of the objects are made as
well, e. g. a closed polytope having no
self-intersections.

For instance, a cube could be represented
in a combinatorial model as a 3-cell in a
cell complex, described by its boundary of
six 2-cells, each of those with a bound-
ary composed of four 1-cells, each of them
with a boundary composed of two 0-cells.
A corresponding simple embedding model
could relate each vertex (0-cell) to a tuple
of coordinates and assume a linear geom-
etry. More complex embedding models
could contain explicit equations of curves,
surfaces, etc.

The distinction between the combinatorial
and embedding models is useful from a
scientific perspective since it separates the
problems of the fields of geometric mod-
elling and computational geometry [Lien-
hardt, 1994]. When creating higher di-
mensional spatial models, the dimension
of the spatial objects is given by the com-
binatorial model used, while the dimen-
sion of the space is given by its embed-
ding model. Using this distinction, sub-
tle differences can be recognised between
different data models. For instance, both
the winged-edge [Baumgart, 1975] and the
facet-edge [Dobkin and Laszlo, 1987] data
structures can be used to describe three di-
mensional models (sets of objects embed-
ded in three dimensional space), but while
the former is actually a 2D data model rep-
resenting the (2D) manifold surface of the
3D objects within the model, the latter is a
3D datamodel fully capable of storingmore
complex objects and volume-volume rela-
tionships.

Since different combinatorial models are
usually able to represent mathematically
different classes of objects, giving a precise
definition of the dimension of a combinato-
rial model is complex and out of the scope
of this paper. For the purposes of this dis-
cussion, we will therefore simplify it by as-
suming that an𝑛-dimensionalmodel is able

to store every possible spatial object of di-
mension 𝑛.
The dimension of a spatial object 𝑎,
dim(𝑎) ∈ ℕ, is then given by the mini-
mum dimension of a combinatorial model
that is able to store it. Meanwhile, the
dimension of a set of spatial objects
𝐴 = {𝑎􏷟, 𝑎􏷠, … , 𝑎𝑛} is given by the mini-
mum dimension of a combinatorial model
that is able to store all of these objects
and the topological relationships between
them, and is thus given by dim(𝐴) =
max(dim(𝑎􏷟), dim(𝑎􏷠), … , dim(𝑎𝑛)) + 𝑎𝑑𝑗,
where 𝑎𝑑𝑗 = 1 if any two spatial objects
of the highest dimension in the model
are adjacent2, 𝑎𝑑𝑗 = 0 otherwise. Since
this might be difficult or expensive to
compute, one can safely assume dim(𝐴) ≤
max(dim(𝑎􏷟), dim(𝑎􏷠), … , dim(𝑎𝑛)) + 1
instead.

This reinforces the intuitive notion of the
dimension of a set of isolated points be-
ing zero, line segments one, polygons two,
polyhedra three, and so on, regardless of
the dimension of the space they are embed-
ded in. At the same time, this definition
also clarifies dubious cases, such as a poly-
line being of dimension two or a planar par-
tition of dimension three, not surprising
considering that a (non self-intersecting)
polyline is akin to an open polygon, or a
planar partition an open polyhedron. Note
however that this also entails that a single
line segment implicitly described by its end-
points can have dimension zero, a polygon
one, a polyhedron two, and so on. A single
point cannot be implicitly described by its
(null) boundary, and thus still has dimen-
sion zero.

Meanwhile, the dimension of a space 𝑆
in which the objects are embedded is also
dim(𝑆) ∈ ℕ, and is given by the dimension
of the embedding model used. In a strict
sense, the dimension of this model can be
defined in terms of the dimension of the
vector space defined in it. In the most com-
mon case, where it consists of a tuple of co-
ordinates in a coordinate systemwhose axes
are linearly independent, the dimension of
the embedding model is the simply given
2Adjacency between 𝑛-dimensional objects being de-
fined as (𝑛 − 􏷠)-adjacent.
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by the number of coordinates used. Thus,
when ℝ𝑑 is used3, in practice it means that
dim(ℝ𝑑) = 𝑑.

It is worth noting that the dimensions of
the objects and the space are independent of
each other. As mentioned previously, topo-
logicalmodels of one dimension lower than
their corresponding geometry can be used,
generally by representing an object implic-
itly by its boundaries. This saves on mem-
ory when the highest dimensional topolog-
ical relationships are not required. On the
other hand, it is also possible to have topo-
logical models of higher dimension than
their actual geometric embedding, such as
when 3Dmodels are displayed on screen (or
on paper), and are thus given a 2D geom-
etry. However, this imposes considerable
constraints, such as not being able to vi-
sualise the higher dimensional primitives,
e. g. when drawing a 3D object in a 2D per-
spective view in a piece of paper, not all of
its facets can be seen at the same time. For
most GIS applications the dimension of the
space is thus higher or equal to that of the
objects within it.

3 Reducing the dimension of
spatial objects

Starting from a higher dimensional spatial
model where a set of higher dimensional
spatial objects are stored, being able to ex-
tractmeaningful 2D/3D objects is a valuable
operation. These simpler types are both eas-
ier to visualise and are possible to use with
existing algorithms and software. In order
to reduce the dimension of spatial objects,
(point set) intersections of the original data
in the model and purposefully designed
lower dimensional objects can be used. This
procedure works in a analogous manner as
the generation of 2D cross-sections from 3D
objects, such as is commonly done with iso-
lines from elevation data.

3Conceptuallyℝ𝑑 is often used, but due to limitations
inherent in computer representations, most likely
something else is used when it is actually imple-
mented [Goldberg, 1991].

In the most general form, any two sets of
objects 𝐴,𝐵 can be intersected (∩), result-
ing in a new set of objects 𝐴 ∩ 𝐵, such that
dim(𝐴 ∩ 𝐵) ≤ min(dim(𝐴), dim(𝐵)). Since
the intersection result is, by definition, the
common part of the two sets of objects, it
cannot be of a higher dimension than the
lower dimensional set. In fact, it can be of a
lower dimension than both, since they can
touch at a lower dimensional primitive, e. g.
a common point edge, or polygon. When
the objects are disjoint, 𝐴 ∩ 𝐵 is empty (∅)
and its dimension is not well defined, al-
though 0 [Munkres, 1975] and −1 [Engelk-
ing, 1977] can be arguably justified mathe-
matically, based on different definitions of
the topological dimension of a set. Note
however that even in the case of the in-
tersection of two single objects, the result
might not be a single object, i. e. single poly-
topes are not closed under the intersection
operator. This is the reason why for our
purpose, intersection is best treated directly
based on sets of objects.

Computing the intersectionof two arbitrary
sets of objects is a very complex problem.
This can be somewhat ameliorated by re-
stricting the objects that are allowed, such
as for the convex case [Grünbaum, 1967];
or by using techniques to subdivide the
objects into more manageable ones, such
as constrained triangulations [Shewchuk,
2000] or the alternate hierarchical decom-
position [Bulbul and Frank, 2009]. How-
ever, these techniques fail to fully overcome
what is still an intricate problemwith a very
high computational complexity. Even in
the convex case, it is likely analogous to the
problem of computing an arrangement of
hyperplanes, which is 𝑂(𝑛𝑑−􏷠) in the worst
case [Edelsbrunner et al., 1993], with 𝑛 the
total number of faces ((𝑑−1)-cells) in the two
objects together.

Since we are mostly interested in very spe-
cific cases of intersections, this problemcan
be often avoided by using the properties of
the particular objects that need to be inter-
sected. For this, we have defined the ‘slicing’
operator. Slicing is an intersection where a
higher dimensional set of objects, generally
consisting of a spatially indexed and rather
large data set, is intersected with another
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lower-dimensional object—often half-open,
box-shaped and parallel to an axis—which
we have dubbed as the ‘slicing element’. The
end result is then often given in terms of
the lower dimensional space induced by the
slicing element itself, which is equivalent
to an orthographic projection of the inter-
section to a coordinate system describing
the vector space where the slicing element
lies. An example of slicing is shown in Fig-
ure 3.

This operation can be expressed as follows.
Given a data set object𝐴 ∈ 𝑥􏷠×𝑥􏷡×𝑥􏷢, where
dim(𝐴) = 3 and a specific value 𝑐 of 𝑥􏷢 along
which we want to slice it, it is possible to
generate the slicing element 𝐵 ∶ 𝑥􏷢 = 𝑐,
where dim(𝐵) = 2. The result is given by
𝐴 ∩ 𝐵 ∈ 𝑥􏷠 × 𝑥􏷡 × 𝑥􏷢, where dim(𝐴 ∩ 𝐵) =
min(dim(𝐴),dim(𝐵)) = 2, and it can be ex-
pressed as a two dimensional object in the
space 𝑥􏷠×𝑥􏷡 induced by the slicing element
𝐵.

4 Example

Consider now what would happen in a
practical example using a four dimensional
model with 3D space and scale (level of de-
tail), as shown in Figure 4. The model
consists of a single 4D object representing
a house at different levels of detail along
the scale axis (𝑙). Every 𝑑-dimensional
primitive in the house is thus a (𝑑 + 1)-
dimensional one in the model, stretching
from theminimum level of detail where it is
visible up to themaximumlevel of detail, its
geometry becoming increasingly complex
and joined appropriately. For instance, the
vertex at the apex in the front of the house
is a (poly)line connecting the apices at dif-
ferent scale levels. Similarly, the edge be-
tween the roof of the house and its façade is
a (set of adjacent) planes joining these edges
at different scales. For this paper we ignore
how these are joined, but work is ongoing to
achieve this purpose. An alternative view is
considering that a 3D object at a fine level of
detail (𝑙􏷢) has been generalised (using gen-
eralisation algorithms) in several steps up
to a coarse level of detail (𝑙􏷠), and these have
been joined appropriately. By slicing this

space-scale 4D object, it is possible to gener-
ate 3D models at intermediate levels of de-
tail, such as the house at an arbitrary value,
e. g. 𝑙 = 𝑙􏷡.

Unlike other models with fixed represen-
tation levels, there are an infinite number
of differently detailed 3D models that can
be extracted from this 4D one, allowing
for smooth zooming operations [van Oost-
erom andMeijers, 2012] or obtaining levels
of detail that are optimised for the screen in
which they are viewed.

5 Discussion

The simple example from the previous sec-
tion does not show all the advanced capa-
bilities that can be achieved using a true 4D
spatial model. For instance, using a slicing
element with linear geometries, but that is
not orthogonal to the scale axis, it is pos-
sible to obtain mixed-scale levels of detail
for applicationswhere different levels of de-
tail across the view are required, e. g. having
more detail close to the viewer or in an area
where a detailed simulation is needed (per-
spective view). Slicing with multiple dis-
joint planes (a discontinuous embedding)
can generate views of the same object at dif-
ferent levels of detail or points in time. An-
imations can be generated by moving the
slicing element along a meaningful path.
Advanced representation can be obtained
using curving objects, such as bell shaped
surfaces formixed scale that depends on the
distance to the viewer.

These possibilities are currently difficult to
visualise, but we believe their implementa-
tion to be within reach, and the capabilities
offered by true higher dimensional mod-
els open new and concrete possibilities for
analysis. Having access to the full topo-
logical informationmeans that the connec-
tivity between in within objects is never
lost, e. g. an object disappearing and then
reappearing in time, which allows for topo-
logical queries along all dimensions and
avoids expensive computations to deter-
mine whether two objects are actually the
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Figure 3: Slicing a prismwith a plane in 3D space. The data set object (blue prism) is sliced
with the plane 𝑥􏷢 = 𝑐 (green slicing element), which is an open range along both
𝑥􏷠 and 𝑥􏷡, and orthogonal to the axis 𝑥􏷢. The resulting object (red) is a triangle in
3D space. This triangle can also be expressed as a triangle in the 2D space 𝑥􏷠 × 𝑥􏷡
induced by the slicing element.
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Figure 4: A schematic view showing the results of slicing a 4D model consisting of 3D
space (𝑥, 𝑦, 𝑧) and 1D scale 𝑙 (red axis). The model contains a house at levels of
detail ranging from coarse (𝑙􏷠) to fine (𝑙􏷢) An intermediate level of detail can be
obtained from the model by slicing it at the scale value of 𝑙 = 𝑙􏷡 and projecting it
to the hyperplane of the slicing element.

same. For these reasons, the concepts pre-
sented in this paper are important as a foun-
dation for the manipulation of higher di-
mensional spatial information.
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