
Automatically repairing polygons and planar
partitions with prepair and pprepair

Ken Arroyo Ohori Hugo Ledoux Martijn Meijers

OSGIS 2012
September 5, 2012

1 / 22



Planar partition = no gaps, no overlaps

2 / 22



Real data = problems

3 / 22



Real data = problems

3 / 22



What about polygons?

OGC Simple Features +
ISO19107:

1 no self-intersection

2 closed boundaries

3 rings can touch but not
overlap

4 no duplicate points

5 no dangling edges

6 connected interior

p2

p4 p5 p6

p7 p8 p9

p3

p12p11p10

p1

exterior
boundary

interior
boundary

4 / 22



Real data = problems

5 / 22



Real data = problems

5 / 22



Real data = problems

5 / 22



Standards/definitions tell us what is valid, but...
what to do with invalid data?

Planar partitions: snapping / topology rules /
manual work

Polygons: “buffer-by-0” / PostGIS 2.0’s
ST MakeValid() / “visual repair”

6 / 22



Snapping

Tolerance (threshold) is
used for snapping vertices

Tolerance based on scale of
datasets

Works fine for simple
problems

7 / 22



Snapping

Tolerance (threshold) is
used for snapping vertices

Tolerance based on scale of
datasets

Works fine for simple
problems

7 / 22



Snapping

Tolerance (threshold) is
used for snapping vertices

Tolerance based on scale of
datasets

Works fine for simple
problems

7 / 22



Snapping

Spikes and punctures can create invalid polygons

8 / 22



Snapping

Spikes and punctures can create invalid polygons

8 / 22



Snapping

Splitting of polygons into several polygons

8 / 22



Snapping

Splitting of polygons into several polygons

8 / 22



Snapping

High resolution 
data

Low resolution 
data

Topologically invalid result

8 / 22



Topology rules

9 / 22



Manual work

10 / 22



“Buffer-by-0”

11 / 22



“Buffer-by-0”

11 / 22



“Buffer-by-0”

planar graph is constructed

11 / 22



“Buffer-by-0”

Result

11 / 22



PostGIS 2.0’s ST MakeValid()

high-level automatic repair function

diff functions called depending on geometric and topological
configurations of rings

based on construction of planar graph (GEOS is used)

not documented (“read the code”) = predicting behaviour is
difficult

very slow for big polygons

12 / 22



“Visual repair”

GRASS ArcGIS

13 / 22



Our solution = constrained triangulation (CT)

1 Construct CT of input
polygons

2 Flag each triangle with its
polygon / interior & exterior

3 Make each triangle have
exactly one tag

4 Reconstruct polygons

ov
er

la
pp

in
g

region

"red"

"blue"

14 / 22



Our solution = constrained triangulation (CT)

1 Construct CT of input
polygons

2 Flag each triangle with its
polygon / interior & exterior

3 Make each triangle have
exactly one tag

4 Reconstruct polygons

"red"

"blue"

14 / 22



Our solution = constrained triangulation (CT)

1 Construct CT of input
polygons

2 Flag each triangle with its
polygon / interior & exterior

3 Make each triangle have
exactly one tag

4 Reconstruct polygons

A

C

D

B

"red"

"blue"

14 / 22



Our solution = constrained triangulation (CT)

1 Construct CT of input
polygons

2 Flag each triangle with its
polygon / interior & exterior

3 Make each triangle have
exactly one tag

4 Reconstruct polygons

Triangle Repair

A
B
C
D

"red"
"red"
"red"
"red"

14 / 22



Our solution = constrained triangulation (CT)

1 Construct CT of input
polygons

2 Flag each triangle with its
polygon / interior & exterior

3 Make each triangle have
exactly one tag

4 Reconstruct polygons

"red"

"blue"

14 / 22



Our solution = constrained triangulation (CT)

1 Construct CT of input
polygons

2 Flag each triangle with its
polygon / interior & exterior

3 Make each triangle have
exactly one tag

4 Reconstruct polygons

"red"

"blue"

14 / 22



Local control: 6 different operators

Repair operation Type Criteria

Triangle by number of Focal The label present in the largest number of
neighbours adjacent faces, overlaps included.
Triangle by absolute majority Focal Label present in two or more valid

adjacent faces
Triangle by longest boundary Focal Label present along the longest portion of

the boundary of the adjacent faces
Regions by longest boundary Focal of Label present along the longest portion of

zonal the boundary of the adjacent faces
Regions by random neighbour Focal of Random label from the adjacent faces

zonal
Triangle by priority list Varies Label that has the highest priority according to

a predefined priority list

15 / 22



Local control: one concrete example

16 / 22



Local control: one concrete example

16 / 22



Local control: one concrete example

16 / 22



Local control: one concrete example

16 / 22



Local control: one concrete example

16 / 22



Experiments with big polygons: CORINE2006

32 473 points
346 rings

2 412 points
10 rings

102 272 points
299 rings

points rings prepair ST MakeValid()

EU-47552 2 412 10 0.5s 0.8s
EU-47997 32 473 346 11.4s 314.0s
EU-180927 102 272 299 52.2s 740.2s

17 / 22



Experiments with large real-world datasets

(a) E41N27 (b) 4tiles

(c) 16tiles (d) Mexico
18 / 22



Experiments with large real-world datasets

# pts avg # pts
# polygons # pts largest polygon per polygon

E41N27 14 969 496 303 26 740 34
4tiles 4 984 365 702 16 961 75
16tiles 63 868 6 622 133 95 112 104
Mexico 26 866 4 181 354 117 736 156

19 / 22



Comparison with other GIS packages

pprepair ArcGIS FME GRASS

memory time memory time memory time memory time

E41N27 145 MB 19s 145 MB 1m3s 158 MB 31s 59 MB 3m09s
4tiles 116 MB 17s 113 MB 37s 105 MB 31s 49 MB 53s
16tiles 1.45 GB 4m47s crashes – 636 MB 15m48s crashes –
Mexico 1.01 GB 3m31s 216 MB >1d 264 MB 2m45s 408 MB 11m38s

20 / 22



The code is robust and freely available

http://tudelft-gist.github.com/pprepair

Uses OGR and CGAL
BSD license → soon GPLv3

21 / 22

http://tudelft-gist.github.com/pprepair


Thanks for your attention

Ken Arroyo Ohori
g.a.k.arroyoohori@tudelft.nl

Hugo Ledoux
h.ledoux@tudelft.nl

Martijn Meijers
b.m.meijers@tudelft.nl

22 / 22

g.a.k.arroyoohori@tudelft.nl
h.ledoux@tudelft.nl
b.m.meijers@tudelft.nl

