Integrating scale and space in 3D city models

Jantien Stoter Hugo Ledoux Martijn Meijers Ken Arroyo Ohori

5D modelling project

- Full integration of 3D space, time and scale dimensions
- Into a 5D hypercube
- Goal is to implement one
- Advantages:
 - Ensures consistency across all dimensions (eg no gaps in space/ time)
 - 2. Querying across diff spaces
 - 3. Managing data more efficient

2D + scale

Land cover datasets

2D + scale = 3D model

Variable scale

tGAP

One possible data structure

🥹 ui (application/x-shockwave-flash Object) - Mozilla Firefox	
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	
🔶 ➤ 🛃 🖉 🚰 🔚 🚺 http://casagrande.otb.tudelft.nl:8000/ui	🔂 🗸 💽 Google 🔍
⊖Disable ∽ 🙇 Cookies ∽ 🔤 CSS ∽ 🖃 Forms ∽ 🔳 Images ∽ 🕕 Information ∽ ۞ Miscellaneous ∽	🖉 Outline 🗸 📲 Resize 🗸 🥔 Tools 🗸 💿 View S
Disable V Cookies V CSS V Forms V Images V Information V Miscellaneous V	Outline View S
20 km 1 : 676600 Waiting for casagrande.otb.tudelft.nl	

How to build and represent a 4D cube?

G-maps

2D

G-maps

3D

G-maps

3D

3D city models + LODs in one hypercube

- Start with LOD3 and perform automatic generalisation to populate the cube
- Storing with G-maps data structure
- We can ensure consistency across the different LODs
- Slicing to obtain one 3D model

Non-horizontal slicing = mixed scale

Modelling of noise along the railway

More details closer to railway

zaterdag 11:02:24 4-9-2010 Day=18 Week=3

4D space-time example

IFC file of building's construction

Thank you.

```
struct Dart {
    Dart *involutions[n+1];
    Embeddings *embeddings[n+1];
};
struct Embedding {
    Dart *referenceDart;
    Embedding *holes[];
    int dimension;
    . . .
    float red, green, blue;
};
struct PointEmbedding : Embedding {
    float x, y, z;
};
struct GMap {
    Embedding* embeddings[];
};
```

$\begin{array}{c} & \cdots & \alpha_0 \\ & -\alpha_1 \\ & -\alpha_2 \end{array}$

n	object	darts	embeddings	pointers
0	point	0	<1>= 1	2
1	line segment	2	<2,1>= 3	14
2	triangle	6	<3,3,1>= 7	50
3 n	tetrahedron <i>n</i> -simplex	$\frac{24}{\prod_{i=1}^{n}(i+1)}$	<4,6,4,1>=15 $2^{n+1}-1$	222 $2e + 2d(n+1)$
2	Figure 1	18	<5,7,3>= 15	138
3	Figure 2c	96	<12,20,11,2>= 45	858
3	Figure 3	128	<9,20,12,4>= 45	1114

Difficulties to solve (efficiently)

- Construction (recreation of topology, comparison of two objects)
- Marking and storing temporary values
- Consistency and validity (geometry, topology, both)
- Keeping track of embeddings (e.g. deletion)
- Memory comsuption