Realising the Foundations of a Higher Dimensional GIS: A Study of Higher Dimensional Spatial Data Models, Data Structures and Operations

Ken Arroyo Ohori
What will I do?

- Realise data models, data structures and operations for higher dimensional (> 3) spatial data.

- Take advantage of the extensive research done in computer science and computer graphics. Apply it to GIS data, which is special.

- The motivation: integration of other (non spatial) dimensions and treat them as spatial (e.g. time, scale, feature spaces)
2D/3D modelling in GIS

• Top-down approach

• Data models are based on standards
 • By standard bodies: ISO 19107, GML, CityGML, ...
 • By developers or the industry: KML, Shapefiles, ...

• Data structures are ad hoc

• Operations are well defined, based on users’ needs
Limitations of models in GIS

- Limited to 2D/3D
- Lack of a formal (mathematical) definition
- Implementations diverge from standards
- Different implementations yield different results
Models in computer science and computer graphics

• Bottom-up approach

• Data models defined mathematically (e.g. point set topology)

• Data structures defined mathematically (e.g. algebraic topology and combinatorics)

• Operations are ad hoc
Data models in CS/CG

- Decomposition models
- Constructive models
- Boundary models
Decomposition models

rasters

space subdivision

cell decomposition
Constructive models

half-space

CSG
incidence models

ordered topological models

Boundary models
Boundary based models are best

- No need to make data conform to a particular shape (decomposition models)
- Easy to append information to vertices, edges, faces, ...
- Efficient storage
- Good for visualisation
- Options for n-D: simplices, polytopes, intermediate
An intuitive representation
Data structures in CS/CG

• Fit for n-D:

 • Simplex based (incidence model)

 • Quad-edge, facet-edge and cell-tuple (and half-edge)

 • G-maps: from combinatorial maps and v-maps
Quad-edge, facet-edge and cell-tuple
Quad-edge, facet-edge and cell-tuple
Quad-edge, facet-edge and cell-tuple
G-maps | Combinatorial maps
G-maps | V-maps

\[\alpha, \sigma, \gamma \]
G-maps | V-maps
G-maps

\[\phi_0 = \langle \alpha_1, \alpha_2 \rangle \]

\[\phi_2 = \langle \alpha_0, \alpha_1 \rangle \]

\[\phi_1 = \langle \alpha_0, \alpha_2 \rangle \]

3D
What I’ll do

“The realisation of a data model, data structure and the basic algorithms required for the operations in a higher dimensional Geographic Information System”

• Study data models and data structures available
• Find out the specific needs of GIS (operations)
• Realisation: creation, implementation, testing
• Visualisation
<table>
<thead>
<tr>
<th>Phase</th>
<th>Time period</th>
<th>Activities</th>
</tr>
</thead>
</table>
| 1 | June-October 2011| Initial (broad) literature review
Basic implementation of G-maps for GIS data
Initial work on a 3D visualiser
Research proposal |
| 2 | November 2011-February 2012 | Continued literature review
Define the needed n-d operations
Article about bridging computer science/GIS
Implement more high-level operations on G-maps
Obtain n-d data sets
Loading and viewing 3D data in visualiser |
| 3 | 2012 | Focused literature review
Test other data structures
Comparison of n-d data structures
Article about n-d data structures
Connect n-d data structure and visualiser
Loading and storing n-d data |
| 4 | 2013 | n-d operations for GIS data
Investigate database implementation
Definition of the data structure to use
Visualisation of n-d data |
| 5 | 2014 | Formalisation of the developed ideas |
| 6 | 2015 | Work on dissertation
Prepare for PhD defence |
What I’ve done

- Literature study
- Implementation of G-maps in arbitrary dimensions
- Visualiser