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What will I do?

¥ Realise data models, data structures and operations for higher dimensional 
( > 3 ) spatial data.

¥ Take advantage of the extensive research done in computer science and 
computer graphics. Apply it to GIS data, which is special.

¥ The motivation: integration of other (non spatial) dimensions and treat them 
as spatial (e.g. time, scale, feature spaces)
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2D/3D modelling in GIS

¥ Top-down approach

¥ Data models are based on standards

¥ By standard bodies: ISO 19107, GML, CityGML, ...

¥ By developers or the industry: KML, ShapeÞles, ...

¥ Data structures are ad hoc

¥ Operations are well deÞned, based on usersÕ needs
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the
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red.T
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the
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industry,
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and
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In
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the
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binatorial
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binatorial
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the
next
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the
m

odel.
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of
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igure7

below
).

E
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the
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In
this

section,an
intuitive

deÞ
nition

ofG
-M

aps
is

given.
W

hereas
previous

w
ork

deÞ
nes

G
-M

aps
from

the
notions

ofsim
plicialcom

-

Limitations of models 
in GIS

¥ Limited to 2D/3D

¥ Lack of a formal (mathematical) 
deÞnition

¥ Implementations diverge from 
standards

¥ Different implementations yield 
different results
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¥ Bottom-up approach

¥ Data models deÞned mathematically (e.g. point set topology)

¥ Data structures deÞned mathematically (e.g. algebraic topology and 
combinatorics)

¥ Operations are ad hoc

5

Models in computer science and computer 
graphics



Data models in CS/CG
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¥ Decomposition models

¥ Constructive models

¥ Boundary models
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Constructive models
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A Polyhedron Representation for Computer Vision 591 

as viewed from the exterior side of its surface. Although 
the vertices in the figure are shown with only three edges, 
vertices may have any number of edges; the other 
potential edges would not be directly linked to the middle 
edge of the figure and so were not shown. 

To complete the representation, space is allocated to 
contain 3-D coordinates of each vertex in fields named 
XWC, YWC and ZWC; the initials "WC" stand for World 
Coordinates. For the sake of vision and display, three 
more words are allocated to hold the Perspective Projected 
coordinates of each vertex in fields named XPP, YPP and 
ZPP. Also a word of thirty six status bits is carried in 
every node: permanent status bits specify the type (body, 
face, edge, vertex, etc.) of every node, temporary bits 
provide space for operations such as hidden line elimina-
tion that require marking. Passing now from necessities to 
conveniences, faces carry exterior pointing normal vectors 

r As viewed from the exterior side 

1. Face ring of a body: 
NFACE(body or face) & PFACE(body or face). 

2. Edge ring of a body: 
NED(body or edge) & PED(body or edge). 

3. Vertox ring of a body: 
NVT(body or vertex) & PVT(body or vertex). 

4. First edge of a face or vertox: 
PED(vertex) or PED(face). 

6. The two faces of an edge: 
NFACE(edge) and PFACE(edge). 

7. The two vertices of an edge: 
NVT(edge) and PVT(edge). 

8. The four wing edges of an Edge: 
NCW(Edge) edge of NFACE Clockwise from Edge. 
PCW(Edge) edge of PFACE Clockwise from Edge. 
NCCW(Edge) edge of NFACE CCW from Edge. 
PCCW(Edge) edge of PFACE CCW from Edge. 

Figure .'? Winged edge topology 

and several words of photometric surface characteristics. 
The face vectors are derived from surface topology and 
vertex loci, and so they are not basic geometric data as in 
some representations. Bodies carry a print name, as well 
as four link fields (DAD, SON, BRO, SIS) for implement-
ing a parts tree data structure; and two link fields (CW 
and CCW) for a body ring of all the bodies in the world 
model. Node formats are given in Figure 4 for an imple-
mentation based on fixed sized (twelve word) nodes. 

The Winged Edge Polyhedron Representation as just 
presented is complete. Edge nodes carry most of the to-
pology, vertex nodes carry the geometry, face nodes carry 
the photometry and body nodes carry the nomenclature 
and parts tree structure. The point that remains to be 
demonstrated, is that the appropriate subroutines for 
creating, maintaining and exploiting edge orientation exe-
cute efficiently and provide good primitives for solving 
such geometric problems as hidden line elimination and 
polyhedral intersection. 

SEQUENTIAL ACCESSING 

An immediate consequence of the ring structures is that 
the faces, edges and vertices of a body are sequentially ac-
cessible in the manner illustrated by the following lines of 
code: 

COMMENT APPL Y A  FUNCTION T O AL L TH E 
FACES,  EDGES AN D VERTICE S OF A  BODY; 
PROCEDURE APPL Y (PROCEDURE FN ; 
INTEGER B) ; 
BEGIN 
INTEGER F,E,V ; 

F-B ;  WHIL E B (̂F^PFACE(F) )  D O FN(F) ; 
COMMENT APPL Y FUNCTION T O FACES OF 

A BODY; 
E^B;  WHIL E B (̂E-PED(E) )  D O FN(E) ; 

COMMENT APPL Y FUNCTION T O EDGES OF 
A BODY; 

V^B;  WHIL E B (̂V-PVT(V) )  D O FN(V) ; 
COMMENT APPL Y FUNCTION T O VERTICE S 

OF A  BODY; 
END; 

The rings could of course have been traversed in the other 
direction by invoking NVT, NED and NFACE in place of 
PVT, PED and PFACE. The reason for doubly linked lists 
(i.e., rings) is rapid deletion. Finally, observe that the face 
and vertex rings could be eliminated at the cost of having 
a more complicated face/vertex sequential accessing 
method requiring a visitation marking bit in the status 
word of face and vertex nodes. 

PERIMETER ACCESSING 

The perimeter of a face is an ordered list of edges and 
vertices, the perimeter of a vertex is an ordered list of 

Boundary models
9

incidence models
ordered topological

models



¥ No need to make data conform to a particular shape (decomposition models)

¥ Easy to append information to vertices, edges, faces, ...

¥ EfÞcient storage

¥ Good for visualisation

¥ Options for n-D: simplices, polytopes, intermediate

10

Boundary based models are best



An intuitive representation
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Data structures in CS/CG

• Fit for n-D:

• Simplex based (incidence model)

• Quad-edge, facet-edge and cell-tuple (and half-edge)

• G-maps: from combinatorial maps and v-maps
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n-simplices
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Quad-edge, facet-edge 
and cell-tuple
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Cell-tuple
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Quad-edge, facet-edge 
and cell-tuple

A

B

b

a

c

d

1

2 3

4

5
(d,5,A)

6
e

(b,5,A)

(d,4,A)

(d,5,B)
�T

�X
�J�

U�D
�I

��

�T
�X

�J�
U�D

�I

��
�T

�X
�J�

U�D
�I

�� 0

0 0

00
0

0

0

00

0

0

1

1 1

1

1

1

1 1

11

1

1

2

2 2

2

2

2

22

2

2

2 2

�B�T�T�P�D( �B)

�B�T�T�P�D( ��)

�B�T�T�P�D( �#)



G-maps Combinatorial maps

17

!

!

!

!

!

!

!

!

!

!

!

!

1

23

4

5 6

7

89

10

11

12 13

14
! !

!

!

! !

!

!



G-maps V-maps
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G-maps V-maps
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G-maps 2D

20

! ��
! ��
! ��

!! ��=< ! ��, ! �� >

!! ��=< ! ��, ! �� >

!! ��=< ! ��, ! �� >



G-maps 3D
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G-maps 3D
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What IÕll do

¥ Study data models and data structures available

¥ Find out the speciÞc needs of GIS (operations)

¥ Realisation: creation, implementation, testing

¥ Visualisation
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