
Edge-matching polygonswith a
constrained triangulation
Hugo Ledoux Ken Arroyo Ohori

This is an author’s version of the paper. The authoritative version is:

Edge-matching polygons with a constrained triangulation. Hugo Ledoux
and Ken Arroyo Ohori. In Proceedings of GIS Ostrava 2011, January 2011, pp.
377–390. ISSN: 1213-239X.

Related source code is available at:
https://github.com/tudelft3d/pprepair

While the edge-matching problem is usually tackled by snapping geometries
within a certain threshold, we argue in this paper that this method is error-prone
and often leads to geometries that are invalid. We present a novel edge-matching
algorithm for polygons where vertices are not moved (no snapping is involved);
instead gaps and overlaps between polygons are corrected by using a constrained
triangulation as a supporting structure and assigning values to triangles. Our
approach has three main benefits: (i) no user-defined tolerance needs to be de-
fined, the matching is adaptative to the configuration of the polygons; (ii) we can
control locally how the polygons should be matched to obtain different results;
(iii) we guarantee that the resulting edge-matched polygons are valid (no self-
intersection and no gaps/overlaps exist between polygons). We present in the
paper our novel algorithm and our implementation, which is based on the sta-
ble and fast triangulator in CGAL. We also present some experiments we have
made with some real-world cross-boundary datasets in Europe. Our experiments
demonstrate that our implementation is highly efficient and permits us to avoid
the tedious task of finding the optimal threshold for a dataset, for the polygons
are properly edge-matched and we can prove that no gaps/overlaps are left.

1

https://github.com/tudelft3d/pprepair


1 Introduction

In the context of the INSPIRE Directive,
there is an increasing need for tools that
can process geographical datasets and har-
monise them. One of the main challenges
whendealingwith datasets produced by dif-
ferent countries is that of the management
of the connections of geographical objects
at international boundaries, to ensure that
objects on both sides are coherent. This is-
sue is often simply called “edge-matching”,
and is one aspect of the geometric conflation
problem, which involves combining multi-
ple datasets in order to make a new one,
usually to improve either the spatial ex-
tent or the accuracy of the data [Lynch and
Saalfeld, 1985]. Yuan and Tao [1999] and
Davis [n.a.] make a distinction between two
types of conflation:

Horizontal conflation refers to edge-
matching of neighbouring datasets
to eliminate discrepancies at the bor-
der region. Country borders defined
based on natural features of the ter-
rain are a good example since their
continuous nature basically ensures
that independently produced data will
not match at the border [Burrough,
1992]. Figure 1 shows an area along the
Spanish-Portuguese border with this
problem.

Vertical conflation involves combining
datasets covering the same area.

As explained in Section 2, the edge-
matching problem has traditionally been
tackled almost exclusively by using the
concept of a threshold (a tolerance). In other
words, if two objects (edges or vertices) are
closer to each other than a given tolerance,
which is usually defined by the user, then
they are “equal” and can be snapped together
so that they become the same object in the
resulting dataset. While snapping yields
satisfactory results for simple problems, we
argue in this paper that for complex ones
it is often impossible or impractical to find
a tolerance applicable to the whole dataset,
and that it is prone to errors that cause
invalid geometries. Such invalid geome-
tries might not be visible to the user (for

instance tiny gaps and overlapsmight be re-
maining, or a line might self-intersect), but
further processing with a GIS requires that
datasets be valid. We review in Section 2 the
previous edge-matching algorithms and we
highlight the main pitfalls when snapping
geometries.

We present in this paper a novel algorithm
to perform edge-matching of one type of
geometries: polygons. As explained in Sec-
tion 3, our algorithm differs from the pre-
vious ones since vertices of the geometries
are nevermoved, i.e. no snapping of geome-
tries and no thresholds are involved. In-
stead, wefill the gaps andfix the overlaps be-
tween datasets by using a constrained trian-
gulation (CT) as a supporting structure and
assigning values to triangles. This approach
has in our opinion several advantages: (i)
no user-defined tolerance needs to be de-
fined (the triangles permit us to findmatch-
ing polygons locally); (ii) we can control lo-
cally how the edges should be matched (in
contrast to snapping, which often involves
a global tolerance); (iii) we guarantee that
the resulting edge-matchedpolygonswill be
valid. We report in Section 4 on our imple-
mentation of the algorithm (it is based on
the stable and fast triangulator in CGAL1)
and on the experiments we have made with
some real-world datasets in Europe. Finally,
we discuss in Section 5 the shortcomings of
our method and future work.

2 Edge-matchingwith
threshold and snapping

The most common method for edge-
matching is based on the concept that
polygons approximately match each other
at their common boundaries (this approx-
imation is based on a threshold). This
implies that they should always be within a
certain distance of each other along those
borders. If, additionally, all parts further
apart than this value are known not to be
common boundaries, it is possible to snap
together polygons that are closer to each
1The Computational Geometry Algorithms Library:
http://www.cgal.org
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(a) (b)

Figure 1: (a) Part of the polygons representing the Arribes del Duero Natural Park in Spain
(orange) and the International Douro Natural Park in Portugal (green). Since the
border is defined as a river, the two datasets do not match perfectly (there are
gaps and overlaps). (b) The polygons after edge-matching has been successfully
performed.

other than this threshold, while keeping
the rest untouched. Most commercial GISs
implement the method (e.g. ArcGIS, FME,
GRASS and Radius Topology), and the
INSPIRE Directive is explicit about the use
of threshold [INSPIRE]:

It will be to each “Thematic Work-
ing Group” to define the appropriate
thresholds, if required, in a given data
product specification, for each case of
edge-matching.

2.1 Finding the appropriate
threshold

The main problem lies in finding an appro-
priate threshold value for a given dataset.
While in theory this value is linked to the
accuracy of a dataset, in practice users do
not always know how to translate the ac-
curacy into a value, and if they choose the
wrongvalue then their resulting datasetwill
not be properly edge-matched. In brief, for
a successful edge-matching based on snap-
ping, here are some rules:

1. Adjacent polygons should not be fur-
ther apart than this threshold along
any part of their common boundaries
(shown as the minimum threshold in
Figure 2(a)). Otherwise, gaps are not
able to be fixed.

2. Adjacent polygons should not overlap
each other in areas which are further
inwards than this threshold from their
common boundaries (shown as the
minimum threshold in Figure 2(b)).
Otherwise, overlaps are not able to be
fixed.

3. No vertices of a polygon should be
closer to each other than this thresh-
old, including non consecutive vertices
(shown as the maximum thresholds
in Figure 2). Otherwise, they might
be snapped together, creating repeated
vertices, disjoint regions, or various
topological problems.

4. No vertices of a polygon should be
closer than this threshold to anynon in-
cident edge. Otherwise, they might be
snapped together, creating disjoint re-
gions or various topological problems.

Furthermore, the threshold value is usu-
ally used for a complete dataset while the
sizes of the gaps and overlaps between poly-
gons might be different at different loca-
tions. What is worse is that sometimes such
a “one-size-fits-all threshold” does not even
exist (e.g. because point spacing might be in
some places smaller than the width of the
gaps and overlaps present); in Section 4 we
present one such dataset.
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Figure 2: Defining a threshold for vertex and edge snapping. The threshold to use should
be larger than the largest minimum distance between the matching boundaries,
and smaller than the minimum distance between vertices of a single polygon.

2.2 Snapping vertices

Even if the aforementioned conditions for a
threshold are frequently not met (or are not
checked beforehand), snapping is in prac-
tice still performed with a trial-and-error
tolerance value. Wehighlight in this section
the potential problems that snappingmight
create, i.e. the creation of invalid polygons
and the changes in the topology of existing
geometries.

Two examples are shown in Figures 3 and 4.

(a) Before snapping (b) After snapping

Figure 3: Spikes and punctures can be cre-
ated by snapping, since the bases
of these elongated forms (encir-
cled) might be narrower than the
threshold, but their lengths not.

While these examples prove that snapping
is not problem-free, it should be said that
commercial GIS packages often implement

(a) Before snapping (b) After snapping

Figure 4: Polygons can be split by snap-
ping, since some parts might be
narrower than the threshold (en-
circled). While this result does
not create an invalid result, it
can change the number of poly-
gons present and their topologi-
cal relations, and can therefore be
undesirable.

more complex snapping options (such as
point-to-edge, edge-to-edge, or using a refer-
ence dataset). These options can help solve
a problematic case, but can also complicate
it by changing the topology of the polygons.
One example is the post-processing opera-
tions to clean resulting polygons (e.g. dis-
posing of polygons with small areas, remov-
ing redundant lines, thresholds for mini-
mum angles, etc.) which might create new
gaps and overlaps themselves, requiring an
iterative cleaning process.
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Another problem is that snapping is an in-
tricate problem in itself, since there are
many possible criteria that can be followed
for both points and edges (e.g. points to
the closest line, points to the closest point,
points orthogonally to the closest line). Fig-
ure 5 illustrates one example where the re-

High resolution 
data

Low resolution 
data

Figure 5: Snapping to the closest line can
cause topologically invalid config-
urations. When two datasets of
differing levels of detail are joined
together by snapping the vertices
of the high resolution dataset to
the edges of the low resolution
one, a situation where the line re-
verses on itself is created.

sulting polygon is not valid anymore (and
thus cannot be processed with a GIS).

Finally, it is worth mentioning that al-
though the edge-matching of two or more
polygons could be done by snapping and
splitting polygons, it might require the use
of thresholds so large so as to have no physi-
cal basis, and result in polygons that are sub-
stantially different from the original data.

3 Our approach using a
constrained triangulation

Our approach to the edge-matching of poly-
gons uses a constrained triangulation (CT)
as a supporting structure because, as ex-
plained below, a CT permits us to fill the

whole spatial extent of polygons with tri-
angles, and then these allow us to identify
easily the gaps and overlaps between differ-
ent polygonal datasets. We use the idea of
“tagging” each triangle with the label of the
polygon it decomposes: gaps will have no
labels and regions where polygons overlaps
will have more than one label.

The workflow of our approach is illustrated
in Figure 6 and is as follows:

1. the CT of the input segments forming
the polygons is constructed;

2. each triangle in the CT is flagged with
the label of the polygon inside which it
is located (see Figure 6(b));

3. problems are detected by identifying
triangles with no label or more than
one label, and by verifying the connec-
tivity between the triangles;

4. gaps/overlaps are fixed locally with the
most appropriate tag (see Figure 6(c));

5. edge-matched polygons are returned in
a GIS format (e.g. a shapefile).

To construct the CT, tag the triangles, re-
pair the problems and recover polygons, we
use results we recently obtained for the val-
idation and the automatic repair of planar
partitions (such as the CORINE2000 land
cover dataset). In Arroyo Ohori [2010] and
Ledoux and Meijers [2010] we describe in
detail the algorithms used to construct the
CT of a set of polygons, to repair automat-
ically planar partitions and to recover the
polygons after the repair. We have modified
slightly the algorithms and code so that we
can perform the edge-matching of different
polygons. We discuss below the main ideas,
and we present in the next section some re-
sults.

Constrained triangulations. A con-
strained triangulation (CT) permits us
to decompose an object (a polygon) into
non-overlapping triangles, Figure 7 shows
an example. Notice that no edges of the
triangulation cross the constraints (the
boundaries of the polygon). It is known
that any polygon (also with holes) can
be triangulated without adding extra
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(a) (b)

(c) (d)

Figure 6: (a)Original dataset with two polygons. Notice the gaps (white) and the overlaps
(darker green). (b) The CT of the input polygons; white triangles have no label,
and red ones have> 1. (c) Triangles are re-tagged such that each triangle has one
and only one label. (d) The resulting edge-matched polygons.

Figure 7: (a) A polygon with 4 holes. (b)
The constrained triangulation of
the segments of this polygon.

vertices [de Berg et al., 2000; Shewchuk,
1997]. In our approach, the triangulation
is performed by constructing a CT of all
the segments representing the boundaries
(outer + inner) of each polygon. If two
polygons are adjacent by one edge 𝑒, then 𝑒
will be inserted twice. Doing this is usually

not a problem for triangulation libraries
because they ignore points and segments
at the same location (as is the case with the
solution we use, see Section 4). Likewise,
when edges are found to intersect, they
are split with a new vertex created at the
intersection point.

Tagging triangles. The labels are assigned
to the triangles by tagging the triangles
adjacent to the edges of each polygon,
and then visiting all the possible triangles
with graph-based algorithms (i.e. depth-
first search). See Arroyo Ohori [2010] for
the details.

Identifying problems: gaps and overlaps.
If the set of input polygons forms a pla-
nar partition, then all the triangles will be
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flagged with one and only one label. Prob-
lems (gaps and overlaps) are easily identi-
fied: all the triangles are visited and the
ones having less or more than one label are
returned.

Fixing problems: re-tagging triangles. Fix-
ing a problem simply involves re-tagging
triangles with an appropriate label. Ar-
royo Ohori [2010] proposes different repair
operations that can be used to successfully
fix gaps and overlaps. Four of them use tri-
angles as a base (i.e. the label assigned is
based on that of the 3 neighbouring trian-
gles), which is faster and modifies the area
of each input polygon the least. Twoof them
use regions of adjacent triangleswith equiv-
alent sets of tags (Figure 8), which is slower
but yields results that are expected when
edge-matching polygons.

overlapping region 

before after 

Figure 8: Regions are defined as adjacent
triangles with equivalent sets of
tags. In this example, the overlap-
ping region between the red and
blue polygons is repaired by the
tag present along the longest part
of the boundary surrounding the
region (red).

The most interesting repair operation for
edge-matching is the one in which a prior-
ity of labels is used to repair regions, i.e. in
case of gaps/overlaps the labels of adjacent
polygons are ordered according to a user-
defined priority, and the highest priority is
assigned to the problematic triangles. We
have adapted this operation so that the con-
cept of reference datasets for edge-matching
can be used. When a reference dataset is
used, all the other datasets (we call them
slaves) are snapped to it, and the reference
dataset is not modified. When using a pri-
ority list, that means:

• gaps should be filled with slave labels

• overlaps should be fixed with the label
of the master polygon.

Notice that in Figure 6(d) this technique
was applied, and that the reference dataset
(the green polygon) has not been modified.
Figure 9 shows the result of edge-matching
the polygons of Figure 6 with another crite-
rion.

The main advantage of this approach is that
the edge-matching can be performed with
a local criteria, instead of a global one (the
tolerance used is usually for the the whole
dataset). It is also an efficient algorithm
since only re-tagging triangles is involved
to repair gaps and overlaps (which is a local
operation).

Validationofresults. If each triangle in the
CT has one and only one label, then by def-
inition there are no gaps and/or overlaps
between triangles. Observe that triangles
not located “between” polygons are ignored;
they form the “universe”, you can see some
at the top-right of Figure 6(d) for instance.
The greatest benefit of using a tagged trian-
gulation for edge-matching polygons stems
from the fact that while modification op-
erations are performed, the validity of the
polygons is always kept, together with the
integrity of the data. This comes as a con-
trast to other methods, where care needs to
be taken to ensure that the (geometric or
topological) validity is not broken. For in-
stance, if a zerowidth corridor that joins two
regions is created, it should be detected and
removed.

4 Experiments

We have implemented the algorithm de-
scribed in this paper with the C++ program-
ming language, using external libraries for
some functionality: the OGR Simple Fea-
tures Library, which allows input and out-
put from a large variety of data formats
common in GIS, and CGAL which has sup-
port for many robust spatial data structures
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(a) (b)

Figure 9: (a) The same dataset as Figure 6(a). (b) Edge-matching performed with a repair
operation where the label assigned to a problematic region is the one of the ad-
jacent neighbour having the longest common boundary. Notice the differences
with Figure 6(d).

and the operations based on them, includ-
ing polygons and triangulations [Boisson-
nat et al., 2002]. The developed prototype
is open source and freely available2.

We have tested our implementation with
two datasets:

1. Figure 10(a): The border between Portu-
gal and Spain along one national park
is defined by a river. The Portuguese
and the Spanish datasets do not match,
see Figure 1 for one example at a larger
scale. The two polygons have together
about 12 000 points.

2. Figure 10(b): The NUTS boundaries
datasets of France and its neighbours.
For France, we used the GEOFLA®

dataset3, and for Belgium, Luxembourg,
Germany and Italy we used the dataset
fromUNEP/GRID-Geneva4. The larger-
scale examples fromFigures 6 and 9 are
with these datasets. The polygons have
together about 6 000 points.

As expected, we have been able to edge-
match successfully these datasets, i.e.
our output polygons were valid and no
gaps/overlaps were present. Because we use
an highly-optimised triangulation library,
2On the GDMC website: http://www.gdmc.nl
3Freely available from the website of the French IGN:
www.ign.fr

4Available at http://gcmd.nasa.gov/records/GCMD_
GNV00159.html

we could obtain results in about 0.3 s for
the France dataset, and about 1 s for the
Portugal-Spain dataset.

4.1 Comparisonwith other tools

As a comparison, we used FME5 and the
HUMBOLDT project’s Edge Matching Ser-
vice (EMS)6 to perform snapping.

FME could perform the matching with a
given tolerance in about the same time
(about 2 s), since it uses auxiliary data struc-
tures to speed up the process. EMS uses
a brute-force implementation, where all the
coordinates are compared with each other
for snapping (thus 12 000 times 12 000
comparisons for the Portugal-Spain dataset;
a quadratic behaviour), and took around
8 min to edge-match the Portugal-Spain
dataset. It should be pointed out here that
EMS is a Web-Processing Service (WPS) and
that this time includes the conversion to
GML and the uploading/downloading of
the datasets to a server (we could not eval-
uate how much of the time was spent for
these steps).

However, with both solutions, for both
datasets, we could not find an appropriate
tolerance with which valid geometries are
5www.safe.com
6http://community.esdi-humboldt.eu/projects/
show/ems
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(a) (b)

Figure 10: (a) Border region between Portugal (green) and Spain (orange). (b) NUTS re-
gions on the east of France (green), and some of its neighbouring countries
(blue is Belgium; orange is Luxembourg; purple is Germany; grey is Italy).

produced and no gaps/overlaps remain. We
applied a trial-and-error method, but as can
be seen from Figure 6(a), the size of gaps
and overlaps differ substantially. Some tol-
erance values could fix the gaps, but then
other problems were created at different lo-
cations in the dataset. One such problem
for the dataset Portugal-Spain is illustrated
in Figure 11. To fix the gaps/overlaps, a large

tolerance

(a) (b)

Figure 11: (a) Original dataset, with the tol-
erance used for snapping. (b)
Collapsing of part of an polygon.

enough tolerance was needed, but this tol-
erance was also creating topological prob-
lems. Notice in Figure 11(b) that the area
has been partially collapsed to a line be-
cause its width is smaller than the tolerance
used; using a smaller tolerance solves that
problem but creates others.

Since no snapping is used in the method we

propose, such a problem cannot occur.

5 Conclusions

We have proposed a new algorithm to per-
form the edge-matching of polygons andwe
have shown that in practice it is highly ef-
ficient (since it is based on a highly opti-
mised triangulator and only the tagging of
triangles is involved) and it avoids the pit-
falls of choosing the appropriate threshold
(if it even exists). Anyone who has tried to
find this threshold for a given dataset by us-
ing trial and errorwill recognise that our ap-
proach has great benefits.

However, it should be said that not every-
thing is perfect, as Figure 12 illustrates. If
two polygons do not touch or overlap, then
the area connected to the universe will not
be filled with labelled triangles and the re-
sulting polygonswill not bematched. These
will happen at the “top” and the “bottom”
of the edge-matching edge for two poly-
gons. We are looking for a solution to this
problem. One approach involves identify-
ing small triangles, and another involves
snapping vertices as a pre-processing step to
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Figure 12: Same dataset as Figure 11, edge-
matched with our approach.
When polygons do not touch or
overlaps, gaps can remain since
these are considered part of the
universe.

our approach (but since we use triangles af-
terwards, we should avoid the problematic
cases, e.g. topological errors).

We plan in the future to add more repair
functions, particularly one where we can
edge-match two polygons without the no-
tion of a master and a slave, i.e. the solution
is “in the middle”. Triangles can be used to
find the centreline of a region, as Bader and
Weibel [1998] showed. Wealsoplan tobuild
a WPS so that everyone can use our imple-
mentation.
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