MSc Geomatics thesis presentation

Validation and automatic repair of planar
partitions using a constrained triangulation
Ken Arroyo Ohori

Friday, 27 August 2010 at 10:00
Grote Vergaderzaal
OTB Research Institute
Jaffalaan 9, Delft

TUDelft

Representing thematic information

- Pierre Charles Dupin's 1819 map
- Subdividing the feature space of that theme
- Distinct visual representation for each class

Digital thematic maps

- CGIS, SYMAP (Late ‘60s)
- Polygons to represent boundaries
- Well suited for a computer

Why planar partitions?

- Simple constraints: no gaps, no overlaps, (no disjoint regions)
- Easy to answer questions:
- (Aggregation) What is the total area of the features of type A and B ?
- (Topology) Are features A and B adjacent?

CORINE E41N27

The problem

- Validate a planar partition
- If it's invalid, automatically repair it.

The problem

- Validate a planar partition
- If it's invalid, automatically repair it.

Why is it hard?

Errors in computer operations

Orientation test

Polygons with holes
Valid polygons I
\qquad （相
\square
\qquad
\qquad
\qquad
－

，Portugal border \square

 號 ，

 ．

\qquad

－

Validation process

- Rings:
- Closed, not self-intersecting, not zero area, correct winding, ...
- Polygons:
- Nested rings, connected interior, not zero area, ...
- Planar Partitions:
- No gaps, no overlaps, no disjoint regions...

CORINE E30N33

Polygon validation constraints

- ArcGIS: too short line segments, unclosed rings, self-intersections, incorrect ring ordering.
- JTS/GEOS: self-touching rings, zero area rings, zero area polygons, improperly nested rings, duplicate vertices, spikes and gores, touching parts, crossing rings.
- Oracle Spatial: polygon with fewer than 4 vertices, unclosed rings, selfintersections, touching rings, overlapping rings, points too close together, wrong orientation.

Problems are unavoidable

ArcGIS and the zero area polygon

Validation of planar partitions

- Nearly impossible without topology: finding gaps
- Creation of a planar graph based representation
- Plümer and Groger: no dangling edges, no zero-length edges, planarity, no holes, no self-intersections, no overlaps, connectivity.

Repair of planar partitions using snapping

Thresholds

Repair using snapping

- Extensively available: ArcGIS, FME, GRASS, Radius Topology
- Possibilities: point to point, point to line, line to line

Repair using snapping

Low resolution data

High resolution data

Clean-up required

After snapping:
 constraints for planar partition repair

- Radius Topology: share node, node-split-edge, edge-split-edge
- GRASS: break at intersections, remove duplicate line segments, remove dangling edges, remove bridges, remove vertices within a threshold of a line segment, remove too small areas, remove too small angles
- But still, no guarantees

Topological planar partition repair

- Use topological constraints instead
- Snapping can still be performed
- Available in ArcGIS: must not overlap, must not have gaps, must not overlap with, must not have dangles, must not have pseudonodes, must not self intersect

Topological repair in ArcGIS

Topological repair in ArcGIS

Manual editing of topology

The solution

- Repair individual polygons.
- Create a triangulation containing every edge of every polygon.
- Tag every triangle with the polygons it belongs to.
- Re-tag areas with multiple or no tags, according to predefined
 criteria.
- Reconstruct the polygons in the triangulation.

Triangulations

Triangulations
Polygons

The constrained Delaunay triangulation

- Delaunay triangulation: empty circle property, uniqueness
- Constrained edges

Repair an individual polygon

- Use the same techniques devised to repair planar partitions.
- Create a triangulation from the polygon.
- Iteratively define exterior and interior when passing a constrained edge.

- Reconstruct polygon.

Create triangulation

- Add every edge of every (now valid) polygon to the triangulation as a constrained edge.
- Track whenever constrained edges are split.

Tag triangulation

- Mark each triangle with the polygons that it belongs to.
- No tags = gap
- Multiple tags = overlap

Repair operations

- At the end, ensure that each triangle has exactly one tag.
- Some possible options:
- Assign triangle or region to the neighbour present on most sides.
- Assign triangle or region to the neighbour with the longest boundary.
- Assign region to the class with the highest priority.

Repair operations

Triangle with
longest boundary

Random region

Region with longest boundary

Polygon reconstruction

- Recursively create a chain of edges representing all boundaries (and some connecting segments).
- Cut where more than two edges join.
- Join small chains in the correct order to form rings.

The prototype

- C++ with CGAL and OGR
- Open source and freely available

00 ThesisFinal - Debugger Console

Triangles: 82661
Adding a new set of polygons to the triangulation...
File opened.
Name: /Volumes/Buffalo/corine/100KME40N32.shp
Type: ESRI Shapefile
Layers: 1
Layer[1]: 2081 polygons \{
string CODE_00
double
AREA
\}
(213) OB: Self intersecting.

Splitting ring (2169 nodes) at (4090897.81947201,3205131.85136284).
Created 2 rings.
Outer rings: 1 inner rings: 1
(295) OB: Self intersecting.

Splitting ring (171 nodes) at (4014338.28224871,3205959.57513961).. Created 2 rings
Outer rings: 1 inner rings: 1
(560) OB: Self intersecting.

Splitting ring (827 nodes) at (4006889.99296177,3214962.87908400).. Created 2 rings.
Outer rings: 1 inner rings: 1
(661) OB: Self intersecting.

Splitting ring (137 nodes) at (4052575.12529232,3220418.25137708).. Created 2 rings.
Outer rings: 1 inner rings: 1
(954) OB: Self intersecting.

Splitting ring (206 nodes) at (4041756.04611424,3231507.73413940)..
Created 2 rings.
Outer rings: 1 inner rings: 1
(983) OB: Self intersecting.

Splitting ring (135 nodes) at (4015515.72557781,3236851.22009638)..
Created 2 rings.
Outer rings: 1 inner rings: 1
(1219) OB: Self intersecting.

Splitting ring (186 nodes) at ($4028234.13326965,3246289.96980117$)..
Created 2 rings
Outer rings: 1 inner rings: 1
(1264) OB: Self intersecting.

Splitting ring (952 nodes) at (4041062.88515360,3236397.85638396).. Created 2 rings.

Debugging terminated.

Comparisons with other software

- Test polygons with specific problems (ArcGIS)
- Significant differences in interpretation

- Standards specify how to define a certain polygon, not how to interpret an existing one

Comparisons with other software

- Large "normal" data sets (ArcGIS, FME, GRASS)

Test	CT memory	time	ArcGIS memory	time	FME memory	time	memory	time
E41N27	124 MB	46 s	145 MB	1 m 3 s	158 MB	31 s	59 MB	3 m 09 s
4tiles	100 MB	3 m 25 s	113 MB	37 s	105 MB	31 s	49 MB	53 s
16tiles	1.51 GB	1 h 20 m	crashes	-	636 MB	15 m 48 s	crashes	-
Mexico	983 MB	18 m 53 s	216 MB	$>1 \mathrm{~d}$	264 MB	2 m 45 s	408 MB	11 m 38 s

- Good performance, considering that it does much more

Conclusions

- Planar partition validation and automatic repair with a constrained triangulation is theoretically simple, yet powerful.
- It keeps a valid topology throughout, without a complex set of rules to check every step of the way.
- Changes that are made to the triangulation have only a local effect.
- New repair operations, based on different criteria, can be easily implemented without breaking the validity of the planar partition.
- Snapping is possible, but not required.

Future work

- Optimisations for simpler polygons
- Improved algorithms for extracting polygons from a triangulation
- Eliminating memory limitations
- Improving the order of point insertions
- Extension to 3D
- Implementation in a database

Questions?

http://www.gdmc.nl/~ken/thesis.pdf

TUDelft
$\frac{\text { University of }}{\text { Technology }}$

