MSc Geomatics thesis presentation

Validation and automatic repair of planar partitions using a constrained triangulation

Ken Arroyo Ohori

Friday, 27 August 2010 at 10:00

Grote Vergaderzaal OTB Research Institute

Jaffalaan 9, Delft

Representing thematic information

- Pierre Charles Dupin's 1819 map
 - Subdividing the feature space of that theme
 - Distinct visual representation for each class

Digital thematic maps

- CGIS, SYMAP (Late '60s)
 - Polygons to represent boundaries
 - Well suited for a computer

CORINE E39N32

Planar partitions | CORINE 2000

Why planar partitions?

- Simple constraints: no gaps, no overlaps, (no disjoint regions)
- Easy to answer questions:
 - (Aggregation) What is the total area of the features of type A and B?
 - (Topology) Are features A and B adjacent?

The problem

- Validate a planar partition
- If it's invalid, **automatically** repair it.

Spain - Portugal border

The problem

- Validate a planar partition
- If it's invalid, **automatically** repair it.

Why is it hard?

Discrete and approximate representations

(24.0000000000005, 24.0000000000000517765)

Errors in computer operations

Orientation test

ESRI

Polygons with holes

Valid polygons

Validation process

- Rings:
 - Closed, not self-intersecting, not zero area, correct winding, ...
- Polygons:
 - Nested rings, connected interior, not zero area, ...
- Planar Partitions:
 - No gaps, no overlaps, no disjoint regions... CORINE E30N33

Polygon validation constraints

- ArcGIS: too short line segments, unclosed rings, self-intersections, incorrect ring ordering.
- JTS/GEOS: self-touching rings, zero area rings, zero area polygons, improperly nested rings, duplicate vertices, spikes and gores, touching parts, crossing rings.
- Oracle Spatial: polygon with fewer than 4 vertices, unclosed rings, selfintersections, touching rings, overlapping rings, points too close together, wrong orientation.

Q Untitled - ArcMap - ArcInfo		- D - X
Eile Edit View Bookmarks Insert Selection Tools Window Help		
	🔄 🛃 🔕 🗖 🐎 🎀 🛛 Spatial Analyst 👻 Layer: 🖉 🛫 💯 🛙	🖿 🛛 Editog 🕶 🖒 🖉 👻 Task: Create
Q Q II II (?) @ ← ⇒ P □ k 0 M 2 4 1 /	🗉 🗛 📄 Layer: 🗞 zero area 💽 🕐 🔆 💽 🤿 式 🗍 Topology:	- 16 13 日 13
Layers G:\Users\Administrator\Desk G:\Users\Administrator\Desk G: Zero area TestTable		<u>^</u>
	Attributes of testTable OID CLASS FEATURE_ID	
Display Source Selection Disconnected Editing Discributed Geodatabas Domains Domains Seature Class	Record: 14 0) > Show: All Selected Records (0 out of 0 Select	ted) Options -
Add XY Coordinate Adjust 3D Z Check Geometry Copy Features Delete Features Feature Envelope to Feature To Line The feature To Line The feature To Line		
Drawing ▼ ト ○ @ □ ▼ A ▼ △ @ And	• 10 • В І Ц <u>А</u> • <u>А</u> • <u>↓</u> • • •	
	-0.011 0.949 De	cimal Degrees

Problems are unavoidable

ArcGIS and the zero area polygon

Validation of planar partitions

- Nearly impossible without topology: finding gaps
- Creation of a planar graph based representation
- Plümer and Groger: no dangling edges, no zero-length edges, planarity, no holes, no self-intersections, no overlaps, connectivity.

Andorra in CORINE

Repair of planar partitions using snapping

Thresholds

Repair using snapping

- Extensively available: ArcGIS, FME, GRASS, Radius Topology
- Possibilities: point to point, point to line, line to line

Repair using snapping

Not a complete solution

Repair using snapping

Clean-up required

After snapping: constraints for planar partition repair

- Radius Topology: share node, node-split-edge, edge-split-edge
- GRASS: break at intersections, remove duplicate line segments, remove dangling edges, remove bridges, remove vertices within a threshold of a line segment, remove too small areas, remove too small angles

• But still, no guarantees

- 0 ×

Topological planar partition repair

- Use topological constraints instead
- Snapping can still be performed
- Available in ArcGIS: must not overlap, must not have gaps, must not overlap with, must not have dangles, must not have pseudonodes, must not self intersect

ar	Spatial Analyst		- 꺪 🖿 🛛 Editor 🗸	► Ø -	Task: Create New Fea
nts		<u>-</u> ,은 500 <u>-</u>	ogy: corine_Topology	<u> </u>	
t not aps, ust not ave self				7	
CORINE F41N27	ð • <u>.4</u> • <u>•</u> •)

Untitled - ArcMap - ArcInfo							- 0 ×
Eile Edit View Bookmarks Inse	ert Selection Iools V	(indow <u>H</u> elp					
0 📽 🖬 🚭 👗 🛍 🚳	X 🗠 🗠 🔶 🗓).71	• 🥵 🐁 🗈	🐆 🍋 Spatial Analyst 🕶	Layer:	🗾 🕅 🖿 Editor 🕶	🕨 🖋 👻 Task: Create New Fe
Q Q II II (?) 🧶 🖛 🗏	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* 41月日	Layer: 🔯 corine_T	opology 💌 🛈 🔅	€ 🚽 👷 🖘		
Layers Corine_Topology Area Errors Line Errors Point Errors	Topology Topology: corine	_Topology _					
8 🖬 🛃 🛃					/		
Show: CErrors from all ru Search Now	ules>	Exceptions	1error Visble Extent on				
Rule Type	Class 1	Class 2	Shape				
Cartography Tools	-						
 Conversion Tools Data Interoperability Tools 	8				Merge		2 ×
Data Management Tools Geocoding Tools					Select the feature with which the	error wil be meroed.	
Geostatistical Analyst Tool Geostatistical Analyst Tool Go Linear Referencing Tools Go Mobile Tools Go Multidimension Tools	s				e41n27 - 5101 e41n27 - 5102		OK
One Samples			/				
Schematics Tools			/				
Go Spatial Analyst Tools			/		<u> </u>		
 Spatial Statistics Tools Tracking Analyst Tools 			/				
Favorites Index Search Results			1	/			•
Drawing - k 🔿 🖓 🗖 -	A • 🖂 🖉 Aral		- 10 - B / U	A	•		
erges the error into one of the fea	tures.					4129173	.229 2757105.197 Meters

Topological repair in ArcGIS

Manual editing of topology

Area Errors	Topology		Topology Properties		8
Line Errors Point Errors	Topology: corine_Topology] <mark>- 20 123 - H III III III III III III III III III</mark>	General Feature Classes Rules Errors Generate Summary	Бфа	ort To File
e41n27			Rule	Errors	Exceptions
or Inspector		1error	Must Be Larger Than Cluster Tolerance Must Not Have Gaps	0	0
Search Now	Class 1 Class 2	Visble Extent on Shape	e41n27 Must Not Overlap	5384	0
Must Not Overlap	e41n27	Polygon	e41n27	5508	0
			TIL	10000	
Cartography Tools					
Conversion Tools Data Interoperability Tools Data Management Tools Geocoding Tools Geostatistical Analyst Too Linear Referencing Tools Mobile Tools	łs				

Topological repair in ArcGIS

Manual editing of topology

The solution

- Repair individual polygons.
- Create a triangulation containing every edge of every polygon.
- Tag every triangle with the polygons it belongs to.
- Re-tag areas with multiple or no tags, according to predefined criteria.
- Reconstruct the polygons in the triangulation.

Triangulations

Polygons

The constrained Delaunay triangulation

- Delaunay triangulation: empty circle property, uniqueness
- Constrained edges

Repair an individual polygon

- Use the same techniques devised to repair planar partitions.
- Create a triangulation from the polygon.
- Iteratively define exterior and interior when passing a constrained edge.
- Reconstruct polygon.

Create triangulation

- Add every edge of every (now valid) polygon to the triangulation as a constrained edge.
- Track whenever constrained edges are split.

CORINE E39N32

Tag triangulation

- Mark each triangle with the polygons that it belongs to.
- No tags = gap
- Multiple tags = overlap

Repair operations

- At the end, ensure that each triangle has exactly one tag.
- Some possible options:
 - Assign triangle or region to the neighbour present on most sides.
 - Assign triangle or region to the neighbour with the longest boundary.
 - Assign region to the class with the highest priority.

Repair operations

Spain - Portugal border

Triangle with longest boundary

Random region

Region with longest boundary

Polygon reconstruction

- Recursively create a chain of edges representing all boundaries (and some connecting segments).
- Cut where more than two edges join.
- Join small chains in the correct order to form rings.

CORINE E40N31 pol. 1752

The prototype

- C++ with CGAL and OGR
- Open source and freely available

0 0	example.cpp	\odot
example.cpp		
16:37 📶 int main () 🗧	+	
<pre>#include "PlanarPa</pre>	artition.h"	8
<pre>int main (int argo PlanarPartitio // Holland COR pp.addToTriang pp.addToTriang</pre>	<pre>c, char * const argv[]) { on pp; RINE tiles gulation("100KME39N32.shp"); gulation("100KME40N32.shp");</pre>	
pp.addToTriang pp.addToTriang pp.tagTriangle pp.insertTrian pp.repairByLon pp.repairRegio	<pre>julation("100KME39N33.shp"); julation("100KME40N33.shp"); es(); ngulationInfo(std::cout, pp.triangulation); ngestBoundary(false); onsByRandomNeighbour(false);</pre>	
pp.insertTrian pp.matchSchema pp.reconstruct pp.exportPolyg return 0;	<pre>igulationInfo(std::cout, pp.triangulation); ita(); Polygons(); gons("4tiles.shp", true);</pre>	
()		Ŧ
C++ \$ Spaces	s (4) ▼ LF ▼ Western (Mac OS Roman) 🛟	65w

Comparisons with other software

- Test polygons with specific problems (ArcGIS)
 - Significant differences in interpretation
 - Standards specify how to define a certain polygon, not how to interpret an existing one

Comparisons with other software

• Large "normal" data sets (ArcGIS, FME, GRASS)

Test	СТ		ArcGIS		FME		GRASS	
	memory	time	memory	time	memory	time	memory	time
E41N27	124 MB	46s	145 MB	1m3s	158 MB	31s	59 MB	3m09s
4tiles	100 MB	3m25s	113 MB	37s	105 MB	31s	49 MB	53s
16tiles	1.51 GB	1h20m	crashes	_	636 MB	15m48s	crashes	_
Mexico	983 MB	18m53s	216 MB	>1d	264 MB	2m45s	408 MB	11m38s

• Good performance, considering that it does much more

Conclusions

- Planar partition validation and automatic repair with a constrained triangulation is theoretically simple, yet powerful.
- It keeps a valid topology throughout, without a complex set of rules to check every step of the way.
- Changes that are made to the triangulation have only a local effect.
- New repair operations, based on different criteria, can be easily implemented without breaking the validity of the planar partition.
- Snapping is possible, but not required.

Future work

- Optimisations for simpler polygons
- Improved algorithms for extracting polygons from a triangulation
- Eliminating memory limitations
- Improving the order of point insertions
- Extension to 3D
- Implementation in a database

Questions?

http://www.gdmc.nl/~ken/thesis.pdf

MSc thesis in Geomatics

Validation and automatic repair of planar partitions using a constrained triangulation

Ken Arroyo Ohori

August 2010

