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Abstract

Planar partitions (subdivisions of the plane into polygonal areas) constitute one of the
most important data representations in GIS. ey are used tomodel concepts as varied
as land use, administrative units, natural features and cadastral parcels, among many
others.

However, since polygons are oen stored separately, different errors and incon-
sistencies are introduced during their creation, manipulation (both manual and auto-
matic) and exchange. ese come in the form of invalid polygons, gaps, overlaps and
disconnected polygons, which severely hampers their use in other soware. Existing
approaches to solve this problem usually involve polygon repair using a list of con-
straints, and complex planar partition repair operations performed on a planar graph.
However, these have many shortcomings in terms of complexity, numerical robustness
and difficulty of implementation. Moreover, they leave many invalid cases untouched.

To solve this problem, a novel method to validate and automatically repair planar
partitions has been developed. It uses a constrained triangulation of the polygons as
a base, which being by definition a planar partition, means that only relatively sim-
ple operations are needed to ensure that the output becomes valid. Point locations are
maintained throughout the process, while fully automatic repair is possible using cus-
tomisable criteria. is approach is also extensible to individual polygons, is capable of
handling a larger variety of cases and has good performance compared to existing alter-
natives; all of this with numerical robustness and maintaining topological consistency
throughout.

In order to analyse, test and improve the developed algorithms, and encourage fur-
ther development, a fast and efficient implementation has been written in C++, which
has been tested with several large data sets and compared with other available soware,
regarding both performance and functionality. is prototype is able to successfully re-
pair planar partitions of more than 100,000 polygons. It is also open source and freely
available on the GDMC website (http://www.gdmc.nl/).
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C

1
Introduction

Planar partitions constitute one of the most important data representations in GIS,
and are extensively used as a base for other operations. However, since polygons are
oen stored independently, various errors are introduced during their creation, ma-
nipulation and exchange. is creates many problems for algorithms that rely on valid
planar partitions, and can cause them to fail or give erroneous results, oen without
any warning to the user.

Existing approaches to solve this usually involve polygon repair using a list of con-
straints, and complex planar partition repair operations performed on a planar graph.
However, these have many shortcomings in terms of complexity, numerical robustness
and difficulty of implementation. Moreover, they leave many invalid cases untouched.

To solve this problem, a novel method to validate and automatically repair planar
partitions has been developed. It uses a constrained triangulation of the polygons as
a base, which being by definition a planar partition, means that only relatively sim-
ple operations are needed to ensure that the output becomes valid. Point locations are
maintained throughout the process, while fully automatic repair is possible using cus-
tomisable criteria. is approach is also extensible to individual polygons, is capable of
handling a larger variety of cases and has good performance compared to existing alter-
natives; all of this with numerical robustness and maintaining topological consistency
throughout.

is chapter starts by giving a brief history and motivation behind the problem in
Section 1.1. Aerwards, the objectives of this thesis research are discussed in Section
1.2. e scope of the thesis is then summarised in Section 1.3. Finally, an outline of the
organisation of this document is covered in Section 1.4.

1



. I

1.1 M

Geographic Information Systems (GIS) have gone a long way since their inception in
the late 1960s [Coppock and Rhind, 1991]. From their origins in map making and
analysis, modern systems dramatically increase the amount of information that can be
handled and the variety of operations that may be performed on a map.

However, despite ever increasing functionality and sophistication, many of the rep-
resentations and techniques that originated in cartography, and were back then intro-
duced in digital form, still conform the basis of modern GIS. One prime example is
the use of thematic maps where areas are patterned according to a set of criteria, so
that each area with the same pattern is considered to have certain characteristics¹ (see
Figure 1.1). ese types of maps were already supported in the earliest systems, like the
Synagraphic Mapping Technique (SYMAP) and the Canada Geographic Information
System (CGIS) [Tomlinson, 1988].

In analog (hard copy) versions of these maps, the boundaries between different ar-
eas were simply the hand drawn lines made by a cartographer. Later on, when digital
versions were implemented in computer programs, polygons became the base repre-
sentation to delimit these areas [Peucker and Chrisman, 1975], since they have the ad-
vantage of beingwell suited for computer based storage, processing anddisplay [Morten-
son, 1999]. ese maps, known as planar partitions or polygonal coverages, are thus a
central concept in GIS.

A planar partition, in a more formal definition, is a tessellation (subdivision) of a
region of the plane² into a set of areas, without any gaps or overlaps; and is a structure
that is not only used in GIS, but in computer graphics and finite element analysis as
well, among other fields. Figure 1.2 shows some examples of planar partitions used in
GIS.

In a strict sense, a planar partition comprises a single joint region on the plane,
without any gaps or overlaps. However, in real-life data sets, there might be several
disjoint regions, while some holes could be allowed. For instance, in CORINE 2000 (a
European land cover data set which is defined as a planar partition), islands are valid
disjoint regions, while some areas without coverage (e.g. parts of Andorra, Switzerland
andKosovo) are surrounded by areaswith coverage. e regions that should be covered
in a certain data set are known as its domain.

Planar partitions are not only used independently, but are also very common as a
base for other operations, since their properties simplify many calculations and dimin-
ish the number of conditions that have to be checked for in an algorithm. For instance,
since we know that there are no gaps or overlaps, the total area of a certain type of
features is simply the sum of the area of all polygons of that type. However, if these
features are overlapping, the area would be overestimated, since some regions would
be counted multiple times.

¹Such as choropleth (numerical data mapped to a colour scale), isarithmic (contour maps) and dasy-
metric (homogenous aggregated regions) maps.

²is concept is extensible to higher dimensions, in which planes (or hyperplanes) divide space into
regions. However, this thesis deals with the 2D case only.
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1.1. Motivation

(a) Pierre Charles Dupin created the first choroplethmap already
in 1819, representing the distribution of illiteracy in France at the
time. From Dupin [1826] through Friendly and Dennis [2001].

(b) In 1964, SYMAP was already able to generate digital choro-
pleth maps from spatial statistical data, which were displayed
with a line printer [Chrisman, 1988]. roughFriendly andDen-
nis [2001].

Figure 1.1: Choropleth maps were already commonplace for the display of thematic
information long before the advent of computers, and a digital form of them appeared
early in GIS history.

3



. I

(a) A choropleth map from the area surrounding Quebec City in
Canada, where every subdivision represents an area with a cer-
tain land cover type. Made from GeoBase data.

(b) A topographic map from Del. Polygons show land use, in-
frastructures and relief. From Top10NL.

(c) A soil map from central Mexico. Each polygon is a region
with approximately homogenous soil composition. Generated
from INEGI data.

Figure 1.2: Different examples of the use of planar partitions in GIS.
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1.1. Motivation

Algorithms based on planar partitions assume that these are valid, and when an
invalid planar partition is given as input, soware will likely fail or give an incorrect
output, oen without any warning to the user. For example, if we need to know the
length of the border between two countries, an algorithm will fail if the two polygons
representing them are separated by a small distance. is distance might be too small
to be noticed by a user working with the data when viewing it at a normal zoom level,
and therefore pass undetected [Laurini and Milleret-Raffort, 1994].

For a planar partition to be considered valid, its component polygons should be
valid to begin with. Having this in mind, several standards to define what exactly is a
valid polygon have been created, with the ISO 19107 [ISO, 2003] and the OGC Simple
Features Specification [OGC, 2006] being heavily promoted by standardisation bodies,
and together with the ESRI Shapefile specification, they have become predominant.
Still, these are not only incompatible with each other, but individual implementations
for a single standard yield significantly different results [van Oosterom et al., 2003; van
Oosterom et al., 2004], creating a need to agree on a polygon definition, interpretation
and a few more rules beforehand (e.g. tolerance values) before being able to establish
what is valid in a certain context. Based on such rules, some appropriate validation and
repair operations on a single polygon can be defined.

Once polygons themselves are deemed to be valid, it is necessary to consider some
additional requirements for a valid planar partition. Namely, that its component poly-
gons should be non-overlapping and cover the entire domain, which implies that they
should be connected (unless they were originally disjoint) and that their union should
be equal to the original undivided polygon (that defined the complete region in the
first place). Importantly, several of the polygons have holes, which should be filled with
other polygons. ese correspond to physical features, such as enclaves and exclaves,
islands or lakes. Recursively, it is possible to have polygons with holes within polygons
with holes and so on iteratively, which can be very complex topologically and hard to
repair (see Figure 1.3), since errors create much more ambiguous situations where the
original intent behind the data is harder to discern. For instance, consider if a hole of
a polygon is found outside its outer boundary, in the interior of a different polygon. It
could be that the hole is in the wrong place, that it belongs to the other polygon, or that
it was the outer boundary of another piece of a multi polygon, among other feasible
options.

In practice, the geometry of the polygons in a planar partition is oen stored in-
dependently, so that the shared boundaries of adjacent polygons are stored in each of
them, and also have no explicit topological information, such as telling us the neigh-
bours of a given polygon. is is true for many land cover data sets, like CORINE and
the Mexican and Canadian land cover data. ere is always a trade-off in the storage
of more or less topological information, as discussed in van Oosterom et al. [2002].

Meanwhile, while other data sets do have topological information, it is sometimes
wrong or not enforced in their geometry. is leads to consistency problems being
introduced, both fromhuman error [Gold et al., 1996] (e.g. shiing a polygon by hand),
or from computer inherent problems coming from floating-point arithmetic or limited
precision [Schirra, 1997]. Two related examples from the CORINE data set are shown
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Figure 1.3: A selection of the largest polygon in the CORINE 2000 data set (in yellow).
It consists of over 77000 vertices and has more than 500 holes.

in Figure 1.4.
is situation is the opposite to what is usually desired for computational geom-

etry algorithms, which are designed for a machine model with exact real arithmetic
[Kettner et al., 2007], and assume valid and consistent input data, which is of particu-
lar relevance when generating topological information or incorporating data sets from
different sources.

1.2 O

Considering that planar partitions are extensively used, and that the algorithms that
use them need to start with valid planar partitions, there is a need for good tools and
algorithms to validate and repair them. Such tools are a crucial part in the workflow of
GIS users, since as ESRI states: “the onus is on the data’s user to verify that it contains
features with valid geometries before using it” [ESRI, 2009a]. In other words, users
should not readily assume that the data given to them is valid. Aer all, their results
depend on it.

Additionally, since planar partition data sets can be very large, sometimes consist-
ing of hundreds of thousands of polygons, each of them with hundreds of vertices, this
validation and repair process should be done in asmuch an automatedmanner as possi-
ble. However, existing solutions for this problemusually work only in a semi-automatic
way, and are based on enforcing geometric and topological correctness in separate and
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1.2. Objectives

10 cm

CORINE E41N27

(a) A polygon appears to be have beenman-
ually shied, creating a gap with its neigh-
bours.

0.3 mm

CORINE E39N33 CORINE E40N33

CORINE E39N32 CORINE E40N32

(b) In a data set split into rectangular tiles,
the area where four tiles join shows that
they do not match properly.

Figure 1.4: Different errors present in the CORINE 2000 data set.

weakly linked processes. ese require the construction of a graph-based represen-
tation of the polygons³, upon which a set of axiomatised validation rules are applied
[Plümer and Gröger, 1996, 1997], which must combine the geometric and topologi-
cal aspects. is introduces several difficulties and limitations, which are discussed in
Chapter 3.

However, based on the preliminary work of Ledoux and Meijers [2010], there are
advantages in using a constrained triangulation. is benefits from simpler algorithms
anddata structures and simpler handling of holes/islands. Also, degenerate cases should
be easier to deal with, and there may be additional advantages in using a constrained
triangulation for repair as well. is will be discussed in Section 2.6.

e main objective of this thesis is therefore to answer the following research ques-
tion:

“What benefits does using a constrained triangulation bring for planar partition vali-
dation and fully automated repair?”

To accomplish this, new algorithms to validate and automatically repair planar par-
titions conforming to the Simple Features paradigm will be developed. ese will use a
constrained triangulation of a set of polygons as a base (which is by definition a planar
partition), together with relatively simple operations to ensure its validity throughout

³Something that is not easy to do robustly, since there aremany degenerate cases to take into account.
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the process. e beneficial properties of planar partitions will be used to achieve a good
solution.

To analyse, test and improve the algorithms, and encourage further development, a
fast implementation is to be written in C++, using external libraries for some function-
ality⁴. is should be extensively tested, which is possible with the excellent availability
of freely available data sets, such as the Coordination of Information on the Environ-
ment (CORINE) Land Cover from the European Environmental Agency.

Additionally, the capabilities and performance of this approach should be com-
paredwith existing solutions, as described in the following section, both using purpose-
made test data showing specific problems to be tackled, and with large general purpose
data sets. e former are meant to see if the soware is able to distinguish and handle
each case appropriately, while the latter is a stress test to assess performance character-
istics.

As mentioned previously, there is a need for validation and automatic repair tools
for planar partitions. In this context, the development and analysis of such a tool in GIS
research can be seen as toolmaking, where end users can only benefit from the engineer-
ing of better tools [Wright et al., 1997], especially when it concerns a representation as
prevalent as planar partitions.

1.3 S

Because of time constraints and design considerations⁵ that have to be made, the scope
for the algorithms and soware can be summarised as follows:

Input polygons Accept the input of individual (multi) polygons in the same coordinate
system, without making any assumptions about compliance of the data to any
particular standard (e.g. modelling of holes, polygon winding rules). is had to
be decided based on the fact that most data sets tested have invalid polygons.

Integrity of Data Points shouldnot bemovedduring processing, andunnecessary points
should not be created. In this manner, points can be exactly the same as in the
input (see Section 2.1).

Numerical Robustness Care should be taken not to use operations whose result can
change due to numerical inaccuracies in floating point arithmetic. is is dis-
cussed further in Section 2.2.

Repair Algorithms Simple and generic repair functions. At the very least, repair op-
erations based on boundary length, number of neighbours and priority classes
should be implemented. Also, there should be a function able to always repair
the planar partition, no matter the circumstances.

⁴OGR for input and output, and CGAL for geometric operations.
⁵e.g. increased processing time vs. increased memory usage
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1.4. Structure Overview

Output polygons Two types of output are expected: valid polygons according to the
Simple Features specification (for geometry only) and aWinged Edge data struc-
ture (for geometry and topology) [Baumgart, 1974].

Meanwhile, testing and comparisons have been done with the main soware tools
available to me: FME, Oracle and Radius Topology⁶, ArcGIS, GRASS, QGIS and JTS
/ GEOS⁷. However, since these range from general purpose GIS to very specific tools
for spatial data consistency, their use and approaches are sometimes not directly com-
parable, and their specific strengths with regards to planar partition validation and
repair vary. Due to this, representative examples are emphasised throughout this the-
sis, while the time spent on each tool reflects the areas in which it exhibits the most
potential within the topic. Additional information regarding the approaches of these
tools is found in Chapter 3, while testing is in Chapter 5.

1.4 S O

e structure of the thesis is as follows:

• Chapter 2 introduces the reader to the Background Information and eory be-
hind the topic, both to put the work in context and to give enough information
to understand the decisions made. It covers various computational geometry
subjects, while pointing to specific problems which are relevant to this thesis.

• Chapter 3 covers the State of the Art in Planar Partition Validation and Repair,
grouping the most commonly used approaches of currently used soware by
their approach. Benefits and drawbacks with respect to geometry and topology
are pointed out as well.

• Chapter 4 deals with Using a Constrained Triangulation for Planar Partition Val-
idation and Repair, the main topic of this thesis. ere, the entire process of
validation and repair which was developed is explained, together with the most
important issues that arise, both in theory and implementation. Examples from
the developed prototype are used to clarify the method, where necessary.

• Chapter 5 covers Implementation, Experiments and Discussion, describing the im-
plementation of the developed prototype, including the main invalid polygon
and planar partition configurations and how they are handled. Later, there are
comparisons to analyse how the developed algorithms compare to existing ap-
proaches.

⁶Radius Topology builds on the Oracle database, and their functionalities should therefore be com-
pared together. Oracle provides tools for individual polygon validation and repair, while Radius Topology
introduces topological data, which is useful for planar partitions. However, Oracle also has its own topol-
ogy solution with Oracle Topology.

⁷Which is used in GRASS, FME, PostGIS, and MapServer, among others. GRASS and FME are anal-
ysed separately, since they provide additional functionality than that provided by JTS and GEOS.
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• Chapter 6 includes Conclusions, Recommendations and Future Work.

Additionally, four appendices supplement the body of the thesis. ese are:

• Appendix A explains the reason behind some Design Considerations and Imple-
mentation Checks, including algorithms which were deemed too low level to be
included in the main body of the thesis. All important data structures used are
also discussed.

• Appendix B shows Completeness and Correctness of Planar Partitions Repair, sum-
marising how each possible invalid configuration is identified and dealt with. It
also includes the handling of degenerate cases, which is crucial in the implemen-
tation, but do not contribute to the understanding of the algorithms.

• Appendix C gives a brief description of the Data Sets Used, which should help
with a better understanding of the examples presented.

10



C

2
Background Information and
Theory

Whether spatial information is a special kind of data is a very contested and long stand-
ing point of debate for people in computer graphics, GIS, robotics, computer vision,
and other fields where computational geometry is a main concern [Anselin, 1989].
While all fields have their own very specific needs and concerns; specially designed
data structures and algorithms, indexing schemes and the duality between geometric
and topological data all make a strong point that it just might be.

Nevertheless, it is a fact that computers are one-dimensional processing machines
to a large degree¹, requiring many provisions in order to deal with spatial information
efficiently. is, together with the large volumes of data to be processed makes good
algorithms in spatial data processing crucial to be able to manage even very simple
spatial operations.

For the understanding of the issues involved in planar partition validation and re-
pair, several computational geometry related topics are explained within this chapter.
ese are treated in increasing abstraction, from low level to high level, which should
help to emphasise how much low level details still influence the general process in ge-
ometric algorithms.

Section 2.1 therefore starts with an explanation of how geometric features (e.g.
polygons) are represented in a computer, which introduces several practical considera-
tions, such as storage, computing time andmemory consumption. Aerwards, Section
2.2 discusses how robustness issues affect geometric operations due to the finite preci-
sion inherent in computers. Section 2.3 then deals with the similarities and differences
in polygon definitions, and how using different definitions can bring certain difficul-
ties. Later on, Section 2.4 introduces the related problem of data conflation, where
separate data sets are integrated. Aer this, and expanding on the already covered
topics, planar partitions are covered in Section 2.5, including their relevant properties

¹For instance, with regards to storage, memory addressing and instruction execution.

11



. B I  T

to this thesis. Finally, Section 2.6 progressively introduces the main types of triangu-
lations and the triangulation related concepts necessary to the understanding of the
algorithms described in this document.

2.1 C R  G F

e notion of geometry is central to the understanding of the properties of space, in-
cluding the size, shape and placement of objects within it. Additionally, together with
the use of coordinates, objects are able to be represented analytically².

In this manner, points in Euclidean space³ are able to be represented uniquely as
an ordered tuple of numbers (a0, a1, . . . , an), where each term refers to the distance,
from the origin of a predefined reference frame to the point, in the direction of a certain
axis. For the context of this thesis these are to be restricted to two-dimensions and be
stored with limited precision (i.e. assigned only pre-defined discrete values), as is most
common in digital environments, which has important consequences in terms of the
operations that are allowed (see Section 2.2).

Similarly, lines and polygons are to be stored as a sequence of points, where each
point represents a vertex, which are joined by straight line segments⁴ [Preparata and
Shamos, 1985]. Note that this entails a certain ordering for the vertices of a polygon,
as seen on Figure 2.1. In conjunction with their coordinates, points, lines and poly-
gons also contain ancillary information related to them, which together are known as
features. One example use of this paradigm is the so-called spaghetti data structure
[Egenhofer and Herring, 1991], which is shown in Figure 2.2.

Expanding on this representation, the Simple Features specification defines poly-
gons with holes by one exterior boundary and zero or more interior boundaries, to-
gether with some geometric and topological constraints [OGC, 2006] (further dis-
cussed in Section 2.3).

However, one might consider what happens when a planar partition has to be
stored in this manner. e coordinates of all points (except for possibly the ones ad-
jacent to the exterior) have to be stored several times, one for each polygon passing
through that point, together with all accompanying information related to them. is
is not only inefficient storage-wise, but also having several unrelated points at the same
location means that changes might be applied inconsistently. A shied polygon, as the
one shown previously in Figure 1.4a, is a possible result.

A different problem caused by storing each polygon independently is the lack of
information showing relations between polygons (topology). For instance, to know all
polygons that are adjacent to a certain one, it might even be necessary to check all the
coordinates of every polygon that is stored (without any spatial indexing).

²Referring to classical analytic geometry, not algebraic geometry.
³Other types of space (e.g. set-based) are also possible, but are not particularly relevant within the

scope of this thesis [see Worboys and Duckham, 2004, chap. 3].
⁴More generalised versions of a polygon are also possible, allowing for curves instead of only straight

line segments. However, these are usually known as geometric figures or shapes, not polygons.
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2.1. Computer Representation of Geometric Features

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

(x6, y6)

Figure 2.1: A polygon is represented by an ordered sequence of points, each of them
defined by their coordinates.

(x3, y3)
(x2, y2)

(x1, y1)

(x4, y4)

(x5, y5)

(x6, y6)

(x7, y7)(x8, y8)

(x9, y9)

(x10, y10)

(x11, y11)

(x12, y12)

Blue : (x1, y1), (x2, y2), (x3, y3), (x4, y4),

(x12, y12), (x11, y11), (x9, y9), (x10, y10)

Green : (x7, y7), (x8, y8), (x9, y9), (x11, y11)

Red : (x4, y4), (x5, y5), (x6, y6), (x7, y7),

(x11, y11), (x12, y12)

Figure 2.2: In the spaghetti data structure, polygons are represented as a closed loops,
each of them being a list of points.
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To have fast access to these types of relations, topological data structures might
be used. In these, additional information, such as adjacencies, ordering and connec-
tivity are stored. Examples include the Node-Arc-Area (NAA) (also known as Node-
Arc-Polygon) [Laurini and ompson, 1992] and Winged Edge [Baumgart, 1974] data
structures. e latter is shown in Figure 2.3.

Topology has different meanings in different fields of study. However, in this con-
text, it is the branch of geometry concernedwith properties that remain invariant under
topological transformations or homeomorphisms, which are continuous functions with a
continuous inverse function as well. ese can be equivalent to deformations of a rub-
ber sheet, in which stretching and contracting space is valid, but tearing or folding is
not.

Similarly, topological information in computational geometry refers to the rela-
tions that are kept under these conditions. Some examples, which were used during
this thesis include: adjacencies between faces, ordering of edges incident to a vertex,
orientation of rings and polygons, sets of triangles inside and outside a set of polygons,
among others. ese are specially useful, since theymostly avoid numerical robustness
problems⁵, which are discussed in the next section.

Start node

End node

Left face

Right face

Left CCW
edge

Left CW
edge

Right CCW
edge

Right CW
edge

Figure 2.3: e Winged Edge data structure and the spatial relationships associated
with it. In the figure, they are defined with respect to the thick edge.

⁵Not completely, since points can be moved in a way that breaks these conditions (e.g. a point that
moves from one side of a line to the opposite one). However, numerical robustness problems are much
easier to avoid.
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2.2. Robustness in Geometric Operations

2.2 R  G O

In the previous section, it was mentioned that points are stored with limited precision.
is is a necessary consequence of having a digital representation of numbers, which
allows points to be only at intersections of a grid, which is evenly spaced in the case of
integers, but unevenly in the case of floating-point numbers⁶.

(a) Intersections in a 7×7 gridwith constant
spacing

(b) Intersections in a 7× 7 grid with chang-
ing spacing

Figure 2.4: When computing intersections of randomly generated line segments, in-
tersections in a grid with growing spacing have a much lower likelihood of having an
exact representable value (green discs), except for when they are at end-points of both
lines (red circles). is means that if segments have to be split, their component parts
most likely become non collinear.

Floating-point numbers were devised in order to represent a much larger range of
numbers than it would be possible otherwise. However, in order to achieve this, it uses
a flexible representation of the form:

±d0.d1d2 . . . dp−1 × βe

where d is called the significand, represented by p digits; β is a fixed pre-defined number
(generally 2 or 10); and e is the exponent. For instance, for double precision numbers
in the widely used IEEE 754 standard, one bit is used to store the sign, 52 for the sig-
nificand and 11 for the exponent. is is the representation used in ESRI Shapefiles.

ere are a few important consequences of this representation. First of all, the
density of numbers that are able to be represented is highest close to zero, and declines
as one gets away from it [see Goldberg, 1991]⁷. is means that moving a polygon

⁶It is possible to use exact arithmetic instead, but it has a severe impact on performance and memory
consumption [see Schirra, 1997].

⁷Actually, the distribution of floating-point numbers is generally considered to be logarithmic
[Scheidt and Schelin, 1987].
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slightly distorts its shape, and is therefore a destructive operation (i.e. even if it ismoved
back to its original position, it will likely be deformed); while the sameholds for changes
in the representation, like moving from a 64-bit to a 32-bit one. For the same reason,
the intersection of two line segments will almost certainly have to be stored at a point
which is on neither line, as shown in Figure 2.4.

A second consequence is that there are many numbers in common use that are
not able to be represented. A famous example is 0.1, which when using β = 2 (bi-
nary representation) can only be approximated as 1.1001100110011001 . . . × 2−4. In
the context of this thesis, this entails that points will be most likely be stored with a
position slightly different than that that was intended, which is only exacerbated when
dealing with projections and internal accuracy models in soware, since it would im-
ply resampling points to the internal model (i.e. a different grid) and then again when
exporting the points back.

However, the most important consequence is that some geometric operations us-
ing floating-point arithmetic might give incorrect results due to the loss of precision
involved⁸. is problem can occur in almost any geometric operation, including but
not limited to, the point-in-polygon, side and convex hull operations [see Kettner et al.,
2007], with one such example shown in Figure 2.5. Because of this, to ensure that the
algorithms developed for this thesis are robust, all algorithms developed work strictly
either with topology or geometric operations that are known to be safe, and new points
are generated only when necessary.

2.3 V P

ere are several conditions which can be intuitively expected as part of any valid poly-
gon with holes definition (i.e. those which it cannot be considered a polygon without).
For instance, most polygon definitions [ESRI, 1998; ISO, 2003; OGC, 2006] agree that
the rings that define the outer boundary and inner boundaries (for holes) of each poly-
gon should be closed, that rings that define holes are properly nested inside the outer
boundary and not crossing each other, and that segments that have zero-area should
not be allowed (e.g. zero area rings or polygons, spikes, cut-lines, punctures, polygons
with a hole covering it completely, etc.).

Additionally, we find other criteria meant so that each polygon is uniquely defined,
since it is desirable to have a unique representation of each polygon, both for standard-
isation and to simplify geometric algorithms. is is a distinct set of requirements,
since different standards adopt different decisions. e Simple Features specification
thus adds that the interior of a polygon should be connected, implying that each hole
should touch the boundary only at one point, among other things; while the ISO one
specifies that the outer boundary should be specified in counterclockwise order and
the inner boundaries in clockwise order. Figure 2.6 shows how a bow tie polygon is
modelled with increasingly strict requirements, while Figure 2.7 exemplifies how the
ESRI Shapefile and the OGC standards differ in modelling of holes.

⁸Such aswhen subtracting two very similar numbers. It is known in this context as loss of significance.

16



2.3. Valid Polygons

Figure 2.5: e results of the floating point orientation predicate using extended
double precision arithmetic in a small area around the midpoint of the line seg-
ment between (17.300000000000001, 17.300000000000001) and (24.00000000000005,
24.0000000000000517765). Pixel colours represent whether the result is that a pixel
is collinear (yellow), negative (red) or positive (blue), while the line is represented in
black. Note that there are sign reversals (blue areas below the line and red areas above
it) and the uneven fractured nature of the collinear areas. From Kettner et al. [2007].

Finally, there is an additional set of conditions that are application (or implemen-
tation) dependent, meant to avoid specific problems (e.g. inaccuracy). To this end,
restrictions on aminimum separation between vertices and/or edges, minimum angles
between edges andminimumarea of rings and/or polygonsmay be defined [Milenkovic,
1993]. In this respect, the concept of a tolerance value is best defined in van Oosterom
et al. [2004], where it is able to provide a measure of the robustness of a given polygon.

For the purpose of this thesis, the rules for a valid polygon are based on van Oos-
terom et al. [2004] as well, with polygons formed by rings composed of straight line
segments. However, in order to promote having a unique representation for a given
polygon, these rings should form only one outer boundary, which is oriented counter-
clockwise; and zero or more inner boundaries, which are oriented clockwise. Rings are
allowed to touch (but not cross) themselves or other rings, as long as any point inside
or on the boundary of the polygon can be reaches through the interior of the polygon
from any other point inside the polygon. e use of a tolerance value is not enforced,
since the algorithms developed for this thesis are robust and do not more points. How-
ever, it might be advisable to use this concept in other soware, once validation and
repair have been completed.

e use of these rules implies that the polygons that are considered valid also con-
form to the Simple Features definition, and have the ISO orientation rules. is makes
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(a) Self-intersecting polygon with no
vertex at the intersection

(b) Self-intersecting polygon with a vertex
at the intersection

(c) Self-touching polygon (d) Two polygons (or multi-polygon).

Figure 2.6: e bow-tie polygon, modelled according to different criteria

them compatible with a wide range of applications based on both standards.
Since there are several differing polygon definitions commonly used; and even

when the standards for what is considered as a valid polygon are well defined, invalid
polygons continue to be prevalent in practice, there is clearly a need for tools to cor-
rect these problems. Moreover, since there are data set dependent restrictions in place
which shouldnot be disregarded, it is important to avoidmoving points during process-
ing, and setting uniform rules for polygon representation brings easier post processing
as an added benefit.

2.4 T C P

Conflation involves combining multiple data sets in order to make a new one, usually
to improve either the spatial extent or the accuracy of the data [Lynch and Saalfeld,
1985]. In Yuan and Tao [1999], a distinction is made between horizontal and vertical
conflation. Horizontal conflation refers to edge-matching of neighbouring data sets to
eliminate discrepancies at the border region, while vertical conflation involves combin-
ing data sets covering the same area. Both topics are relevant to planar partitions, since
the former is used to join tiled and cross-border data, and the latter to create overlaid
maps using data from different sources.
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2.4. e Conflation Problem

(a) Shapefiles can include holes touching
the outer boundary as part of it, all in clock-
wise order. is is equivalent to saying that
the interior of the polygon should always be
to the right of an observerwalking along the
boundary [ESRI, 1998]. Note that there is a
single boundary describing this entire poly-
gon.

(b) A valid polygon according to the ISO
and OGC standards should have the outer
boundary in counterclockwise order, while
the inner boundaries should be in clockwise
order. is means that the interior of the
polygon should always be to the le of an
observer walking along the boundary [ISO,
2003; OGC, 2006]. Note that the polygon is
described by two separate boundaries.

Figure 2.7: e ESRI Shapefile and ISO standards differ in the modelling of polygons
with holes.

e issue of horizontal conflation is becoming increasingly relevant, since the need
to harmonise different data sets across borders is also becoming more and more ap-
parent, such as within the framework of the INSPIRE project⁹ [Wiemann and Bernard,
2010]. Country borders defined based on natural features of the terrain are a good
example, since their continuous nature basically ensures that independently produced
data will not match at the border [see Burrough, 1992]. Figure 2.8 shows an area along
the Spanish-Portuguese border with this problem. However, these sort of problems are
not only present between different data sets, but within a single (tiled or otherwise sub-
divided) data set as well [Chrisman, 1990], as shown previously in Figure 1.4. Digitised
data sets suffer most from this issue [Beard and Chrisman, 1988].

An entirely different issue is that of vertical conflation, in which two very different
types of behaviour might be expected. One would be to establish relations between
features that are supposed to match (e.g. to obtain features that contain data from mul-
tiple data sources), which is not discussed within this thesis; but the second would
involve taking certain features from different sources to create an overlaid map (e.g.

⁹Semantic matching might be involved as well, as it is a crucial part of data conflation [Kiehle et al.,
2007], but it is not relevant within the scope of this thesis.
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(a) Before repair (b) Aer repair

Figure 2.8: A region of the polygons for the Arribes del Duero Natural Park in Spain
(orange) and the International Douro Natural Park in Portugal (green). Since the bor-
der is traced along a river, data does not match perfectly.

using a pre-defined list of priorities among feature classes), for which the algorithms
developed are very well suited, since snapping thresholds might be too large in other
approaches (see Section 3.3).

e most common solution presented to have harmonised data sets is based on the
dubious notion of reference data, which assumes that there is a data set which is the best
according to some metric. Other data sets are then snapped to it, using the techniques
which will be discussed in Section 3.3. However, even assuming that there is a certain
data set which is best, it is undesirable to harmonise data in this manner due to several
reasons:

• As new better reference data is created, all other data sets have to be re-processed.
is is due to the fact that the main characteristic of reference data is its high
accuracy, and higher accuracy data is almost always expected to be available in
the future.

• Order dependency might be introduced, and errors accumulate as data is re-
snapped to a new reference data set (i.e. data points driing).

• When using data sets that do not include the reference data, an additional and
unnecessary source of error is introduced.

• reshold values involve a clear-cut decision for snapping, which is usually not
the case. Some mismatching features might be erroneously snapped, while oth-
ers representing the same points might not be.
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2.5. Planar Partitions

Nevertheless, this solution is still very common due to the notion that it is very
computationally expensive to harmonise data sets, oen requiring an iterative process
[Lupien, 1987]. However, using a planar partition for this purpose is fast enough to
be considered for doing this on-the-fly, since only the data sets being currently used
would need to be processed. is would be preferable in most situations, and fits better
with data interoperability policies such as INSPIRE.

2.5 P P

Planar partitions are a natural representation for many types of data, generally being
top-down views of features which their only practical requirement is to be able to be
clearly divided into different classes. ese classes should be mutually exclusive, al-
though each of them can represent a set of conditions (i.e. a class that recursively im-
plies membership to a set of other classes).

In the strict sense, a planar partition comprises a single joint region on the plane,
without any gaps or overlaps. However, in real-life data sets, there might be several dis-
joint regions, while some holes could be allowed. For instance, in the CORINE 2000
data set, islands are valid disjoint regions, while some areas without coverage (i.e. parts
of Andorra, Switzerland and Kosovo) are surrounded by areas with coverage, creat-
ing holes. At the same time, there are gaps between some tiles that cause undesirable
disjoint regions, which should be fixed. An example of this is shown in Figure 2.9.

0.5 mm
CORINE E30N20

CORINE E30N19

Figure 2.9: Two contiguous tiles from the CORINE 2000 data set, separated by a small
distance. Notice how a dividing line between two features matches well on both sides.

Since many of these situations are topologically equivalent, it becomes impossible
to distinguish themwithout some external information. However, it is possible tomake
some generalised assumptions:

• Overlaps are never allowed and should be repaired.

• Holes are generally not allowed, since they are commonly errors in the data.
However, it should be possible to insert allowed holes that should not be filled
by a repair algorithm.
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• Disjoint regions are allowed, since there are many cases where they can occur
(e.g. islands and exclaves). However, it should be possible to know the amount
of regions and get their boundaries.

It is important to note that this is only a subset of the constraints that a planar parti-
tion might be expected to fulfil. However, this does not mean that they are incomplete.
Other constraints are dealt with at the polygon level, as discussed in Section 2.3, while
the rest are a result of the triangulation, whichwill be discussed in the following section.
For a complete axiomatisation of these conditions, see Plümer and Gröger [1997].

2.6 T C D T

A triangulation is, in its simplest form, the subdivision of a geometric object into tri-
angles. roughout this thesis, two basic types of triangulations are extensively used,
shown in Figure 2.10, and described as follows:

Point Set Triangulation A set of points on the plane are triangulated by joining them
with a maximal set of straight line segments which intersect only at their end
points [Lloyd, 1977]. is results in the triangulation of the convex hull¹⁰ of the
point set [Deza and Rosenberg, 1980]. Outside the convex hull there is a single
face, which is the only one that is not a triangle and is unbounded. is is known
as the infinite face of the triangulation.

Polygon Triangulation A polygon is triangulated by creating line segments between
the vertices of the polygonwithout passing through its exterior (diagonals), which
subdivide the polygon into triangles [O’Rourke, 1998, chap. 1]. Usually the con-
vex hull of the polygon is triangulated instead¹¹, since its better for efficiency
reasons [Fournier and Montuno, 1984]. Outside the convex hull also lies the
infinite face of the triangulation.

It is important to note that these two cases can be made completely equivalent by
assuming certain triangulation rules (i.e. using criteria to decide which edges are to be
generated and triangulating always the entire convex hull of a polygon.). erefore, it is
possible to add both vertices and edges interchangeably to a triangulated point set, and
later on go back to a polygon, assuming that the information regarding which triangles
are part of the interior of the polygon is kept.

Meanwhile, the inclusion of the infinite face concept brings many implementa-
tion advantages, since it is possible to traverse the triangulation from a face known to
be in the exterior of a polygon. is will prove very useful for the algorithms devel-
oped, as discussed in Sections 4.1 and 4.2. e creation of this infinite face is usually
done through the concept of a “big triangle” or “far-away point” [Facello, 1995; Liu and
Snoeyink, 2006].

¹⁰Defined as the smallest convex set that contains all points in the point set [de Berg et al., 2008,
chap. 1].

¹¹As opposed to only the interior of the polygon.
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2.6. e Constrained Delaunay Triangulation

(a) A triangulated polygon (b) A triangulated point set

Figure 2.10: Two types of triangulations.

A polygon can always be triangulated [de Berg et al., 2008, chap. 3]. However, a
triangulation of a point set or polygon is not unique, as illustrated in Figures 2.11 and
2.12. is is an already undesirable property, and it is important to note that there are
triangulations that are better suited than others for most applications. In general, the
length of their edges should be as even as possible, since thin and elongated triangles are
a problem for many algorithms. Because of this, it is preferable to have a triangulation
which is unique and maximises the minimum angles of a triangulation, which is the
Delaunay triangulation of a point set¹², in which the circumscribing circle of any three
vertices forming a triangle has no other points in its interior (i.e. the empty circle or
Delaunay property).

(a) e Delaunay triangulation
of the point set

(b) A triangulation in which two
edges from the Delaunay one are
flipped

Figure 2.11: A point set triangulated in two different ways.

¹²e Delaunay triangulation is not unique when there are four or more co-circular points in the set,
although it can be made unique by assuming certain triangulation rules.
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(a) e Delaunay triangulation
of the polygon

(b) e farthest point Delau-
nay triangulation of the polygon
[Eppstein, 1992]

Figure 2.12: A polygon triangulated in two different ways.

Another type of triangulations which are relevant to this thesis are constrained tri-
angulations. ese have the added requirement that they must contain certain input
edges in the triangulation, which are known as constrained edges. While a constrained
triangulation is generally not unique, and most of them are not Delaunay, it is possible
to have a so-called constrained Delaunay triangulation. is is also generally unique¹³
and fulfils a weaker property, the constrained empty circle [see CGAL, 2010]¹⁴.

Using a triangulation as a base for validation and repair has many good properties,
including:

• It is, by definition, a planar partition. erefore, as long as the information relat-
ing to which polygon each triangle belongs to is kept, the polygons reconstructed
from it will be a valid planar partition.

• Point location queries are very fast [Devillers et al., 2002], especiallywhenusing a
triangulation hierarchy [Devillers, 2002]. is is important, since triangulations
are built through the on-line insertion of vertices [Boissonnat et al., 2002].

• Changes to the triangulation (e.g. adding a new constrained edge) are local, and
therefore fast.

• Constrained edges can usually be added in constant time, being only significantly
slower when there is an intersection with an existing constrained edge.

• Implementation-wise, several stable and fast triangulation libraries exist, includ-
ing CGAL [CGAL, 2010], Triangle [Shewchuck, 1996] and GTS [GTS, 2006].

e combination of these factors, allows the algorithms developed to retain good
performance characteristics with the very large triangulations that are created when

¹³e constrained Delaunay triangulation may not be unique when there are four co-circular points.
¹⁴e empty circle property can however be maintained by using a conforming triangulation instead

[Hansen and Levin, 1991], at the expense of adding more points to the triangulation.
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2.6. e Constrained Delaunay Triangulation

triangulating large planar partitions, of which an example from two adjacent tiles of
CORINE is shown in Figure 2.13.

Figure 2.13: A region of the triangulation of the polygons in CORINE tiles E39N32
and E40N32, which is now, by definition, a planar partition. e triangles that are in
the small region with an overlap between the two tiles are now not repeated, and are
marked instead with a single tag comprising a set of regions; as opposed to having two
sets of triangles, each of them with different tags.
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C

3
State of the Art in Planar Partition
Validation and Repair

Most current approaches to planar partition validation and repair deal with geometry
and topology in a few separate semi-automated processes that are almost completely in-
dependent from each other. is has important consequences, which will be discussed
in each relevant section.

When the tools allow for it, individual polygons are checked first (either while the
input is being read or aerwards), and it is assumed that these are valid before attempt-
ing to validate a planar partition. To validate (and possibly repair) these polygons, a
list of constraints is used, as is discussed in Section 3.1. Such a list may also contain the
actions that should be taken when invalid cases are found.

Aerwards, an entire planar partition is validated and repaired. While validation
is (loosely) based on the same concepts in all the tools studied, and therefore discussed
together in Section 3.2; repair is quite different, and three main approaches have been
identified. ese are:

Vertex, edge and face snapping and splitting Using tolerance values, points are snapped
to points, points with edges, and edges with other edges (e.g. when the angle be-
tween them is too small), among other variations. ese primitives are then split
when a new vertex is generated along its boundary. is method, which is avail-
able in most of the tools reviewed, is discussed in Section 3.3.

Using topological information Based on the creation of a graph-based representation
of the planar partition, which is able to identify gaps and overlaps, these areas
are assigned based on certain criteria. It is somewhat similar to the approach
developed in this thesis. ismethod, only fully available inArcGIS, is presented
in Section 3.4.

Topologically through database operations Some tools (i.e. Oracle and Radius Topol-
ogy, andGRASS) are based on a database storing topological information, which
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can be used to repair a planar partition by either of the two methods described
above. Among these, snapping is already implemented and works no different
than in other soware; this being the case for both Radius Topology andGRASS.
However, while the main data structures for automated topological repair al-
ready exist in both as well, other required operations do not, and would have to
be implemented by the user. is would involve a significant amount of work
from a user, but it is certainly possible, so it is only discussed briefly in Section
3.5.

3.1 V  R  I P

egeometry of individual polygons is generally validated by using a list of constraints,
which are successively checked for every polygon. In some cases these constraints are
disjoint¹ and independent from each other, while in others they are interrelated or build
on the previous ones’ requirements.

While the constraints checked in each solution are notably different, and in some
cases, not completely unambiguous in their requirements; it is possible to get a good
overview of the types of checks involved by examining two representative examples:
ArcGIS, which checks formainly geometric characteristics which are tightly connected
to the Shapefile specification and their internal geometry model; and the one from
JTS/GEOS, which follows more of a topological approach. ese are respectively sum-
marised in Tables 3.1 and 3.2, with their non-applicable (e.g. semantic or formatting
related) constraints removed. For comparison and later reference, the constraints used
in the Oracle database are presented in Table 3.3, which provides validation, but only
basic repair tools, since many errors cannot be repaired without extensive user inter-
vention to modify the data.

Meanwhile, GRASS, FME and Radius Topology do not provide additional vali-
dation or repair operations specifically meant for individual polygons, so they are not
further covered in this section². However, the operations that they provide for groups
of polygons can be applied to individual polygons as well, with mixed results. ese
will be discussed in Section 3.2, together with their application for planar partitions.

In the aforementioned tables, it is possible to see that some of the checks involved
are equivalent or similar (e.g. intersection tests), but there is no consensus on the op-
erations that need to be done to ensure valid polygons. ArcGIS checks and corrects for
closed polygons, unlike JTS/GEOS. However, JTS/GEOS is the only one that makes an
effort to keep polygons interior connected³. is is especially true regarding the op-
erations meant to avoid precision and robustness problems, as defined in Section 2.3.

¹Meaning that they check for errors which are not interdependent (i.e. each constraint can be trig-
gered individually by a certain invalid configuration).

²Other than that already provided by JTS/GEOS, in the case of GRASS and FME; and that of the
Oracle database, in the case of Radius Topology.

³Although in ArcGIS this might be less necessary, since according to the Shapefile specification
touching rings could be modelled as a single ring [ESRI, 1998].
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3.1. Validation and Repair of Individual Polygons

Table 3.1: Relevant constraints for polygon validation and repair in ArcGIS [ESRI,
2009a].

Constraint Description

Short segments At least one line segment is shorter than the unit in the
spatial reference associated. ese are deleted during repair.

Unclosed rings e last line segment of a ring does not end at its starting
point. ese are closed by connecting their end points
during repair.

Self-intersections Rings touch or intersect with themselves or other rings in
the polygon (not simple). ese are split at their
intersections during repair.

Incorrect ring ordering A polygon is simple but at least one of its rings are
incorrectly oriented. eir orientation is corrected during
repair.

Table 3.2: Relevant constraints for geometry cleaning in JTS and GEOS [GEOS, 2010].

Constraint Description

Self-touching rings Polygon rings must not self-touch. Disconnected components
are separated and those with too small areas are removed.

Zero area rings Rings should not have zero area. ese should be removed.
Zero area polygons Polygons should not have zero area. ese should be removed.
Properly nested rings Rings should not intersect and only touch once. Zero width

dangling edges are removed.
Duplicate vertices Rings should not have duplicate vertices or vertices within a

tolerance of each other.
Spikes and gores Rings should not have very close and almost parallel line

segments.
Touching parts Multi polygons should not have parts that touch along an

edge. e edges between them are dissolved.
Crossing rings Polygons should not have crossing rings.
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Table 3.3: Relevant constraints for geometry validation in Oracle Spatial [Oracle,
2009a,b, 2010].

Constraint Description

ORA 13343 Polygon with fewer than four coordinates.
ORA 13348 Ring not closed.
ORA 13349 Self-intersection. is can be fixed with the routine

SDO_UTIL.RECTIFY_GEOMETRY.
ORA 13350 Touching rings.
ORA 13351 Overlapping rings.
ORA 13356 Adjacent points are closer than a tolerance value. e routine

SDO_UTIL.REMOVE_DUPLICATE_VERTICES may be used
to remove them.

ORA 13367 Wrong orientation. is can be fixed with the routine
SDO_UTIL.RECTIFY_GEOMETRY.

ArcGIS has tests to ensure that consecutive vertices on a polygon are not too close to
each other, while JTS/GEOS extends these to non consecutive ones as well.

Moreover, while these checks cover most of the commonly found cases, it is worth
noting that no implementation among the ones examined clearly states that they are
able to detect every incorrect configuration. For example, ArcGIS has no capabilities
to remove duplicate vertices.

Also, it is very hard to guarantee that every degenerate case (of which there are
many) has been taken into account. For instance, ArcGIS is unable to detect any error
in a polygonwithout an interior, due to it having a hole of its exact size and shape, unless
this hole is subdivided into two or more smaller holes (Figure 3.1), despite the fact that
this is a self-intersection, which ArcGIS tests for, and it is also a zero area feature, and
thus disallowed in the Shapefile specification [ESRI, 1998].

In fact, since the classification of incorrect configurations is very dependent on
the implementation (as it can be seen from the previous examples), the cases that are
degenerate and may not be correctly handled also vary, which complicates matters fur-
ther. erefore for this thesis a comprehensive set of test polygons has been created for
testing purposes, which are presented together with their interpretations in different
implementations in Section 5.2.

Now, when considering repair as well, there are a couple other aspects to consider:
the introduction of order dependency into the repair operations, and the possibility of
breaking edge matching (e.g. by creating features that match only approximately, not
exactly) and topological constraints when the repair operations themselves are used.

Order dependency stems from the fact that the lists of constraints used for polygon
validation and repair have an inherent order in them, causing unpredictability in the
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3.2. Topological Validation of Planar Partitions

Figure 3.1: ArcGIS is unable to detect any error in a zero area polygon, due to it having
a hole that is identical to its outer boundary (but with opposite orientation). e main
window shows this polygon (a square), while the smaller window shows a table with
the errors found in it (none).

repair operations⁴.
Meanwhile, breaking edge-matching is more complex and can occur due to several

reasons. Some examples include: moving vertices beyond a certainmatching threshold
(discussed in Section 3.3), removal of features which would match others (e.g. remov-
ing a hole that would have provided the space for a different polygon), and splitting
features that should have been ke together, among others. JTS/GEOS solves this by
snapping edges together [GEOS, 2010], a common approach in many of the tools stud-
ied. is technique will be examined in Section 3.3.

3.2 T V  P P

Assuming that individual polygons have been deemed to be valid, it is possible to test
the validity of a planar partition by identifying the two types of invalid configurations:
gaps and overlaps. However, unlike for individual polygons, using stored topological
relationships between different polygons is necessary for the efficient detection of both.

Otherwise, in order to find overlaps without additional topological information, it
is necessary to check whether any possible pair of polygons are disjoint (i.e. when their
interiors do not overlap) or not. is is already a computationally expensive operation

⁴Or in the worst case, recursive generation of errors (i.e. error a is fixed in a procedure that creates a
new error b, which is fixed in a procedure which creates a again), thus creating an infinite loop.
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to make, but especially so since many possible pairs have to be checked⁵, even when
using heuristics to speed up the process [Badawy and Aref, 1999; Kirkpatrick et al.,
2000]. Additionally, robustness issues are an important issue in polygon intersection
tests [Hoffmann et al., 1988].

Even more problematic is finding holes without topological information. For this,
the computation of the union of the entire set of polygons is required; which is also
computationally expensive for the large sets of polygons with holes that are dealt with
in planar partitions [Margalit and Knott, 1989; Rivero and Feito, 2000]⁶.

Due to these difficulties, the addition of topology is highly desirable in order to
do planar partition validation. Namely, adjacency relationships for each polygon are
required, which take the form of a planar graph⁷. Based on this graph, Plümer and
Gröger [1996, 1997] specify a set of mathematical axioms that can be used to check
the validity of a map. In all of the tools studied where planar partition validation is
possible, with the exception of GRASS, a procedure similar to this would be followed
in order to do planar partition validation.

An adapted set of the aforementioned axioms is presented in Table 3.4, based on
the assumption that in the transformation from a geometricmodel to a topological one,
points with the (exact or approximate) same coordinates were united in a single vertex.
Such a list of axioms can be individually checked in the graph, giving the information
of whether the planar partition is valid or not.

Table 3.4: Minimal map axioms for planar partition validation, adapted from Plümer
and Gröger [1996].

Axiom Description

No dangling edges Each vertex has at least two incident edges
No zero-length edges Each edge has two distinct vertices as end points
Planarity Edges do not intersect, except at their end points
No holes Each edge has exactly two incident faces
No self-intersections Each face has exactly one simple circuit as window
No overlaps No part of the interior of an edge lies in the interior of a face
Connectivity e graph is connected

InGRASS, the situation is different since it is a topological GIS, and therefore topol-
ogy is directly generated as features are read. eoretically, this makes detecting gaps
and overlaps much easier. is is definitely true for overlaps, as shown in Figure 3.2.

⁵In the worst case, a brute force O(n2) operation, where n is the number of polygons to be checked.
⁶However, optimisations exist for some special case polygons [van Kreveld, 1998], and many algo-

rithms work by first decomposing the polygon into convex parts [Chazelle and Dobkin, 1979].
⁷A valid planar partitions represents, by consequence, a planar graph. However, the opposite does

not hold true, e.g. due to dangling edges.
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3.3. Planar Partition Repair Using Vertex, Edge and Face Snapping and Splitting

Figure 3.2: Since GRASS automatically detects overlapping polygons as they are read,
they are put into different layers. Shown is layer 2 from CORINE tile E41N27, with a
polygon that overlaps others.

3.3 P P R U V, E  F S
 S

e most common method for planar partition repair is based on the concept that
polygons approximately match each other at their common boundaries. is implies
that they should always be within a certain distance of each other along those edges.
If, additionally, all parts farther apart than this value are known not to be common
boundaries, it is possible to “snap” together polygons that are closer to each other than
this threshold, while keeping the rest untouched. ismethod of planar partition repair
is available in many tools, including ArcGIS, FME, GRASS and Radius Topology.

Since thresholds are central to this method, it is of utmost importance to select
a good threshold value, something that is completely different in each data set. For
planar partition repair to be successful using this method, such a threshold should be
chosen in a careful manner, and always comply with a few conditions. ese have been
summarised as follows:

• Adjacent polygons should not be farther apart than this threshold along any part
of their common boundaries (shown as the maximum threshold in Figure 3.3a).
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Otherwise, gaps are not able to be fixed.

• Adjacent polygons should not overlap each other in areas which are further in-
wards than this threshold from their common boundaries (shown as the maxi-
mum threshold in Figure 3.3b). Otherwise, overlaps are not able to be fixed.

• No vertices of a polygon should be closer to each other than this threshold, in-
cluding non consecutive vertices (shown as the minimum thresholds in Figure
3.3). Otherwise, they might be snapped together, creating repeated vertices, dis-
joint regions, or various topological problems.

• No vertices of a polygon should be closer than this threshold to any non incident
edge. Otherwise, they might be snapped together, creating disjoint regions or
various topological problems.

minimum
distance
threshold

maximum
distance
threshold

(a) Gaps between polygons

minimum
distance
threshold

maximum
distance
threshold

(b) Overlapping polygons

Figure 3.3: Defining a threshold for vertex, edge and face snapping. e threshold to
use should be larger than the largest minimum distance between the matching bound-
aries, and smaller than the minimum distance between vertices.

is threshold value is usually manually determined, either by trial and error, or
by analysing certain properties of the data set(s) involved (e.g. point spacing, point
precision, sampling rates or internal geometry models). However, it is oen hard to
find an optimal threshold for a certain data set, since the sheer size of the data sets used
makes ensuring that it works well for every part of the data set unrealistic. Moreover,
sometimes such a threshold does not even exist (e.g. because point spacing might be in
some places smaller than the width of the gaps and overlaps present).

Since the aforementioned conditions are frequently not met, or are not checked
beforehand, and it is still necessary to perform repair of a data set, snapping might
be performed nevertheless, possibly creating invalid polygons or planar partitions, or
significantly changing the topology of the existing features. Two examples of this phe-
nomenon are shown in Figures 3.4 and 3.5.
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(a) Before snapping (b) Aer snapping

Figure 3.4: Spikes and punctures can be created by snapping, since the bases of these
elongated forms (encircled) might be narrower than the threshold, but its length not.

(a) Before snapping (b) Aer snapping

Figure 3.5: Polygons can be split by snapping, since some parts of them might be nar-
rower than the threshold (encircled). While this result does not create an invalid planar
partition, it can change the number of polygons present and their topological relations,
and can therefore be undesirable.
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However, if a threshold values exists and snapping is done carefully, it is possible
to generate perfectly valid planar partitions in a simple manner. Figure 3.6 shows an
example of 4 CORINE tiles put together with the FME transformers shown in Figure
3.7.

Figure 3.6: Four adjacent tiles (2×2) from CORINE joined and repaired in FME, using
the transformers from Figure 3.7. Notice that there are no seams at the former tile
boundaries.

While the examples shownpreviously prove that this repairmethod is not problem-
free, until this point only simplified snapping rules have been considered. In practice,
one finds very different snapping criteria and more complex situations. To illustrate
this, the list of constraints for planar partition repair in GRASS are summarised in
Table 3.5, while some notable complications are listed as follows:

• All intersecting edges are split at their intersection point in some implementa-
tions, adding new vertices at those places, which in turn reduces vertex spacing
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Figure 3.7: Joining and repairing 4 adjacent tiles from CORINE in FME, using the
transformers shown above. e process consists of reading the 4 input files, snapping
them together, dissolving the boundaries that have the same feature classification on
both sides, and creating a unified output. Note that this involves checking boundaries
within each CORINE tile as well, which might be unnecessary.

and might cause these vertices to be snapped together.

• Different types of snapping exist (e.g. point to point, point to edge and edge to
edge; simplex and complex features; or using reference data), which can have
individually set threshold values [MacDonald, 2001a].

• Post-processing operations to clean a planar partition might be required, which
can introduce substantial changes to it. Examples include: disposing of poly-
gonswith small areas, removing redundant lines, thresholds forminimumangles
(for robustness, removing spikes), etc. A good example for this is GRASS (Ta-
ble 3.5), in contrast with Radius Topology, which has simpler constraints (Table
3.6). esemight create new gaps and overlaps themselves, requiring an iterative
cleaning process.

• e geometry of the new polygons may have to be reconstructed in a topolog-
ically correct manner [Barker, 1995]. For instance, the polygons in Figure 3.4
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should have the spikes/punctures removed, and the yellow polygon in Figure 3.5
should be split into two.

• Snapping is an intricate problem in itself, since there are many possible criteria
that can be followed, for both points and edges (e.g. points to the closest line,
points to the closest point, points orthogonally to the closest line). All of these
can have different problematic consequences, as the example in Figure 3.8 shows.

Table 3.5: Relevant constraints for planar partition repair in GRASS [GRASS, 2006].

Constraint Description

break Line segments are broken at their intersections.
rmdupl Removes duplicate line segments.
rmdangle Removes dangling edges.
rmbridge Removes bridges connecting holes or islands.
snap Line segments are snapped to vertices within a threshold.
prune Removes vertices within a threshold of line segments.
rmarea Removes areas smaller than a threshold.
rmsa Removes small angles between lines at vertices.

Table 3.6: Relevant constraints for planar partition repair in Radius Topology [Baars,
2003; Louwsma, 2003].

Constraint Description

SHARE_NODE Nodes within a threshold are snapped together.
NODE_SPLIT_EDGE Edges within a distance from a node are snapped to it,

creating an intermediate node.
EDGE_SPLIT_EDGE Intersecting edges or edges within a distance from other

edges are snapped together.

Finally, it is worth mentioning that although all planar partitions could be repaired
by snapping and splitting polygons; it might require the use of thresholds so large so
as to have no physical basis, and create planar partitions that are substantially different
from the original data.
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3.4. Planar Partition Repair Using Topological Information

High resolution 
data

Low resolution 
data

Figure 3.8: Snapping to the closest line can cause topologically invalid configurations.
When two data sets of differing levels of detail are joined together by snapping the
vertices of the high resolution data set to the edges of the low resolution one, a situation
where the line reverses on itself is created.

3.4 P P R U T I

A different approach for planar partition repair, mostly based on (internally used)
topological information, is available in ArcGIS⁸. is method is therefore similar in
some ways to the one developed during this thesis, although ArcGIS requires user in-
tervention to make a decision to fix each invalid region individually and is based on
polygonal regions, rather than triangles.

For this, it is necessary to import all the polygons into the geodatabase feature of the
soware, which allows for topology based validation rules to be entered as well [ESRI,
2002], as shown in Figure 3.9. emost relevant rules for planar partition repair, which
all work on any number of polygons, are summarised as follows⁹:

Must Not Overlap e interior of any of the polygons entered must not overlap. Ver-
tices and edges can still be shared.

Must Not Have Gaps epolygonsmust not have voids within themselves or between
adjacent polygons. Polygons can still share vertices, edges or interior areas.

⁸e supporting data structures are available in GRASS as well, and possibly in FME, but the opera-
tions required are not.

⁹Some other rules might be useful as well (e.g. Area boundary must be covered by boundary of,
boundary must be covered by, tessellate, etc.). All the rules are available in MacDonald [2001b].
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Must Not Overlap With e interior of the polygons in one layer must not overlap
with interiors of the polygons in another.

Must Not Have Dangles Linesmust touch other lines at their end points. is can take
care of overshoots and undershoots (Figure 3.10).

Must Not Have Pseudonodes Lines must connect to at least two other lines at each of
their end points. is can be used to remove unnecessary nodes, such as one
situated at the begin and end point of a looping edge.

Must Not Self Intersect Line features must not cross themselves. is can be used to
remove spikes, as long as a suitable precision value is used first.

Figure 3.9: Entering topology rules in ArcGIS. For this example, a CORINE tile with
known problems (E41N27) is put into the Geodatabase, together with two simple val-
idation rules: must not overlap and must not have gaps.

Regions on a map that do not fulfil the properties of a valid planar partition can
be identified by a combination of the rules above, as in [Stanton et al., 2005] or [Wahl,
2004]. e simplest case would be to only use the first two rules. Keeping to the pre-
vious CORINE example, Figure 3.11 shows the regions that fail to comply with the
validation rules imposed.
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3.4. Planar Partition Repair Using Topological Information

(a) Overshoot (b) Undershoot

Figure 3.10: Overshoots and undershoots are invalid configurations that break polygon
topology. ese as usually solved by snapping (Section 3.3).

Figure 3.11: Topology errors found in CORINE tile E41N27 with ArcGIS.
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Validating planar partitions with this method can be therefore done efficiently in
ArcGIS. Also, it is quite a robust implementation, since points are initially snapped to
a given tolerance [ESRI, 2009b]. is however comes with the disadvantage that points
will be moved during processing.

Meanwhile, the repair tools in ArcGIS require extensive user interaction. When
acting with multiple invalid polygonal regions, the only options available that can be
applied to all simultaneously are: deleting everything in the region (in the case of over-
laps), or creating new polygons from those regions. None of these makes sense in the
context of planar partition repair. Deleting everything is especially troublesome, since
it creates new holes, which are again invalid regions.

However, it is possible to manually repair a planar partition using ArcGIS. e
procedure would then be to zoom in to every error present using the Error Inspector
(Figure 3.12a), manually decide on a choice to be made, and assign the region to a
certain polygon (Figure 3.12b). is is an unfeasible solution for the very large data
sets common in planar partitions. Figure 3.13 shows the large number of different
errors present in a small region in the CORINE tile from previous examples. ere are
almost 11,000 total errors present in this tile¹⁰.

(a) Viewing a topology error in ArcGIS. (b) Assigning an overlapping region to one of the
polygons involved.

Figure 3.12: Planar partition repair in ArcGIS. e user is expected to zoom in to a
particular error, analyse the situation (e.g. by looking at the properties from the sur-
rounding polygons), and make a decision to assign the problematic region to a certain
polygon.

3.5 T P P R U A D

Spatial databases with topological information are an interesting case, since they are
able to do planar partition repair using both of the aforementionedmethods. However,

¹⁰Using the precision threshold specified in the original Shapefiles.
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3.5. Topological Planar Partition Repair Using A Database

Figure 3.13: Topology errors found in only a small region from CORINE tile E41N27.
Gaps are shown in pink, while overlaps in red. ere are 117 errors in this region, 1%
of the total of this tile.

while snapping based repair is already implemented and working in both of the solu-
tions examined (Oracle with Radius Topology and GRASS when used together with a
database), topological repair is not.

Nevertheless, the main required data structures and basic operators for topology
based repair already exist, including checking the number of polygons at a certain point
(0 being a hole or in the exterior, 2 ormore being an overlap), adjacency queries, length
of boundaries, and so on.

Still, while the underlying data structures are solid and have all the required func-
tionality, it would involve a significant amount of effort to develop the operations re-
quired efficiently and in a robust manner. ese would, at the very least, include:

Detecting gaps and overlaps For instance, by analysing faces situated le and right
from every edge present. Overlaps are not a problem, since this information is
yielded directly with the topological data structures present. However, it is hard
to distinguish a gap from a region outside the domain of the planar partition
without applying first operations to join multiple polygons.

Repairing gaps and overlaps To repair gaps and overlaps, polygons would have to be
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assigned to a certain feature class, which could be determined based on the con-
figuration of its neighbours. Aerwards, the polygon that a hole would be as-
signed to would be reassigned to become a union of the hole and its former self.
For overlaps, the overlapping region would be subtracted from all polygons that
this overlapping region would not be assigned to.

Detecting the number of disjoint regions Asserting the number of disjoint regions is
also a difficult operation without performing an expensive union of all polygons.

Other operations (e.g. to repair the generated topology) might be required as well,
depending on the implementation, which could further complicate matters.
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4
Using a Constrained Triangulation
for Planar Partition Validation and
Repair

e process of planar partition validation and repair is defined by the developed al-
gorithms, and consists of several steps which build on the successive validation and
repair of simpler elements: rings to form polygons and polygons to form planar parti-
tions. is gives both the power to remove degenerate cases at any point of the process,
which are sometimes allowed in a certain specification¹, and the flexibility to allow the
removal of some of these steps when these elements are known to be valid.

Computationally, there is commonly a tradeoff between speed and memory usage,
which is especially applicable to geometric algorithms, since they are subject to both
complex operations and large data sets. erefore, choices have to be made while try-
ing to keep a balance between the two with the available resources. For this thesis,
this implies that algorithms developed can be sometimes made either faster or more
memory efficient. However, much care has been taken to keep a balanced approach.

e method developed, as seen from a would-be user’s perspective is shown in
Figure 4.1. Following approximately the same order, the main five steps in this process
are explained in the following sections (excluding the final output, which is trivial),
with the output from each step being the input to the next one.

First of all, an input file containing a set of polygons is opened, fromwhich polygons
are individually repaired and added to the triangulation, which is discussed in Section
4.1. In order to do so, each of their rings are tested for self-intersections, and if any
of them do self-intersect, they are reconstructed using a tagged triangulation as well.
is is repeated until all edges from all polygons have been added to the triangulation
as constrained edges.

Next, using the edge information from the previous step, the triangles in the trian-
gulation are tagged with the polygons that they belong to, with a special tag used for
the exterior of the planar partition (i.e. the regions outside its domain). is means

¹e.g. repeated points within a polygon in ESRI Shapefiles.
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Input 
polygons

Validate and repair individual 
rings and polygons

More 
polygons 
to add?

Tag triangles

Repair 
triangulation

Match schemata

Reconstruct 
polygons

Output 
polygons

NO

YES

Topology 
wanted?

Reconstruct topology as 
Winged Edge

YES

NO

User's workflow

Triangu-
lation 
valid?

YES

NO

Possibly invalid data

Valid data

Section 4.1

Section 4.2

Section 4.3

Section 4.4

Section 4.5

Figure 4.1: e process of validation and repair or a planar partition from a user’s per-
spective. e workflow of a user is represented on the le, with the operations that are
performed in the repair tool in the yellow box.
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4.1. Repairing a Single Polygon

that each triangle can have a different number of tags: zero (gap), one (correct), or two
or more (overlap). is procedure is discussed in Section 4.2.

Aerwards, the polygons in the triangulation can be repaired by a number of dif-
ferent operations, as it is explained in Section 4.4. ese should ensure that, at the end,
each triangle has exactly one tag, which allows the polygon reconstruction phase to
create a valid planar partition as output.

Subsequently, adjacent polygons that should be joined are marked as such in the
schematamatching process (Section 4.3). e purpose is akin to the dissolve operation
common inGIS. However, unlike this operation, it ismeant so that different criteria can
be used to decide which polygons to merge (e.g. using a map of feature classifications
between two different data sets).

Finally, the polygons are extracted from the triangulation, using first an algorithm
that generates correctly oriented polylines that connect all boundaries of a polygon,
which are then cut and assembled into individual rings. If topological data is also re-
quired, it is also extracted from the triangulation to a Winged Edge representation.

4.1 R  S P

Since individual polygons must be valid for the entire procedure to work, the first step
that must be performed consists of ensuring that these are repaired if necessary (see
Appendix A.3). In order to achieve this, a very similar procedure to the one used for
planar partitions is used, using also a constrained triangulation to get a valid polygon
in each case. While other techniques for polygon validation and repair might work just
as well (e.g. those mentioned in Section 3.1), it serves as a proof to the capabilities and
extensibility of this approach.

In the same manner that a valid planar partition is composed of valid polygons,
a fundamental building block in this hierarchy is that valid polygons (possibly with
holes) should themselves be composed of valid rings (equivalent to polygons without
holes). Based on the definition set for this purpose (see Section 2.3), these rings should
be closed and not self-touching, while their orientation should be counterclockwise
for rings that define an outer boundary and clockwise for inner boundaries. Addition-
ally, zero area features (cut-lines, punctures and spikes and rings themselves) should
be removed². What is meant by these terms is shown in Figure 4.2.

To fulfil the aforementioned conditions, a few rules regarding the interpretation of
ambiguous polygons were used:

• e last vertex of a ring is always joined to the first one, yielding a closed loop
even in representations where this is stored only implicitly.

• Successive identical vertices are removed, which solves problems with repeated
vertices possibly generated by the previous step and in the representations where
this condition is allowed (e.g. Shapefiles).

²Known commonly as the regularisation of a polygon, which is equivalent to the closure of the interior
of it [Worboys and Duckham, 2004, chap. 3].
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puncture

cut-line
(zero area ring inside)

spike

zero area ring outside

Figure 4.2: e different types of zero area features that can occur in a ring.

• Based on the specifications of the input format, it is assumed that whether a ring
constitutes an internal or external boundary is known, but its orientation could
be wrong³. is are mutually exclusive conditions for repair, since some repre-
sentations identify holes solely by their orientation (e.g. Shapefiles). Alternatives
could be: assuming that orientation defines whether a boundary is internal or
external, disregarding known information in this respect; or examining which
ring is outermost, to select it as an outer boundary.

• A ring is always bounded (i.e. it has a finite interior)⁴.

Based on these, it is known that rings are closed and bounded. If it is necessary to
further repair the ring (see Appendix A.3), a constrained triangulation is incrementally
built, containing all edges pertaining to it. When there are intersections at an internal
point of an edge, it is split into two edges in the process. If the same edge is defined an
even number of times, it is removed, which removes most of the degenerate cases (see
Appendix A.4).

Because a ring is bounded, the infinite face of a triangulation is known to be in the
exterior of the ring [see Yvinec, 2010], and it is therefore tagged as such. From this face,
the same tag can be expanded to all adjacent faces reachable from it without passing
through a constrained edge. When these are exhausted, all remaining faces reachable
by passing once through a constrained edge are known to be in its interior. From the
remaining faces, those that can be reached by passing through two constrained edges
are in its exterior, and so on iteratively. e reasons and details of this algorithm are
included in Appendix A.5.

When all triangles have been tagged⁵, the former ring is now reconstructed, in a
procedure whose output may be any number of separate rings, some of them possibly

³Implementation-wise, this is done with the OGR library.
⁴e interior of a hole being the void area itself.
⁵Which in the case of CGAL are the triangles in the convex hull of the polygon, plus the infinite face.
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with new holes inside them⁶. To achieve this, correctly oriented long polylines that
include all boundaries of a given former ring are generated by the algorithm fully de-
scribed in Appendix A.6, which involves rotating around a seeding triangle known to
be in the interior of the ring, creating a long chain of edges in a manner similar to
walking along the edges of a ring, but ensuring the correct orientation and creating
“bridges” that connect a hole inside a ring to its outer boundary, if there is not one
already. ese are used to preserve the connectivity between different rings while the
polygon is being reconstructed. One such polyline is generated for each separate com-
ponent of the former ring. e results aer this step are similar to the example shown
in Figure 4.3.

Polyline 1

Polyline 2

Figure 4.3: e polyline generated from a seeding triangle in the interior of the ring
joins all holes with the external boundary, always while keeping the interior connected
and on the same side of the line (le in this case). A separate polyline is always gener-
ated for each different interior connected component. Note that the “bridges” gener-
ated involve passing through them twice in the polyline.

From this polyline, the degree (number of incident edges) for each vertex is com-
puted, only taking into account the edges coming from the polyline, yielding “cutting
points” where the degree is larger than two. At these points the polyline is cut into
smaller pieces, since they represent the places where pieces might be joined in a differ-
ent order later on. From these pieces, some will be joined with others with the same
end-points but opposite direction and be eliminated, while the remainderwill be joined
in the correct order to create new closed rings, as shown in Figure 4.4. is process is
described in more in the full description of the algorithm in Appendix A.7. is pro-
cedure is repeated for all the input rings where repairing might be required, yielding a
set of rings for the entire polygon, where their individual orientation specifies whether
they are outer or inner boundaries.

Based on this set, the correct nesting of each inner boundary is identified. For this,
it is necessary to find out in which outer boundaries they are located, which can be
zero (a hole outside the boundary of any ring), one (correctly nested), or several (a hole

⁶It is possible to have no rings as output, since it could very possibly be a zero area feature.
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Figure 4.4: e vertices with a degree larger than two serve as cutting points (marked
with black discs), from which separate polylines are generated. For each of these, a
closed ring is first found, which serves as a starting point. From here, closed rings are
removed and put into the list of completed rings (blue), duplicate polylines are removed
(red), and all others are joined until deemed to be duplicate or closed.

which fits in multiple outer boundaries). To determine the nesting efficiently⁷, point-
in-polygon operations are made, finding the location of each vertex of every inner ring
in relation to the outer ones. is operation works on all cases thatmight be commonly
expected, without causing performance problems. However, the full consequences of
this are discussed in Appendix A.8.

At this point, the validity of rings is ensured, which allows for validation and repair
of polygons to be done at the same time as for an entire planar partition. Again, in
a similar manner as with the individual rings, all edges belonging to a polygon will
be added into a triangulation incrementally. However, this time it is not necessary to
check for overlapping edges, and the orientation of all rings is already well defined (i.e.
rings are orientable).

4.2 T  T   P P

Aer validating and repairing all individual input polygons, or if some validity rules
are known beforehand, it is possible to create a tagged triangulation of an entire planar
partition at once. In this context, tags specify which polygon(s) does a triangle belong

⁷Without performing a brute force intersection test between every possible pair of inner and outer
boundaries.
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to. Namely, it is necessary to have polygons constituted from relatively simple rings⁸
with a predefined orientation, and that holes that are outside the polygon which should
contain them are removed.

Based on this, a triangulation that contains all edges of all rings of all polygons is
created incrementally, edge by edge. When edges are found to intersect, they should
be split with a new point created at the intersection. is is the only condition where
the generation of new points is required.

Since it is known that rings are closed andwith known orientation⁹, it is also known
on which side of a certain line segment the interior of the polygon lies, as shown in
Figure 4.5.

Figure 4.5: Once orientation criteria are met, it is known that the ring interior lies to
the same side of each directed edge on the boundary. In this case, the interior of the
polygon always lies to the le of each directed edge (in green), while the exterior is to
the right (in red).

is property is now used for robust tagging of each polygon. Faces adjacent to
the outer boundary of the polygons are first tagged, and later this is expanded to trian-
gles further in the interior of the polygon, recursively tagging adjacent untagged faces
as long as no constrained edges are traversed (see Figure 4.6). Tagging from the in-
ner boundaries outwards is not done, since there is no guarantee that holes are entirely

⁸Not necessarily simple, but still orientable. Being self touching without being self intersecting does
not cause any problems.

⁹Which can be quickly checked by looking at the turn direction around the lemost or rightmost
vertices. It is known as the convex corner method.
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inside a certain polygon¹⁰. Meanwhile, removing tags from a hole inwards is another
possibility, which ensures that holes sharing edges on the boundary of a polygon are
preserved, but whether this is a desirable property is debatable, and is therefore not im-
plemented in the prototype¹¹. See Figure 4.7 for the implications of these possibilities.

Figure 4.6: Tagging begins with the triangles adjacent to the outer boundary of the
polygon (green), recursively advancing inwards until the rest of the triangles are tagged
as well (brown), unless they are separated by a constrained edge from the rest (white).

Aer this operation, all triangles that are part of any polygon are tagged, with over-
lapping regions having multiply tagged triangles. However, holes are indistinguishable
from triangles outside the planar partition, since both have zero tags. erefore, a spe-
cial tag is created for all triangles outside the planar partition (i.e. the “universe”), which
are tagged by recursively tagging adjacent triangles from the infinite face of the trian-
gulation¹², as long as no constrained edges are traversed. e results at the end of such
tagging are shown in Figure 4.8.

4.3 S M

As sets of polygons fromdifferent files or data sources are added together, it is necessary
to decide which attributes from one are equivalent to those in another. is issue is
oen not trivial, because while these might look superficially similar, they oen differ
in the format data is stored (e.g. types¹³, precision, length, etc.) and in the names of
their respective attributes.

¹⁰It is possible to check for this using the tests mentioned in Appendix A.8. However, when repairing
this situation would still require further operations in the individual polygon repair phase.

¹¹For instance, because a hole might be carved into a different polygon than the one where the hole
should be in.

¹²Or a triangle known to lie in the exterior of the planar partition, in case this is not available in the
implementation used.

¹³For instance, numerical data is oen stored as a string of characters.
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4.3. Schemata Matching

(a) Tagging inwards from outer boundary only. Holes
touching or intersecting an outer boundary disappear
completely as their interiors are filled. is solution
was selected for the prototype developed.

(b) Tagging inwards from the outer bound-
ary and removing tags inwards from a hole.
Holes will always be empty, but without ad-
ditional information other tags may disap-
pear as well.

(c) Tagging inwards from the outer bound-
ary and outwards from a hole. Polygons
might be double tagged when a hole from
a different polygon is situated in their inte-
rior or boundary.

Figure 4.7: Different undesirable results may occur when selecting different tagging
criteria. However, all three sets of criteria presented can be considered as a valid in-
terpretation of the situation in different examples. Discerning the original intention
behind an invalid polygon can be virtually impossible.

Additionally, it might be sometimes incongruent to join data at all, especially when
it comes fromdifferent sources, since themeaning of their fields could be incompatible.
For example, IDs can have only an internal meaning, units can be different and some
fields require special treatment (e.g. area, perimeter and average values).

However, the semantic issues of data conflation are an entirely different topic, and
fall outside the scope of this thesis. erefore they are not discussed any further, ex-
cept to briefly explain how such information is used in the process of planar partition
repair. Meanwhile, the implementation details for the prototype regarding this topic
are explained in Appendix A.9.

e objective of the process of schematamatching for planar partition repair is gen-
erating a set of equivalency relationships that state which polygons should be merged
together. ese relationships range from very simple (e.g. do not match anything) to
quite complex (e.g. regular expressions involving several fields), depending on the data
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Figure 4.8: A tagged triangulation of the convex hull of two polygons for the Arribes
del Duero Natural Park in Spain (red) and the International Douro Natural Park in
Portugal (green). e triangles in the exterior of this planar partition are shown in
yellow.

sets involved. e schemata matching operation should also be able to accommodate
the conflation of both subdivided (e.g. tiled), where simply polygons with the same ID
are merged (horizontal conflation); and independent data sets, where a map of feature
classification equivalencies might be required (horizontal or vertical conflation).

Once this equivalency relationships are generated, they might be used for different
purposes by the planar partition repair program:

• To reconstruct seamless polygons across the boundaries of different data sets.

• To create joint feature classes from formerly separate ones.

• To repair polygons only, using the file of origin information for each polygon to
distinguish features sharing the same IDs in different data sets.

• To compute statistics on the newly created planar partition (e.g. number of dis-
connected components).
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4.4. Repair Operations

4.4 R O

e greatest benefit of using a tagged triangulation for planar partition repair stems
from the fact that while repair operations are performed, the validity of the planar par-
tition is always kept, together with the integrity of the data. is comes as a contrast
to other methods, where care needs to be taken to ensure that the (geometric or topo-
logic) validity is not broken. For instance, if a zero width corridor that joins to regions
is created, it should be detected and removed. erefore, as it will be shown in this
section, simple and fully automatic repair can be easily and robustly implemented.

Based on the tagged triangulation, it is simple to implement different repair op-
erations based on adding and removing tags from sets of triangles based on certain
criteria. More complex operations that change the triangulation itself (e.g. splitting)
are also possible¹⁴ [Meijers et al., 2010].

Within the scope of this thesis, six straightforward operations were implemented,
which are valid for both gaps and overlaps, and are presented in Table 4.1. Four of them
use triangles as a base, which is faster and modifies the area of each polygon the least;
while two of them use regions of adjacent triangles with equivalent sets of tags (Figure
4.9), which is slower but has better cartographic properties. A sample of their results
is also shown in Figure 4.10. What is meant by the type of operation is subsequently
explained.

Table 4.1: e repair operations implemented in the prototype.

Repair operation Type Criteria

Triangle by number of Focal e tag present in the largest number of
neighbours adjacent faces, overlaps included
Triangle by absolute majority Focal Tag present in two or more valid

adjacent faces
Triangle by longest boundary Focal Tag present along the longest portion of

the boundary of the adjacent faces
Regions by longest boundary Focal of Tag present along the longest portion of

zonal the boundary of the adjacent faces
Regions by random neighbour Focal of Random tag from the adjacent faces

zonal
Triangle by priority list Varies Tag with the highest priority

However, the set of criteria used in the functions created are not exhaustive, and
based on these examples it is relatively easy to create other specialised repair operations
that fit the spatial characteristics of the data best. For instance, in a particular data set,
it might be preferable to have a simple function that selects a tag randomly from those

¹⁴But care should be taken to ensure robustness.
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overlapping region 

before after 

Figure 4.9: Regions are defined as adjacent triangles with equivalent sets of tags. In this
example, the overlapping region between the red and blue polygons is repaired by the
tag present along the longest part of the boundary surrounding the region (red). e
creation of the region is a zonal operation, and the selection of the appropriate tag is a
focal one.

(a) e original polygons. (b) Repaired each triangle using the tag adjacent
along the longest boundary from the neighbouring
triangles.

(c) Repaired each region using a random tag from
the neighbouring triangles.

(d) Repaired each region using the tag adjacent
along the longest boundary from the neighbouring
triangles.

Figure 4.10: Different repair operations used in the two polygons for the Arribes del
Duero Natural Park in Spain (red) and the International Douro Natural Park in Portu-
gal (green). All of them can be considered best by a certain criterion, like preserving the
area ratio between the two polygons (b), smoothness of the boundary (d), or a balance
between the two (c).
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4.5. Extraction of Polygons From a Triangulation

already in a multiply-tagged triangle; or a complex function that assigns a tag from a
statistical analysis of the surrounding area. e only practical requirement for such a
function is that, at the end, all triangles have exactly one tag assigned to them. is
ensures that the result is entirely free of errors.

As shown in Table 4.1, it is possible to distinguish different types of operations
based on whether they re-tag a triangle from the tags of the same triangle only (local),
the surrounding triangles (focal), a region that the triangle is part of (zonal), or the
entire triangulation (global)¹⁵. is is an important distinction, since it affects com-
puting time and introduces specific things to take into account. For instance, the fact
that focal operations can introduce order dependency, and that zonal operations might
require new constrained edges to identify regions correctly.

However, most repair operations can be generalised to a simple algorithm, which
is presented as follows:

Input: A tagged triangulation T.
Output: A (partially) repaired tagged triangulation T′.

1 Create a list C of changes to apply later.
2 foreach untagged or multiply tagged triangle t in T do
3 Possibly expand t to the uniform region R containing it.
4 Compute the tag to assign to the region R, if possible
5 if a tag is found then enter the pair (R, tag) into C.
6 end
7 foreach pair (R, tag) in C do
8 Re-tag each triangle in R with tag.
9 end

In this manner, order dependency in the operations is eliminated by performing
all re-tagging at the end of the algorithm. Also, dubious cases (where a tag to assign is
not found) are skipped, allowing for the creation of a more complex repair operation
composed of a sequence of repair operations, which is equivalent to the use of a hard
hierarchy of repair criteria.

Finally, repair can be accompanied by other pre and post processing operations,
which serve to preserve certain properties desired in the polygons generated. For in-
stance, as discussed previously, triangles could be split to subdivide an area with prob-
lems. Other options include discarding polygons with too small an area, or reassigning
long and thin polygons a different tag.

4.5 E  P F  T

Starting from a tagged triangulation, it is possible to reconstruct the individual poly-
gons of a planar partition in a manner similar to how individual polygons were recon-
structed aer their repair, discussed in Section 4.1. If this triangulation has exactly

¹⁵e types of operations are defined in map algebra in Tomlin [1994], except for the addition of a
global operator, which is also necessary in this context.
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one tag per triangle, the triangles will also form a planar partition, without any gaps or
overlaps.

is is an important step in incorporating a planar partition repair tool in thework-
flow of users working with planar partitions, since it ensures returning a now valid set
of polygons, in the same format as they were input into the repair process.

In order to do this, a starting triangle inside a polygon is found. Aerwards, a
single long well oriented polyline that runs along all the boundaries of the polygon
is generated using the algorithm fully described in Appendix A.6, which involves a
depth first clockwise search that recursively reaches until the boundary of a polygon,
returning a long chain of edges in a procedure similar to following the boundary edge
by edge. However, the polyline created with this method has “bridges” connecting all
inner boundaries (holes) with the outer one, if there is not one already, while keeping
the interior connected. ese help to preserve connectivity and the relations between
different (outer and inner) boundaries, but will be removed later in the process. Also,
its orientation conveys the information of whether a section of it is an part of an inner
or outer boundary.

It is important to note that during this procedure, interior disconnected polygons
are separated into pieces, since the algorithmwill not pass from one part of the polygon
to another that is not interior connected to it, as shown in Figure 4.11.

Figure 4.11: Suppose that two input polygons (orange and blue) are overlapping in
a certain region (brown), which is assigned to the orange polygon in the repair pro-
cess, causing the blue polygon to be divided into two pieces. e reconstruction algo-
rithm should generate two separate polygons (blue), each of them with its respective
attributes. Meanwhile, the former boundary separating the blue polygon from the or-
ange one becomes a new (inner) boundary.

Aerwards, this polyline is collapsed around a vertex in regions where there are
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successive edgeswith the same endpoints but opposite orientation, i.e. spikes or “bridges”,
the former being generated when the starting triangle in the algorithm is not adjacent
to the outer boundary of the polygon, while the latter forms a connection between inner
and outer boundaries. is is shown in Figure A.12, along with a more thorough ex-
planation of this algorithm in Appendix A.7. While this procedure was only a possible
optimisation when reconstructing individual rings from a polygon, now it is necessary,
since this removes some edges that were changed during the repair phase.

Aer the collapse of these sections of the polyline, a degree (number of incident
edges) is computed for each vertex in it, only taking into account unique¹⁶ edges that
are part of the polyline itself. At the vertices where the degree is larger than two (junc-
tion point), the polyline is cut into smaller pieces, since it is at these points where the
polyline might be joined in a different order later on.

From these pieces, a successive series of operations is performed: closed rings are
identified, pieces are collapsed and matching pieces are joined, yielding new closed
rings. ese operations continue until all pieces of the polyline are either part of a
closed ring or are collapsed.

At this point the geometry of the polygons in a planar partition has been recon-
structed, which can be used as a base to reconstruct its topology. It is worth noting
that this is not the most efficient technique to get its topology when the geometry will
not be used. However, within the context of this thesis, retrieving polygon geometry is
always needed, since it is necessary to generate simple features output, while generating
polygon topology is not.

AWinged Edge data structure [Baumgart, 1974] (see Figure 2.3 or the green classes
in Figure A.1) has been chosen as the output format for the topology generation. For
this, a tagged triangulation is required, although with a few differences with respect to
the one that was there before the geometry generation. Namely, it is necessary to re-tag
all triangles based on the sets of new rings generated previously, giving a new (unique)
ID to every interior connected component of the planar partition.

Aerwards, a count of the number of unique IDs in the incident faces of each ver-
tex is calculated, which serves the same function as the degree that was calculated to
split the long polyline in the reconstruction of geometry, i.e. cutting the rings at where
the count is larger than two, being junction points where several edges come together.
ese points will become nodes to be added to the Winged Edge data structure.

However, it is also necessary to add additional nodes to accommodate ringswithout
any junction points, like the red node in Figure 4.12. To add these nodes, it is possible
to simply scan all rings to ensure that each has at least one node, and add one for those
which do not. An example of the result of this process in shown in Figure 4.13.

Aer all required nodes have been added, all rings of all the polygons generated
in the geometry phase are scanned, so as to create the edges for the Winged Edge data
structure. In order to do this, any node along a ring is located, fromwhere unprocessed
edges are added until the starting node is reached again. To ensure that an edge is only
processed once, pairs of points that describe the edge are added into an auxiliary data

¹⁶Unique as defined by their end points, no matter their orientation.
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Figure 4.12: Some nodes for the Winged Edge can be chosen as those that have more
than two unique IDs in their incident faces (black discs). However, it is also necessary
to add nodes for rings without any junction points (red disc), which are those that are
completely surrounded by a single polygon, like the light green polygon, but without
any node incident to a different polygon, like the red polygon.

Figure 4.13: In this example from CORINE tile E37N28 (overlaid), the nodes for the
Winged Edge data structure (black dots) can be seen at the vertices at the junction
of three or more polygons, plus at any point along the boundary of those polygons
completely surrounded by a single one.
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structure (see Figure A.3 for the details). At the end, all parts of any polygon boundary
should be included in the edges created.

Once all edges are known and added to the Winged Edge data structure, faces (to-
gether with all their information from the original input) and one edge per ring are
stored as well. is is done aer edge creation so as to use the same edge IDs created
during that process.

Finally, the remaining data for each edge (le clockwise, le counterclockwise, right
clockwise and right counterclockwise edges) are added by scanning all the edges created
beforehand and rotating around their end points using the triangulation data structure
until this data is found. An example final result from the topology generation process
is shown in Figure 4.14.

Figure 4.14: e topology generation process in CORINE tile E37N28. e attributes
for the generated edge 6150 (in red) are shown.
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5
Implementation, Experiments and
Discussion

In order to see how the algorithms designed for this thesis perform with respect to the
existing solutions, it is important not only to make comparisons about how they work
in theory (Chapters 3 and 4), but also to make some tests that evaluate the capabili-
ties of each and show some important practical considerations (e.g. running times and
memory usage).

For this, it is primordial to first describe how the implementation of the prototype
has been done, with Section 5.1 being devoted to this topic. Also, it includes basic
information on how to get and use this soware.

Aerwards, the practical tests follow, which have been divided in two complemen-
tary types. First, small scale tests are run using a purpose-made data set showing spe-
cific problematic polygons that should be tackled in programs for polygon repair, which
is discussed in Section 5.2. Later, in Section 5.3, planar partitions of different charac-
teristics are repaired in each of the available programs, showing their performance in
different situations.

5.1 T D P

To analyse, test and improve the algorithms, and encourage further development, a
fast implementation was written in the C++ programming language, using external li-
braries for some functionality. C++ was selected in order to have plenty of control with
regards to low level details and to achieve good performance, whichmakes it possible to
compare it with existing solutions. Meanwhile, the libraries directly used are: the OGR
Simple Features Library, which allows input and output from a large variety of data for-
mats common in GIS; and the Computational Geometry Algorithms Library (CGAL),
which has support for many robust spatial data structures and the operations based on
them, including polygons and triangulations.
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e developed prototype is open source, and freely available on the Geo-Database
Management Center (GDMC) (http://www.gdmc.nl) website, together with this MSc
thesis. Regarding the other required libraries, OGR is also open source, and avail-
able under aX/MIT license from http://www.gdal.org/ogr/, while CGAL is available
with some restrictions, depending on its intended use, from http://www.cgal.org.

e end result comprises about 140 functions and 4,500 lines of code, with the
main classes that were programmed shown in Appendix A.1. However, it is also easily
extensible, which should help to promote future work on the topic (Section 6.3).

It also takes care of the many degenerate cases that occur, as common as they are in
computational geometry algorithms, of which themain ones are discussed inAppendix
B. Nonetheless, the degenerate cases have simpler solutions than in other approaches.

Since the soware is meant as a prototype, there is currently no user interface. In-
stead, high level functions are provided, which are run from a separate file. A working
example of what should such a file contain is shown in Figure 5.1, while an extract of
the output generated using this file is in Figure 5.2.

e algorithms developed are covered in Chapter 4, with a more extensive discus-
sion regarding low level details and their implementation in Appendix A. erefore
Appendix A.1 starts with UML diagrams of the main data structures in the prototype
implementation, while A.2 describes the data structures and types used to keep the re-
quired information in the triangulation, and A.3 to A.9 discuss various low level details
of the algorithms in this thesis, including pseudocode of each and its computational
complexity.

5.2 I P R C

To test the capabilities of individual polygon validation and repair in the developed
prototype and existing implementations, a set of test polygons was created, which is
shown in Appendix C.1. e situations depicted in these purposefully involve many
degenerate cases for different steps of validation and repair processes, bothwith regards
to interpretation and implementation. In this manner, they are meant as a sort of unit
testing polygons to compare how they fare in different tools¹ [Burns, 2001].

All of these polygons were first viewed in ArcGIS, FME, GRASS and Quantum
GIS (QGIS) to check for differences in their interpretation. is is an important step
in evaluating these tools in polygon validation and repair, since it helps in two main
respects:

• Learn how different implementations deal with polygons in reality, since docu-
mentation does not cover every case or is sometimes inaccurate.

¹Strictly, it is not true unit testing, since it is not known with certainty whether the polygons reliably
trigger all existing checks in every method. is would require far more implementation knowledge of
every solution, which works as a black box in many cases, and is therefore hard to get and beyond the
scope of this thesis.
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5.2. Invalid Polygons Repair Comparison

Figure 5.1: Example of a program to repair four tiles of the CORINE 2000 data set.
Basically, it adds the four tiles to the triangulation, tags them, tries to repair them us-
ing the longest neighbour criteria first (Section 4.4), otherwise assigns a tag randomly,
matches the schemata of the four tiles, extracts the polygons from the triangulation,
and writes them to a file.

• Verify that polygon repair functions are consistent with the interpretation of
polygons in a certain program, i.e. that the polygons displayed before and aer
repair are equivalent.

ese tests showed that there are very significant differences with regards to how
degenerate cases are interpreted, which can certainly cause interoperability problems
when using different soware. A few representative examples of this situation are pre-
sented in Figures 5.3, 5.4 and 5.5.

ese situations are not at all unique, with many of the polygons generated having
different interpretations in each soware tested. is was expected, since polygon def-
initions specify how a certain polygon should be stored, but not how a certain stored
representation of a polygon should be interpreted (i.e. from a polygon to its represen-
tation, but not vice versa).
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Figure 5.2: An excerpt from the output of the prototype, using the input file shown in
Figure 5.1. Several rings from tile E40N32 were found to be self-intersecting, which
caused them to be split during the individual polygon repair phase of the program.
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(a) FME deletes the line. QGIS and GRASS do it as
well.

(b) ArcGIS considers that the line exists, although
it is deleted during repair.

Figure 5.3: Different interpretations of the “backforth” polygon (Appendix Figure
C.1d).

(a) FME presents it as a zero area feature. ArcGIS
does this as well. However, during repair the hole
is eliminated.

(b) QGIS discards the hole. GRASS does this as
well.

Figure 5.4: Different interpretations of the “bighole” polygon (Appendix Figure C.1g).

erefore, performing a certain process in different GIS tools can give significantly
different outputs if a unique unambiguous valid polygon is not created when degen-
erate polygons are present. is makes a strong case that it is desirable for polygon
repair tools to also ensure that polygons with multiple possible valid representations
are standardised to a certain one. An added benefit of putting a polygon repair tool at
the beginning of a GIS user’s workflow, is that it then also guarantees that different GIS
soware will be able to give similar results to similar queries.

Aer checking for the possible differences in interpretation of the test polygons,
theywere validated and repaired inArcGIS and the developed prototype. Comparisons
with the other available tools are very not meaningful, since they provide only basic
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(a) ArcGIS considers the overlapping region as a
hole, but the non-overlapping part of the former
hole as a new polygon. QGIS and FME do this as
well.

(b) GRASS removes the overlapping part from the
polygon, becoming a new polygon with a different
shape.

Figure 5.5: Different interpretations of the “partially” polygon.

polygon validation and do not provide any error codes². Moreover, the results of their
repair operations heavily depend of their (user defined) process.

e results of this test are summarised in Table 5.1. Note that the results from
this test are not meant as a direct evaluation of the capabilities of each, since there is
not a clearly defined right or wrong answer. For instance, ArcGIS generates polygons
with opposite winding as Simple Features based programs, but this should be expected.
However, from these results, there are some observations that deserve furthermention:

• Although it might be intuitively expected that only those polygons that are con-
sidered invalid should be modified; as stated previously, there are situations
where it is better to make changes to them. is helps to have a unique repre-
sentation for each situation and is done extensively in the developed algorithms
(e.g. breaking multi polygons in parts). ArcGIS does this as well, to a limited
extent (mainly with respect to polygon winding).

• ArcGIS considers the situations in polygons “bighole” and “tworing” valid, de-
spite the fact that they have both self intersections and zero area, which is disal-
lowed in the Shapefile specification [ESRI, 1998].

• If some holes are expected not to have any vertices in the interior of its contain-
ing outer boundary (e.g. polygons “3touch” and “3node”), it is better to have
a more computationally expensive approach to decide which outer boundaries
they belong to, something that is discussed in Appendix A.8.

²Except for QGIS when using ools.
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Table 5.1: Validation of the unit test polygons from Appendix C.1. e prototype (CT)
error codes are: (DV) duplicate vertices, (ZA) zero area, (SI) self intersections, (NOB-
FIB) no outer boundary for an inner boundary to fit into. e ArcGIS ones are: (SI)
self intersections, (UR) unclosed rings, and (IRO) incorrect ring ordering.

Polygon CT error CT action ArcGIS error ArcGIS action

point ZA,SI deleted SI deleted
3point DV,ZA,SI deleted SI deleted
line ZA deleted UR deleted
backforth ZA deleted SI deleted
colinear SI deleted SI deleted
3backforth SI deleted SI deleted
bighole – deleted – –
2bigholes – deleted SI removed holes
cw – reversed winding – –
ccw – – – reversed winding
innerhole – – – –
2innerholes – – – –
hole – added node SI added node
holenode – – – –
2holenode – separated holes – –
2separate – – – –
bridge SI removed bridge SI removed bridge
bridgeback SI removed bridge SI removed bridge
edgehole – removed polygon section SI removed hole
2edgehole – removed polygon section SI removed hole
spikeout SI removed spike SI removed spike
spikein SI removed spike SI removed spike
selfintersect SI created multi polygon SI created multi polygon
selfnode SI created multi polygon IRO created multi polygon
selouch SI created multi polygon – –
tworings – – – –
twoareas SI created multi polygon SI created multi polygon
twosemi SI created multi polygon SI created multi polygon
2holes – – – –
3holes – – – –
3touch NOBFIB removed hole SI created multi polygon
3node NOBFIB removed hole – –
3separate – – – –
3loop SI created multi polygon SI created multi polygon
out NOBFIB removed hole – hole to polygon
corner NOBFIB removed hole – hole to polygon
edge NOBFIB removed hole SI hole to polygon
partially – removed part of polygon SI part of hole to polygon
multiple – – – inner hole to polygon
open – closed ring UR closed ring
tworing SI,ZA deleted – empty interior
reverse SI,ZA deleted SI filled interior
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• In ArcGIS, QGIS and FME, having holes very close to a polygon boundary could
cause them to be considered outside a polygon, and therefore have a newpolygon
generated, in case of numerical robustness problems, as discussed in Section 2.2.

• Polygon repair might change the polygons originally visualised entirely, as seen
in polygons “2bigholes”, “edgehole” and “2edgehole”, where their holeswere elim-
inated despite covering (part of) these polygons.

5.3 L P P R C

While the capabilities for planar partition repair among the soware tested vary con-
siderably, with full topological repair only available in ArcGIS (manual only) and the
developed prototype³; it is also important to consider how different repair implemen-
tations scale to large data sets.

For this, a few performance tests were made in three available planar partition re-
pair tools (ArcGIS, FME and GRASS) that perform this process using snapping and
splitting, and the developed prototype. e testing methodology for each tool is as
follows:

ArcGIS In ArcCatalog, a multiple feature data set is created in a geodatabase, set with
tolerance values equal to the snapping threshold. Features are imported into it
and the merge and dissolve operations are used to merge adjacent polygons with
the same ID. Topology is then generated to check that the planar partition is
valid. Everything is finally exported to a single Shapefile. e individual parts
of the process are timed and their total timing is recorded. Memory usage is
calculated as the difference between the just loaded ArcCatalog application and
its maximum memory usage throughout the process.

FME A reader is created for each input file, which serve as input to a Snapper trans-
former; features with the same IDs are then dissolved, and finally they are out-
put into a new Shapefile writer. e topology generator is used to be able to tell
whether the result is a valid planar partition. Results are timed and the maxi-
mum memory of the fme.exe process is recorded.

GRASS Input files are imported with v.in.ogr, with all polygon cleaning operations
performed and snapping set to the correct values. Boundaries between features
with the same IDs are then dissolved using v.dissolve. Files are then exported
with v.out.ogr. Times reported by GRASS are added together to give the total,
whilememory usage by the v.in.ogr.exe, v.dissolve.exe and v.out.ogr.exe
are monitored and their maximum is recorded.

Constrained Triangulation Repair Files are read and put into the triangulation, the
triangulation is tagged, repair is performed with the repairByLongestBound-

ary() first, with ambiguous cases handled by repairRegionsByRandomNeigh-

³And ArcGIS requiring extensive user interaction for it to work, as discussed in Section 3.4.
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bour(). Polygons are then extracted from the triangulation and output to a sin-
gle Shapefile. e entire process is timed, and the maximum amount of memory
used is recorded.

As stated previously in Section 3.3, the results are not directly comparable, since
planar partition repair using a constrained triangulation is able to repair many more
cases than other methods, keeps topological consistency, does not require finding out
good threshold values, and does repair in a robust manner. Moreover, it is able to
directly state whether the result is a planar partition, unlike all the other solutions.
In ArcGIS, the topology constraints would have to be checked, in FME the topology
would have to be checked externally, and in GRASS, the second layer would be checked
to make sure that it does not contain any features.

Despite this limitations, in order to have an idea of the processing time andmemory
usage involved, these tests have been put into Table 5.2. Only cases that are acceptably
solved by snapping and splitting have been considered, since there is no other com-
parable automated topological repair tool among those studied that would also work
for more complex cases, such as those that require a snapping threshold too high to be
practical (e.g. horizontal conflation of independently generated data sets).

All tests have been run 5 times in a machine just booted and the results averaged to
account for the small variations that occurred⁴. e hardware is a 2.66 Ghz Core 2 Duo
MacBook Pro with 4 GB of RAM. ArcGIS 9.3, FME 2010 SP1 and GRASS 6.4 were run
in Windows 7, while the developed prototype was run in Mac OS X 10.6.4.

e data sets tested are:

E41N27 CORINE 2000 tile E41N27, which contains a shied polygon about 10 cm,
creating many small gaps and overlaps in the data set. e snapping threshold
has been set at 1 m.

4tiles CORINE 2000 tiles E39N32, E39N33, E40N32 and E40N33, which are known to
have long and thin overlapping regions (< 1 mm) with each other. e snapping
threshold has been set at 1 cm.

16tiles 16 adjacent CORINE 2000 tiles: E39N30, E39N31, E39N32, E39N33, E40N30,
E40N31, E40N32, E40N33, E41N30, E41N31, E41N32, E41N33, E42N30, E42N31,
E42N32, E42E33. Somehave gaps between one another, someoverlap, butmatch
within a few centimetres. e snapping threshold has been set at 10 cm.

Mexico 1:1,000,000 scale land cover data set from INEGI consisting of over 26,000
polygons. It is mostly already valid, but contains some very large polygons (with
tens of thousands of vertices).

As the aforementioned table shows, the constrained triangulation approach uses
more memory than other solutions. However, it is the only fully automated method,

⁴Except in the case where the execution was cancelled aer one full day, due to time limitations, or
when it causes the program to crash.
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Table 5.2: Planar partition repair comparison using large data sets.

Test CT ArcGIS FME GRASS
memory time memory time memory time memory time

E41N27 124 MB 46s 145 MB 1m3s 158 MB 31s 59 MB 3m09s
4tiles 100 MB 3m25s 113 MB 37s 105 MB 31s 49 MB 53s
16tiles 1.51 GB 1h20m crashes – 636 MB 15m48s crashes –
Mexico 983 MB 18m53s 216 MB >1d 264 MB 2m45s 408 MB 11m38s

since others require manually finding a good snapping threshold. Also, it is able to
scale well compared to other approaches, especially taking into consideration the fact
that it is more capable in solving complex problems.

72



C

6
Conclusions, Recommendations
and Future Work

Planar partitions constitute one of themost important data representations in GIS, and
are extensively used as a base for other operations. However, since polygons are oen
stored separately, various errors are introduced during their creation, manipulation
and exchange. is creates many problems for algorithms that rely on valid planar par-
titions, and can cause them to fail or give erroneous results, oen without any warning
to the user.

Existing approaches to solve this usually involve polygon repair using a list of con-
straints, and complex planar partition repair operations performed on a planar graph.
However, these have many shortcomings in terms of complexity, numerical robustness
and difficulty of implementation. Moreover, they leave many invalid cases untouched.

To solve this problem, a novel method to validate and automatically repair planar
partitions has been developed. It uses a constrained triangulation of the polygons as
a base, which being by definition a planar partition, means that only relatively sim-
ple operations are needed to ensure that the output becomes valid. Point locations are
maintained throughout the process, while fully automatic repair is possible using cus-
tomisable criteria. is approach is also extensible to individual polygons, is capable of
handling a larger variety of cases and has good performance compared to existing alter-
natives; all of this with numerical robustness and maintaining topological consistency
throughout.

To analyse, test and improve the algorithms, and encourage further development,
a fast implementation was written in the C++ programming language, using external
libraries for some functionality. e developed prototype is open source, and freely
available on the GDMC (http://www.gdmc.nl) website, together with this MSc thesis.

For this chapter, themain conclusions of this thesiswork are summarised in Section
6.1. Aerwards, themost important original contributions are described in Section 6.2.
Finally, some recommendations for future work are included in Section 6.3.
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6.1 C

is thesis has shown that using a constrained triangulation as a base structure brings
several advantages for planar partition validation, but where it really excels compared
to existing solutions is in performing automatic repair operations.

e main advantages of using a constrained triangulation for planar partition val-
idation and repair can be summarised as follows:

Individual polygons can be validated and repaired as well Current solutions for pla-
nar partition repair either assume that individual polygons are valid, or perform
very simple repair operations which work only for some cases. In the worst case,
these repair operations change the interpretation of a polygon entirely (Section
5.2). However, using a constrained triangulation naturally extends to the vali-
dation and repair of simpler elements (rings and polygons), using the same data
structures and similar algorithms.

Snapping is possible, but not required Using snapping for planar partition repair im-
poses many restrictions on the data, and is also a destructive operation that can
potentially break edge matching operations later on (Section 3.3). Using a con-
strained triangulation allows point locations to be preserved¹, and allows for
robust operations that maintain topological consistency throughout the repair
process. Because of the same reason, it is not necessary to have a reference data
set. However, if snapping is required, it can also be done beforehand, being com-
patible with the algorithms used here. Additionally, in many cases comparable
results can be obtained without it (e.g. by checking for very short triangles).

Fully automated repair Topological repair operations for planar partitions are rela-
tively uncommon in GIS soware, with only ArcGIS having them among the
tools studied. Others, like GRASS and Radius Topology use topology only as
a base, and snapping to solve the problems. However, this implementation re-
quires extensive user interaction, making it unfeasible for large data sets. Having
fully automated repair greatly extends the range of applicability of such a solu-
tion.

Simple and robust repair operations Since a constrained triangulation is, by defini-
tion, a planar partition, the repair operations built on top of it only need to en-
sure that all triangles have exactly one tag. By meeting this simple condition,
topological consistency of the planar partition is guaranteed.

Admittedly, these come at a cost of somewhat higher (although comparable) mem-
ory usage than some comparable solutions and the need for efficient triangulation al-
gorithms. However, these disadvantages are easily overcome with the availability of

¹As long as they are stored with the same data type as originally. In the case of the prototype devel-
oped, values are stored with double floating point precision, but using the CGAL templates this can be
easily changed.

74



6.2. Main Contributions

high quality triangulation libraries like CGAL [CGAL, 2010] and Triangle [Shewchuck,
1996], and the research done to reduce thememory footprint of triangulations, as it will
be discussed in the next section.

6.2 M C

e main accomplishment of this thesis has been understanding and describing how
constrained triangulations can be best used for the validation and automatic repair of
planar partitions, taking advantage of all their assets, which has been laid out in detail
throughout this thesis. In order to achieve this, some important contributions have
been made, from which three are most notable:

Extension of the algorithms to individual polygons Having valid polygons is a neces-
sary step for the successful validation and repair of planar partitions. Since the
triangulation of these is an integral part of the algorithms developed, this same
data structure can be used to validate and repair them as well, with adapted ver-
sions of the same principles.

Development of robust algorithms As discussed in Section 2.2, numerical robustness
is paramount in geometric operations. However, many algorithms that are ex-
tensively used are inherently not “safe” when dealing with very low values. is
issue is beyond what most users of GIS soware are aware of, or want to be con-
cerned with. Special care has been taken to ensure that all algorithms developed
for this thesis are robust, including those described in Appendices A.5 to A.7.
is has been achieved with the use of CGAL and appropriate measures wher-
ever needed.

Framework for automatic repair operations Repair operations on the tagged triangu-
lation can be implemented in a few simple steps, as established in Section 4.4.

6.3 R  F W

is thesis work helps to understand how constrained triangulations can bring robust
validation and fully automated repair to planar partitions. However, it also raises a few
questions and brings some suggestions with regards to future work on the topic.

One consideration for future work is that planar partition validation is oen more
computationally expensive than repair, and the two are not necessarily connected. For
the prototype developed, in order to give meaningful validation messages, it was oen
necessary to deviate from a given repair task. Future work might benefit from separat-
ing these two operations entirely.

Meanwhile, the following points merit further work on the topic:

Optimisations for simpler polygons e algorithms developed have been designed to
perform best with big polygons consisting of many vertices, such as land cover
data sets. However, due to the same fact, they perform poorly on data sets which
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consist of simple polygons with just a few vertices each, such as cadastral data.
Optimisations to the algorithms could be made to better handle these polygons,
such as a different indexing scheme for edges in topology generation.

Improved algorithms for extracting polygons from a triangulation eslowest step in
the planar partition repair process is the extraction of simple features polygons
from the triangulation, taking anywhere from 30% to over 90% of the total run-
ning time. It is an intricate problem to generate these in the correct order and
orientation, and doing so robustly and with all their corresponding holes. How-
ever, this can be improved by generating points formultiple polygons at the same
time (e.g. for the polygons laying on both sides of a given edge), by keepingmore
ancillary information in the triangulation vertices and edges, or by removing
edges from the triangulation data structure directly.

Eliminating memory limitations As seen in Chapter 5.3, using this method is quite
memory intensive, which is due to the need to store very large triangulations
with added tags for each. While the CGAL implementation of constrained tri-
angulations is quite fast, memory usage is not optimal, limiting the size of the
data sets that can be processed while using it. Improvements can be done on
two fronts: reducing thememory footprint of the triangulation [Blandford et al.,
2005], or implementing techniques to keep only a portion of the (constrained)
triangulation in main memory at a time (e.g. streaming) [Isenburg et al., 2006].

Improving the ordering of point insertions During the creation of the triangulation,
points are now inserted in the same order as they are in the input files, which is
not optimal. A randomised, or known order approach would be better [Amenta
et al., 2003].

Extension to 3D Most of the algorithms developed for this thesis extend well to 3D,
so that tagged tetrahedralisations could be used for validation and repair of 3D
volumes. Higher dimensions could also be possible, such as 3D plus time, but
would be more complex.

Implementation in a database Because of the large planar partition data data sets that
are frequently used and the relatively simple operations required for the algo-
rithms developed, their implementation in a database would be a natural next
step. However, the limitations of topological operations in spatial databases
should be taken into account [Zlatanova and Stoter, 2006]. At the very least, a
database could serve as off memory storage with good spatial indexing, so parts
of the data set could be loaded, processed and dumped into the database. is
would make it possible to process much larger data sets than currently possible,
and to have map overlay and data cleaning operations for data already stored in
a database.
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A

A
Design Considerations and
Implementation Checks

is appendix contains relevant information for the understanding of the algorithms,
but which was considered to be too low level to be put into the main text. With the
information here presented, it should be possible to re-implement the algorithms de-
veloped, if necessary.

erefore, to give an overview, Appendix A.1 starts with the data structures specif-
ically designed for this prototype. Later, Appendix A.2 specifies which CGAL data
structures were used, and how were they defined. Aerwards, Appendices A.3 to A.9
contain low level description of the more complex algorithms in the prototype.

A.1 D  

Within this appendix, the main data structures generated for the prototype are pre-
sented. Figure A.1 shows the general structure of the prototype, Figure A.2 shows all
the required information to have quick generation of closed rings, as discussed in Ap-
pendix A.7, and Figure A.3 has the data structures used for the generation of topology
of planar partitions.

A.2 T  

CGAL’s constrained Delaunay triangulation using the Delaunay hierarchy is used [see
Boissonnat et al., 2002], which ensures the fastest point locations readily available in
the library and therefore the fastest point and edge insertions as well. e increase
in memory footprint from the use of this additional data structure is negligible when
compared to the already large triangulations generated [Devillers, 2002].

For the storage of the tags (PolygonHandle) assigned to each triangle in the triangu-
lations, a different scheme is used depending on whether there is a single one, multiple
ones, or none. When none, it works as a pointer with NULL value; when one, it points to
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+ hasTag(PolygonHandle *) : bool
+ addTag(PolygonHandle *)
+ getTags() : PolygonHandle *

 
FaceInfo

+ matchesSchema(PolygonHandle &) : bool
+ isMultiPolygonHandle : bool

# originalFile : char *
# layer : unsigned int
# schemaIndex : unsigned int

PolygonHandle

+ hasHandle(PolygonHandle *) : bool
+ addHandle(PolygonHandle *)
 + getHandles() : std::set<PolygonHandle *> *

 
MultiPolygonHandle

 
 

Field

 
- contents : char *

StringField

 
- contents : int

IntField

 
- contents : double

DoubleField

 

+ nid : unsigned int
+ geometry : OGRPoint

Node

 

+ eid : unsigned int
+ geometry : OGRLineString
+ startNode : unsigned int
+ endNode : unsigned int
+ leftFace : unsigned int
+ rightFace : unsigned int
+ leftCCW : unsigned int
+ leftCW : unsigned int
+ rightCCW : unsigned int
+ rightCW : unsigned int

Edge

 

+ fid : unsigned int
+ geometry : OGRPoint
+ outer : unsigned int
+ inner : std::list<unsigned int>

Face

+ exportNodes(file : char *) : bool
+ exportEdges(file : char *) : bool
+ exportFaces(file : char *) : bool

 
WingedEdge

  
 
std::pair<PolygonHandle *, Face>

 

+ file : char *
+ layer : int
+ field : int

FieldDescriptor

+ matches(FieldDefinition *) : bool

+ name : char *
+ type : OGRFieldType
+ justification : OGRJustification
+ width : int
+ precision : int

FieldDefinition

 
+ index : unsigned int
std::map<FieldDescriptor, unsigned int>

+ addToTriangulation(file : char *, schemaIndex : unsigned int = 0) : bool
+ tagTriangles() : bool
+ addAllowedHole(Point) : bool
+ checkValidity() : bool
+ exportTriangulation(file : char *) : bool
+ repairByNumberOfNeighbours(alsoUniverse : bool) : bool
+ repairByAbsoluteMajority(alsoUniverse : bool) : bool
+ repairByLongestBoundary(alsoUniverse : bool) : bool
+ repairRegionsByLongestBoundary(alsoUniverse : bool) : bool
+ repairRegionsByRandomNeighbour(alsoUniverse : bool) : bool
+ repairByPriorityList() : bool
+ matchSchemata() : bool
+ reconstructPolygons(withTopology : bool) : bool
+ exportPolygons(file : char *, withProvenance : bool) : bool
+ exportTopology(directory : char *) : bool

fileNames : std::vector<char *>
schemaFieldType : OGRFieldType
triangulation : Triangulation
outputPolygons : std::vector<PolygonHandle *, Polygon>>

PlanarPartition

- tag0...1

1...*# fields

1...*

- handles

0...*+ nodes

0...*+ edges

0...* + faces

1

0...*

0...*

+ fields

1
0..1

+ fieldEquivalencies

1

1 - universe0...*- polygons

+ fields 0...*

+ fieldEquivalencies

+ outputTopology

1

Figure A.1: UML diagram with a simplified overview of the main classes used in the
soware prototype.
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A.2. Triangulation data structures

 
 
ChainDescriptor

+ front() : Vertex
+ back() : Vertex

 
Chain

std::list<Triangulation::Vertex_handle>struct ChainDescriptor

+ operator[] : ChainDescriptor
 

ChainMap

std::map<std::list<Triangulation::Vertex_handle> *>

+ front() : Chain
+ back() : Chain

 
Ring

std::list<std::list<Triangulation::Vertex_handle> *>

+ count() : size_type
 

RingSet

std::set<std::list<std::list<Triangulation::Vertex_handle> *> >

0...1

+ previous

+ next
0...1

10...1

+ collapsedRings

1

0...1

0...*
1

+ closedRings

1
0...*

+ belongsTo

0...*

Figure A.2: UML diagram of the data structures used to generate closed rings, with
only the main access functions included. e definition of each class in the prototype
developed is included as well.

the data structure storing all polygon information from the input; and when multiple
tags are required, it points to an STL set which keeps all tags (MultiPolygonHandle),
themselves pointers to where the polygon data is stored. In thismanner, there is fast ac-
cess to multiple tags without incurring in the memory overhead associated when there
is a single or no tags [see Austern, 2000].

Meanwhile, the other type definitions used are presented in Table A.1.

Table A.1: CGAL Type definitions used in the prototype.

Type Definition

Kernel Exact predicates but inexact constructions
Triangulation vertex base Triangulation vertex base with Delaunay hierarchy
Triangulation face base Constrained triangulation face base with info (FaceInfo)
Triangulation type Constrained Delaunay triangulation
Point from triangulation
Segment from triangulation
Ring CGAL::Polygon_2

Polygon CGAL::Polygon_with_holes_2

Polygon sets CGAL::Polygon_set_2

Intersection tests CGAL::Object
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+ nid : unsigned int
+ geometry : OGRPoint

Node

 

+ eid : unsigned int
+ geometry : OGRLineString
+ startNode : unsigned int
+ endNode : unsigned int
+ leftFace : unsigned int
+ rightFace : unsigned int
+ leftCCW : unsigned int
+ leftCW : unsigned int
+ rightCCW : unsigned int
+ rightCW : unsigned int

Edge

 

+ fid : unsigned int
+ geometry : OGRPoint
+ outer : unsigned int
+ inner : std::list<unsigned int>

Face

+ exportNodes(file : char *) : bool
+ exportEdges(file : char *) : bool
+ exportFaces(file : char *) : bool

 
WingedEdge

  
 
std::pair<PolygonHandle *, Face>

0...*

+ nodes

0...*

+ edges

0...* + faces

0...*0...*

 

+ start : Triangulation::Vertex_handle
+ end : Triangulation::Vertex_handle

EdgeGen  

+ node : Triangulation::Vertex_handle
+ degree : unsigned int

VertexGen

+ matchesSchema(PolygonHandle &) : bool
+ isMultiPolygonHandle : bool

# originalFile : char *
# layer : unsigned int
# schemaIndex : unsigned int

PolygonHandle

std::map<Triangulation::Vertex_handle, unsigned int>

std::map<std::pair<Triangulation::Vertex_handle, Triangulation::Vertex_handle>, unsigned int>

2

1

1

1

Figure A.3: UML diagram of the data structures used to generate topology. e classes
in blue are temporary, meant to find out if a vertex or face has been already put into the
data structure.

A.3 D       

As an optimisation, it is good to avoid having to triangulate and reconstruct every ring
in a polygon. erefore, a simple method has been determined to decide which rings
should be processed in this manner.

All rings are first processed to remove duplicate vertices, with those having less than
3 total vertices being removed completely (since they are always zero-area), since this
check is quick and can be done in O(n). However, since triangulating and reconstruct-
ing a ring is more computationally expensive, and CGAL has a fast O(n logn+ I logn)
sweep-line algorithm to decide whether a ring is simple, with n being the number of
vertices and I the number of intersections, it is used to decide whether to triangulate
and reconstruct a ring. Since a simple polygon ring is, by definition not self-touching,
there is no need to process these rings, which in a normal planar partition data set
should constitute the majority¹.

¹If invalid polygons constituted the majority, it would be better to avoid this check altogether and
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A.4. Removing duplicate (constrained) edges

A.4 R  () 

Sometimes, a polygon will be self-intersecting along an edge, or a section of it. is
is an important case to check for, since when it happens, the exterior or the interior
of the polygon will be on both sides of the edge, breaking the algorithms for triangle
tagging later on. Although it is not a common occurrence in a digital environment,
the potential for disrupting the algorithms later on makes it necessary to perform this
check.

In general, passing through an edge an even number of times is equivalent to cre-
ating zero-area features when passing back and forth through the same points, which
means that edge that are passed over an even number of times are removed. However,
it is important to take into account what happens when the line segments are not iden-
tical (see Figure A.4). In this case, edges have to be split at the vertices located in the
interior of the other edge, and only the section with an even number of passes should
be removed.

Before:

After:

Figure A.4: When one edge lies in the interior of another one, it is split at the endpoints
of the shorter line. Note that the long edge at the top goes directly from end to end and
that there is a section that has been removed (in grey). e shape of the original polygon
is shown on the le.

To ensure numerical robustness in this case, it is important to check whether any of
the end points of the two edges are the same first, since computing their intersections
directly is not a robust operation. Still, with help of the Delaunay hierarchy in the
implementation, performing this check on a point can be done in O(logn) time or
O(n logn) in total, with n being the total number of points in the triangulation.

process all rings.
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A.5 A         

Input: A face IF of the triangulation of a ring in its exterior.
Output: A tagged triangulation, where each triangle is marked as being part of

either the interior or the exterior of the ring.
1 Push IF into a stack ES, with another stack IS still empty
2 while IS and ES are not empty do
3 if IS is not empty then
4 Pop a face F from IS.
5 foreach neighbour N of F not processed do
6 Mark N as processed.
7 if there is a constrained edge between F and N then push N into ES.
8 else push N into IS.
9 end
10 else
11 Pop a face F from ES.
12 foreach neighbour N of F not processed do
13 Mark N as processed.
14 if there is a constrained edge between F and N then push N into IS.
15 else push N into ES.
16 end
17 end
18 end

Based on the information that a ring must be bounded, the infinite face of a tri-
angulation, or a face in its exterior is known to lie outside of a ring. erefore, and
knowing that all edges along the boundary² are the constrained edges, it is also known
that stepping over a constrained edge is equivalent to changing from the exterior to the
interior of the polygon ring (and vice versa), as it is shown in Figure A.5.

Because of this, it is possible to recursively tag each triangle, starting from the in-
finite triangle as exterior, using the same tag for adjacent triangles when they do not
have a constrained edge in between, and changing tags (exterior to interior or vice
versa) when passing through a constrained edge, as long as care is taken to ensure that
no constrained edges between exterior only or interior only remain (discussed in Ap-
pendix A.4).

Implementation-wise, two stacks of triangles can be used in a recursive traversal
of all connected faces, one to keep the interior ones, and one to keep the exterior ones.
Other implementations could work with a single stack. e computational complex-
ity of this procedure is therefore O(n), with n being the number of triangles in the
triangulation³.

²e boundary denoting the edges adjacent to the interior and exterior.
³As long as it can be checked whether a face has been processed or not in constant time (e.g. by

removing the tags in it).
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A.6. Algorithm to generate a correctly oriented polyline with all boundaries of a polygon
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Figure A.5: Once duplicate edges are removed, traversing faces while passing once
through a constrained edge is equivalent to moving from the exterior to the interior
of a ring, or vice versa.

A.6 A        
   

Input: A face F of the triangulation in the interior of a polygon.
Output: An ordered list of vertices L representing a polyline, which contains all

the boundaries of the polygon and has its interior always to the right,
possibly including bridges joining inner and outer boundaries.

1 foreach edge E of F in clockwise order do
2 if E is not constrained and the neighbour N of F along E has not been processed

then
3 Append to L the results of applying the algorithm recursively with N.
4 Append to L the vertex clockwise from E.
5 end
6 end

In order to generate a polyline passing through all the boundaries of a polygon,
a face from the triangulation that is known to be in the interior of the polygon is re-
quired. From this face, the algorithm is seeded with each of its three incident edges
and appended its three defining vertices in a clockwise order, as shown in Figure A.6.

e algorithm works by recursively performing a depth-first search of edges on the
boundary of the polygon, going clockwise whenever possible. From a seeding face and
edge (see FigureA.7), the algorithmgets the results from applying itself to the clockwise
face, then appends the opposite vertex to them, and appends the results from applying
itself to the counterclockwise face. e clockwise traversal of the triangles belonging to
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Add vertex

Add vertex

Add vertex

Apply algorithm
to edge

Apply algorithm
to edgeApply algorithm

to edge

Figure A.6: From a starting face, the algorithm is applied to its three edges in a clock-
wise order, interleaving the inclusion of the vertex between the edges.

a polygon is best exemplified in Figure A.8, while the step by step polyline generation
is in Figure A.9.

Seeding
face

Seeding edge

Clockwise
face Counterclockwise

face

Opposite
vertex4

3

2

1

5

Figure A.7: From a seeding face (2) arrived through a seeding edge (1), the algorithm
is recursively applied to the clockwise face (3), then the opposite vertex (4) is added,
and then it is also recursively applied to the counterclockwise face (5). is produces
a constant clockwise turn, whenever possible, which gives the boundary in clockwise
order.

Based on this clockwise traversal, a long polyline containing all boundaries reach-
able through the interior of the polygon from that triangle is created. Because of the
clockwise order, the polyline has the correct orientation for each boundary already, but
it also contains “bridges” joining internal and external boundaries, and possibly other
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A.6. Algorithm to generate a correctly oriented polyline with all boundaries of a polygon
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FigureA.8: e traversing orderwhennavigating through triangles in a clockwiseman-
ner. Starting at△A and the edge between△A and△B, the following occurs: (1) Move
to△B, (2) Check CW:△C, Move to△C, . . . , (8) Move to△F, (9) Check CW: exterior,
(10) Check CCW: visited, Move back to △E, . . ., Move back to △A. Similarly, when
starting from △A and the edge between △A and △G: (12) Move to △G, (13) Check
CW: △H, Move to △H, . . ., (19) Move to △K, (20) Check CW: exterior, (21) Check
CCW: visited, Move back to△J, Move back to△I, . . ., Move back to△A. Notice how
the traversal is clockwise (shown in dark blue arrows) for both cases, despite starting
from different sides.

triangles⁴. Specifically, the relevant properties of this polyline are summarised in Table
A.2. Meanwhile, Figure A.10 shows an example of such a polyline from the CORINE
data set.

Table A.2: Properties of the polyline passing through all boundaries of a polygon.

Ready for output To be corrected

Interior is connected Possible “bridges” to inner boundaries
Passes through all boundaries Possible “bridges” to interior triangles
Correct orientation Multiple polylines for multi polygons

For the implementation, using a stack for the triangle traversal and ensuring that
triangles are only visited once (e.g. by removing the tags in the triangle as it is visited),
the polyline is computable in O(n), with n being the number of triangles in the inte-

⁴Such as the seeding face, if it is not in the boundary of the polygon, as discussed in Appendix A.7.
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(a) e triangle traversal
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(b) e polyline generated

Figure A.9: Step by step demonstration of the polyline generation algorithm. It starts at
the seeding triangle, from which the algorithm is applied to all its three incident edges,
although all the polyline is generated from N1 and following the traversal order shown
in black arrows (above). e nodes describing the polyline at each step of the algorithm
are in the lower le (with the vertex added at each point of the recursion in red), while
the final result is in the lower right. Notice that the interior of the polygon always lies
to the right of the polyline.
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A.6. Algorithm to generate a correctly oriented polyline with all boundaries of a polygon

(a) e original polygon

(b) e polyline generated from it

Figure A.10: e polyline generated by this algorithm in polygon 67 of CORINE tile
E39N32. Note how the interior is connected and all holes are part of the polyline as
well.
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rior of the triangulation⁵. If we wish to generate a polygon oriented counterclockwise
instead, the final list of vertices could simply be read from back to front.

A.7 A         
   

Input: An ordered list of vertices L conforming a polyline, which contains all
the boundaries of the polygon and has its interior always to the right.

Output: A set of closed rings S, which preserve the orientation from L and has
all “bridges” removed.

1 Collapse “bridges” in L connecting triangles in the interior to the outer
boundary.

2 Compute the degree of each vertex in L, only taking into account the edges ∈ L.
3 Cut the polyline at the vertices with degree > 2, into a list of shorter polylines P.
4 foreach polyline p ∈ P do
5 Check if p is a closed ring.
6 end
7 while P is not empty do
8 Find a closed polyline p ∈ P.
9 Remove p from P and insert it into S.
10 Collapse the neighbouring polylines of p, if possible.
11 if the degree of the end points of p ≤ 2 then
12 Join the neighbouring polylines of p.
13 end
14 Check if the joined polylines form a closed ring.
15 end

Based on the long polyline passing through all boundaries of a given polygon, as
generated by the algorithm detailed in Appendix A.6, individual closed rings are gen-
erated, all while preserving the correct orientation of the polyline. is allows for the
export of polygons represented as Simple Features.

However, as stated previously in Table A.2, some situations have to be dealt with.
First of all, undesired “bridges” connecting triangles in the interior to the exterior, such
as the one shown in Figure A.11, must be removed. To achieve this, these bridges are
collapsed around a central point, working as a pivot from which surrounding pairs of
points with the same coordinates cause the removal of the central point and one of
the surrounding ones, while the other remaining point becomes the new pivot. is
procedure, which is best shown in Figure A.12, is run for each point in the polyline.

Aerwards, the degree⁶ of every vertex that is part of the polyline is computed,

⁵For this to be strictly true, it is also necessary to ensure that the data structure that keeps the list of
vertices in the polyline has constant access to the last element, and that two lists are able to be joined in
constant time as well (e.g. by using doubly linked lists with a pointer to the last element, such as the one
provided in the STL list).

⁶e number of incident edges to a certain vertex.
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A.7. Algorithm to create valid rings from a polyline with all boundaries of a polygon

Interior triangle

Bridge to an interior triangle

Bridge to a hole

Figure A.11: “Bridges” are generated connecting interior triangles and holes to the
outer boundary of a polygon.

P1(x1, y1)

P2(x2, y2)

P3(x3, y3)

P4(x4, y4)

P5(x5, y5)

P6(x6, y6)

P7(x7, y7)

Pivot

Figure A.12: Whenever the surrounding points of a central point have the same coor-
dinates, it causes the collapse of a “bridge” connecting the outer boundary to a triangle
in the interior of a polygon. When the pivot has reached P4, P3 and P5 are compared,
and since they are identical, P3 and P4 are removed, while the pivot moves on to P5.
ere, P2 and P6 are compared and found to be equal as well, causing the removal of
P2 and P3. e final polyline is therefore (. . . ,P1,P6,P7, . . .).

only taking into account the edges that are part of the polyline. With this, edges with a
degree larger than 2 are identified as junction points for different pieces of the polyline,
which is therefore divided at those points.

All pieces of this polyline are then checked to see if they are closed rings already,
which happens when the next piece starts with the same vertex as the current piece⁷.

Aerwards, the algorithm consists of continuously removing already closed rings,
which are already ready for the output, and performing some operations on the neigh-
bouring polylines from these. First, if they have identical vertices and opposite direc-
tion, they are collapsed with the same procedure mentioned above, eliminating the
“bridges” connecting them to the outer boundary or to other rings. en, if the degree

⁷Assuming that the polyline is a loop as well, and therefore the last piece is adjacent to the first one.
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of the vertex that was the start and end point of the removed ring is smaller or equal to
two (i.e. no longer a junction), the neighbouring polylines are joined together⁸. Oth-
erwise, the degree of the vertex is updated⁹. Finally, it is checked whether these form a
closed ring, which would therefore be processed as such. Figure A.13 shows an inter-
mediate state of the ring reconstruction algorithm.

is algorithm continues until all polylines are either collapsed or have been con-
verted into closed rings, which since their order is never modified, keep the correct
orientation from the algorithm from Appendix A.6. is orientation can be used to
tell whether the newly created rings form outer or inner boundaries.

Implementation-wise,many relationships betweendata structures need to be stored
in order to keep the algorithm efficient (e.g. pieces to rings, pieces to metadata, pieces
to previous and next pieces), so a fast indexed data structure is needed to locate rings in
memory. Also, it is preferable to have unfinished rings only as virtual data structures
and only build them when completely finished, to avoid doing unnecessary operations
in this respect. Appendix A.1 includes the data structures used for this in Figure A.2.

e time complexity of this algorithm is hard to assess, since it is dependent on
many implementation details. Assuming that we have a list-like pointer data structure
with constant time appendage and removal from the back and front, constant time ac-
cess to the relations described in Figure A.2 and O(logn) access to the sets of rings
and polylines themselves, it is possible to give some generalised complexities. For in-
dividual parts of the long polyline processing, bridge collapse can be generally done
in O(n), degree computation in O(n logn) using a binary tree or O(n) using data in
the vertex itself¹⁰, cutting the polyline in O(n) if the high degree vertices are not kept,
with n being the number of vertices in the polyline. For the rest of the algorithm, it
is dependent on the number of polylines generated instead (p), being of complexity
O(p log p). erefore the dominating complexity can come from different parts of the
algorithm. For the prototype, it is O(n logn + p log p), although usually n≫ p.

A.8 F       

To find out the nesting of every inner boundary within the outer ones, a point-in-
polygon test wasmade for every vertex of each inner boundary within the outer bound-
aries. To do so efficiently, the same triangulation data structures used previously might
be used, although for simplicity of programming and testing, a new triangulation was
used in the developed prototype.

⁸is check is necessary, since when the degree is larger than two it means that there is another bridge
or ring connecting at this vertex, creating ambiguity as to whether the next polyline is part of the same
ring (to be joined), another ring (to be put in the output and removed) or a bridge (to be removed).

⁹Because a ring or bridge was removed at this location, reducing the number of incident edges. It
makes no sense to always update it, since the value is not used anymore when the neighbours are joined
together.

¹⁰Which has a substantial impact on memory, since instead of keeping only a degree for the vertices
of this polygon, it would keep one for all the ones in the entire triangulation.

90



A.8. Finding the nesting of inner and outer boundaries

Figure A.13: An intermediate state in the ring reconstruction algorithm. In this exam-
ple from polygon 1752 from CORINE tile 1752, part of the inner rings (in blue) have
been reconstructed, while the outer boundary and other inner rings remain as open
pieces of the long polyline.
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A. D C  I C

is is a solution that works in all cases that might be commonly expected, without
the computational complexity of having to compute much more difficult intersection
tests. However, these are cases where holes would not be detected as being inside a
certain outer boundary, as is shown in Figure A.14.

Outer boundary

Hole 1

Hole 2

Hole 3

FigureA.14: Using the point in polygon test, someholesmight not be correctly detected
as being inside the outer boundary. Specifically, those that are comprised of successive
vertices of the outer boundary (hole 1), those with some successive vertices of the outer
boundary and some outside it (hole 2), and those with all vertices outside the outer
boundary, but with an edge crossing the outer boundary an even number of times (hole
3).

ese problems can be solved by performing additional point-in-polygon tests for
areas inside triangles (e.g. the centroid), although that can cause problems with nu-
merical robustness; or by checking for edge splitting during the construction of the
triangulation¹¹. Nevertheless, this sort of holes are uncommon and the original in-
tent behind them is hard to discern, which makes discarding them also a reasonable
solution¹².

An average computational complexity of this algorithm is hard to ascertain, since
it depends on the probability of a vertex from an inner ring being within an outer ring.
However, the absolute worst case is O(N logn)with N being the total number of points
in the inner rings and n the total number of points in the outer rings. While this could
become an issue with polygons with an extraordinary number of points, it is never a
problem in the tested data sets. If it was, a selective test beforehand could be a good
improvement (e.g. a bounding box intersection one). Nevertheless, since in a normal
planar partition data set the memory to store such polygons would likely become a
limitation much sooner, further possibilities for enhancing this algorithm are not in-
vestigated.

A.9 S M C

For the implementation of schemata matching in the developed prototype, all fields
from each polygon entered are stored independently, together with additional informa-

¹¹Caused when edges cross.
¹²If rings were known not to intersect each other, it becomes a much simpler problem. See Bajaj and

Dey [1990] for a good solution in that case.
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A.9. Schemata Matching Criteria

tion for each (file, layer, field number, name, type, justification, width and precision).
As a new polygon is created, its fields are matched with the previously known ones by
name and type. When an exactmatch (in both name and type) is found, an equivalency
record is created and kept until the polygon reconstruction phase. e data structures
used for this can be seen in more detail in Figure A.1 in Appendix A.1 (in the Field-
Definition and FieldDescriptor classes and themap relationship indicating the field
index number, shown in purple).

Meanwhile, to solve the problem that polygonswith the same ID¹³ should bematched
only in some cases, this operationhas been split into a separate function matchSchemata(),
which looks at the equivalency records, creates new polygonmetadata which combines
all fields from matched polygons, and assigns them this new metadata for reconstruc-
tion.

Finally, when the algorithms to reconstruct polygons from the triangulation are
called, these equivalency records may be used for different purposes:

• To reconstruct seamless polygons across the boundaries of different data sets.

• To create joint feature classes from formerly separate ones.

• To repair polygons only, using the file of origin information to distinguish fea-
tures sharing the same IDs in different data sets.

• To compute statistics on the newly created planar partition (e.g. number of dis-
connected components).

¹³Or any other field used for matching.
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A

B
Completeness and Correctness of
Planar Partitions Repair

In this appendix, the main possible invalid situations that occur are listed, with the
way that they are handled in the developed algorithms. e situations are divided into
those related to points (Appendix B.1), edges (Appendix B.2), rings (Appendix B.3),
and polygons (Appendix B.4).

B.1 P

Repeated points Duplicates are eliminated without giving any error, since they are al-
lowed in some representations (e.g. Shapefiles), and commonly present when the
first and last point of a polygon are required to be the same.

B.2 E

Vertex on an edge If it is exactly in the interior of an edge, it splits it at that point,
creating two edges from it.

Crossing edges A new vertex is generated at their intersection, except when they cross
at the start or end point of either of the edges, in which case it is not necessary.

(Partially) overlapping edges e overlapping sections are eliminated when passed
over an even number of times. If they are odd, a single instance of the section is
kept.

B.3 R

Open rings ey are closed by joining their end and start points.

95



B. C  C  P P R

Zero area rings Are eliminated whether they represent outer or inner boundaries. If
all outer boundaries are eliminated, the related inner boundaries are eliminated
as well.

Spikes and bridges ey are eliminated and a self-intersection error is reported.

Self-intersecting As long as it is not only self-touching, multiple rings are formed. A
self-intersection error is also reported.

B.4 P

Zero area polygons Are eliminated, including both its outer and inner boundaries.

Touching holes Are joined, if possible (i.e. when whey are touching along a section of
an edge).

Holes (partially) outside an outer boundary If they are partially outside, they are elim-
inated, since it is dubious which outer boundary they belong to. If they are com-
pletely outside but completely inside a different outer boundary, they are are
assigned as holes of it. Otherwise, an error is given and they are eliminated.

Overlapping holes ey are joined together.
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A

C
Data Sets Used

In this Appendix, the most important data sets referred to in this thesis are described.
Appendix C.1 deals with the simple polygons used for testing specific problems, while
Appendix C.2 describes the other important data sets used.

C.1 U T P

In this appendix, the simple polygons used in Section 5.2 are shown. Black lines de-
scribe outer boundaries, red lines inner boundaries, and dark red lines when they both
overlap (inner and outer). e same applies for vertices. Arrows are used to disam-
biguate some cases, with the same colour scheme. e interior of each part of a (multi)
polygon is shown in a different colour, while holes are white, and dubious cases in grey.
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C. D S U

(a)
“point”

x3
(b)
“3point”

(c) “line”

(d) “backforth” (e) “colinear” (f) “3backforth”

(g) “bighole” (h) “2bigholes”

Figure C.1: Zero area unit test polygons.
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C.1. Unit Test Polygons

(a) “cw” (b) “ccw” (c) “innerhole”

(d) “2innerholes” (e) “tinnerholes” (f) “hole”

(g) “holenode” (h) “2holenode” (i) “2separate”

(j) “bridge” (k) “bridgeback” (l) “edgehole”

(m) “2edgehole” (n) “spikeout” (o) “spikein”

Figure C.2: Unit test polygons with a single interior connected region.
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C. D S U

(a) “selfintersect” (b) “selfnode” (c) “selouch”

(d) “tworings” (e) “twoareas” (f) “twosemi”

(g) “2holes” (h) “3holes”

Figure C.3: Unit test polygons with two interior connected regions.
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C.1. Unit Test Polygons

(a) “3touch” (b) “3node”

(c) “3separate” (d) “3loop”

Figure C.4: Unit test polygons with three interior connected regions.
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C. D S U

(a) “out” (b) “corner” (c) “edge”

(d) “partially” (e) “multiple”

Figure C.5: Unit test polygons with degenerate holes.

(a) “open” (b) “tworing” (c) “reverse”

Figure C.6: Unit test polygons with an unknown number of interior connected regions,
depending on the interpretation of the polygon.
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C.2. Large Data Sets

C.2 L D S

CORINE

e Coordination of Information on the Environment (CORINE) data set is the result
of a programme from the European Commission originally developed from 1985 until
1990. With later revisions in 2000 and 2006, it now contains land cover data for 39
European countries, with a geometric accuracy better than 100 m [EEA, 2007].

Formost of thework performedwithin this thesis, the data set from the year 2000 is
used [Bossard et al., 2000]. It comes in two forms: a tiled version in 713 parts and about
2,800 polygons per tile, on average; and a “seamless” versionwhere each land cover type
is provided separately. Since the tiled data set allows obtaining all land cover types in
a certain region without having to get data from all the files in the data set, it is more
useful for the work of this thesis.

While the data set maintains relatively good quality throughout, it does have some
problems, which are used to exemplify cases presented throughout this thesis. e
most important of these are: overlaps and gaps between tiles, shied polygons, and
modelling inconsistencies (e.g. the use of both multi polygons and separate polygons).

Portugal/Spain Cross-border Data Set

It consists of two polygons for the Arribes del Duero Natural Park in Spain (8643 ver-
tices) and the International Douro Natural Park in Portugal (2428 vertices). Together,
they form a binational protected area along the Douro river.

Because of these data sets are independently generated, and border along a natural
feature, they form only an approximate match and it provides a very good example of
both horizontal conflation and data harmonisation.
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