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Chapter 1

Introduction

1.1 Motivation

At present, 55% of world’s population live in urban areas (Ritchie and Roser, 2018), and the UN
World Population Prospects estimates this number will increase to 68% by 2050. While living in or
near cities brings many benefits and, in general, higher living standard to individuals, there are rather
strong concerns related to it as well. Of all the population living in urban areas, 90% are exposed to
pollutant concentrations exceeding the guidelines prescribed by the World Health Organization (Pruss-
Ustun and Corvalan, 2016). Cities tend to produce and retain more heat, an effect that is known as
the urban heat island (UHI); the effect exposes citizens to discomfort and health-related problems, and
also leads to higher energy demands for cooling (Moonen et al., 2012). Furthermore, pedestrian-level
wind is exaggerated in groups of high-rise buildings which causes discomfort to pedestrians or can
even result in casualties (van Druenen et al., 2019).

Computational wind engineering (CWE) has become a valuable tool in quantifying those issues
and in developing mitigation strategies that can make cities a more pleasant, healthier, and safer
place to live in. Recent CWE investigations have shown that minor alterations to urban features, such
as adding canopies to buildings, can reduce strong winds up to 39% at the pedestrian level around
high-rise buildings (van Druenen et al., 2019). Research by Jia and Wang (2021) targeting thermal
comfort has found that peak temperatures in a city can be reduced by over 4 ◦C with tree plantation.
McNabola et al. (2009) investigated the placement of low boundary walls (1 - 2 m) in street canyons;
the results indicated possible reductions in pollutant concentration by up to 75%, depending on the
wind direction. Many of the mitigation strategies that involved CFD as a tool are covered in Li
et al. (2021). These examples show that investing resources in the development of tools used in CWE
contributes towards very important goals.

In 2014, NASA published the CFD Vision 2030 Study (Slotnick et al., 2014) with the state-of-
art overview and the research strategy to address the main issues in the whole of the CFD field.
They acknowledged that CFD workflows spend the most of time on geometry pre-processing and grid
generation. Geometry preparation was recognised as one of the main bottlenecks in present CFD
simulations. The study also expressed the urge to achieve a much higher degree of automation in all
analysis process steps, with geometry creation exhibited as the prime example. Years later, attempts
to confront this issue have been made, albeit with little progress. Computational wind engineering,
which deals with some of the largest temporal and spatial scales in the field, still requires a considerable
amount of manual labour during the pre-processing step. Blocken (2021) recently confirmed that
geometry preparation and meshing still occupies roughly 80% of human hours. Moreover, geometries
can be modelled at different levels of detail (as will be illustrated in Section 2.2); the effect of levels
of detail on the predictability of CFD simulations has not been studied yet. Lastly, guidelines on
geometry modelling are practically non-existent.
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On the other hand, the geomatics field has established standards and has undergone noticeable
achievements in 3D city modelling. Researchers have developed algorithms and procedures that can
automatically reconstruct entire countries (Airaksinen et al., 2019; Dukai et al., 2021; Ledoux et al.,
2021). Initially used for visualisation purposes, semantic 3D city models have grown to be a part
of many applications (Biljecki et al., 2015). Goals and methodologies in geoinformation tend to
be comprehensive and applicable to as many different fields as possible. However, this means that
application-specific requirements need to be addressed.

In CWE, the level of detail in geometry depends on the meshing process which is lead by the
available computational power and numerical method requirements for the subsequent simulation, as
well as the limitations of the meshing software. Consequently, there is a need for a certain amount
of flexibility with the geometry creation; above all, it is necessary to provide it in an efficient and
fully automated way. Additionally, semantic 3D models are only used in CWE for their geometry;
notwithstanding the potential benefits, nobody has tried to capture semantic data useful for CWE,
such as roughness, and store it as a part of the city model.

All the mentioned issues provide strong motivation for a research topic — one that is interdis-
ciplinary and addresses bottlenecks in computational wind engineering using expertise from 3D city
model reconstruction.

1.2 Research Objective

The goal of my research is to: develop a framework that automatically reconstructs semantic three-
dimensional urban environment models optimised for CFD at different levels-of-detail.

The research questions are refined in Chapter 3.

1.3 Scope of the Research

• Main bottlenecks in the simulation of urban flows (e.g. wind flow and pollutant dispersion),
particularly related to largely manual geometry preparation, will be pinpointed.

• The framework will provide a set of algorithms and rules that enable the automatic creation of
urban environment geometry acceptable for Finite Volume Method (FVM) meshers.

• The input for the framework will be the combination of the data readily available in many
countries, such as 2D GIS and point cloud elevation data, or 2D GIS with height data for
individual buildings.

• This work will consider buildings, terrain and vegetation.

• This work will focus on two distinct areas:

– Zone of influence where buildings are explicitly constructed at different levels of details
(LoDs), and

– The rest of the domain where buildings are implicitly modelled by either surface roughness
or additional terms in transport equations.

• This work does not aim to develop algorithms for the FVM meshing process, but rather focuses
on identifying important parameters for open-source meshing algorithms that could greatly aid
potential users.

• The response of urban flows to different LoDs and simplifications will be systematically quantified
using an uncertainty framework.
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• Verification and validation of the framework will be conducted by comparing simulation outputs
to available wind tunnel and field measurement data.

1.4 Structure of this Report

This proposal is organised in 5 chapters:

• The current chapter introduces the motivation guiding the research, the research objectives and
the scope of the research.

• Chapter 2 summarises related work as well as the relevant background knowledge and theory
necessary for conducting the research.

• Chapter 3 explains the proposed research strategy including the research questions and meth-
odology.

• Chapter 4 discusses my initial results.

• Chapter 5 provides an overarching view of the research plan and the practical aspects of com-
pleting the degree requirements including the timeline and graduate school obligations.

3



Chapter 2

Related Work and Background Theory

This section gives a general overview of the theory directly related to the research proposal and
an overview of the related work, with a particular emphasis on recent developments. As my topic
is interdisciplinary, laying on the border of two different fields, there might be some collisions in the
terminology. My aim is to address them accordingly.

2.1 Urban Flows

Atmospheric flows contain large temporal and spatial scales, ranging from seconds to years and
from millimetres to thousands of kilometres, respectively (Figure 2.1). They can be divided into three
distinct categories based on horizontal scales (Orlanski, 1975):

• Macroscale or synoptic scale: large scale atmospheric motions ranging from hundreds to thou-
sands of kilometres, such as cyclones or even global climate.

• Mesoscale: from few to several hundreds of kilometres; includes phenomena such as cloud form-
ation, thunderstorms, precipitation.

• Microscale: ranges from few hundreds of meter to few kilometres; focuses on phenomena caused
by objects in the vicinity of the ground, e.g. corner vortices, canyon circulation, building wakes,
urban microclimate (Oke et al., 2017).

The atmospheric boundary layer (ABL), shown in Figure 2.2, is the bottom layer of the tropo-
sphere, in direct contact with the Earth’s surface (AMS). Local small-scale phenomena happening in
the urban canopy layer (UCL) are not of interest in the two larger-scale models. Thus, they are not
modelled explicitly; they are approximated, for example, with aerodynamic surface roughness length.
This way, the whole city can be replaced with one value and an equation that models the influence of
the city on the ABL.

Microscale models solve the transport of quantities of interest around geometrical features, i.e.
explicitly modelled obstacles. They are generally referred to as CFD models (Blocken, 2015). The
computational domain, space where the fluid resides, is divided into finite volumes. In urban flows,
this is the area between buildings and other urban features where the wind flows (Figure 2.3). A set
of partial differential equations, called transport equations, is solved for every finite volume, whose
general formulation in the differential form is

∂

∂t
(ρφ) +∇ · (ρvφ) = ∇ ·

(
Γφ∇φ

)
+Qφ, (2.1)

where the first term on the left hand side is the unsteady term, the second term is the convection
term, the first term on the right hand side is the diffusion term, and the last term is the source/sink
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Figure 2.1: Atmospheric tempo-spatial scales, figure a combination of Orlanski (1975); Randerson
(1976); Moussiopoulos et al. (2003), from Blocken (2014).

Figure 2.2: Schematics of a typical daytime boundary layer, from Oke et al. (2017).

term; ρ denotes the density, φ is the quantity of interest, v is the velocity vector and Γ is the diffusion
coefficient (Moukalled et al., 2016). By assigning correct values to φ, Γφ and Qφ, one can obtain the
differential form of any conservation equation, for example, continuity, linear momentum, energy or
species transport. There are other methods to model fluid flow, but the finite volume method (FVM)
is among the most popular (Rapp, 2017).

Geometrical features such as buildings represent an obstacle, or a boundary of the domain. This

5



Figure 2.3: Generic city geometry (up) and its corresponding finite volume mesh (below).

boundary can be modelled either as a body-fitted mesh or approximated with a group of methods
known as the immersed boundary (Constant et al., 2017). The number of control volumes directly
affects the turnaround time of the simulation. Buildings can be (re)constructed at different levels
of detail (LoDs) depending on the quality of input data, computational power, zone of interest, and
capabilities of CFD pre-processing tools; the concept of LoD and its application in CFD is explained
in more detail in Sections 2.2 and 2.3. Explicitly reconstructing the whole domain of simulation
upstream and downstream of the area of interest is prohibitively demanding for the most present-day
computational resources. To make simulations feasible, mathematical representation in the form of
porosity or drag force substitutes the geometry. One of few notable exceptions to this is Ashie and
Kono (2011), where the authors simulated 23 wards of Tokyo, a 32x32 km area. They used 5 billion
control volumes, a number that is demanding even for modern high-performance computing clusters.

Both the size and the quality of the computational mesh are the critical points in reaching a
stable and accurate numerical solution. The quality of the finite volume mesh is a broad topic, but
generally speaking, the highest quality can be reached with a structured hexahedal mesh (Baker, 2005).
Structured mesh is made manually, so a city-scale geometry takes a long time to finish. Automatic
unstructured mesh generators can produce a good quality mesh, but this depends on the preparedness
of the computer-aided design (CAD) model1. Small features such as chimneys and windows can
severely degrade the mesh quality as they force the mesh to deviate from a regular shape. Geometric

1https://www.pointwise.com/case-studies/5fa46c815787332e68115137
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simplification aims to alleviate this problem by removing small geometrical features, lowering the LoD
of buildings and/or parameterising the whole regions of the domain. Section 2.3.2 reviews the topic
of simplification in more detail. These simplifications can affect the results and uncertainties attached
to them, but still may offer acceptable accuracy of the larger scale motions over the whole city. It is
a balancing act and one of the main outstanding issues in the CFD community (Mirzaei, 2021). It is
also one of the key scientific goals of this PhD research.

Initially, there used to be a distinct separation between the different tempo-spatial scales; in recent
years, researchers are focusing on the coupling between the mesoscale and the microscale simulations,
where the larger scale is used as a boundary condition for the smaller scale (Muñoz-Esparza et al.
(2014); Garćıa-Sánchez and Gorlé (2018); Temel et al. (2018); Piroozmand et al. (2020) to name a
few).

2.2 3D City Modelling

The 3D modelling of the built environment involves the creation, manipulation and use of 3D digital
representations of real-world objects, including buildings, terrains and infrastructure (Arroyo Ohori
et al., 2021). These representations usually include a mix of geometric, topological and semantic
information (Arroyo Ohori et al., 2021), some of which are shared among different applications, and
others that are application-specific. Initially used for visualisation, the applications of 3D city models
rose rapidly in the last decade. Biljecki et al. (2015) made a comprehensive review of 29 use cases,
one of them being CFD. Nevertheless, application-specific requirements have not yet been defined for
CFD uses; 3D city models are used exclusively to extract the geometry and place it through a largely
manual and tedious geometry preparation step, explained in Section 2.3.

2.2.1 CityJSON and CityGML

Many formats can be used to represent and store 3D urban objects. The list includes Wavefront
OBJ, PLY, gITF, etc., with most of them primarily used for visualisation. What is common to most
of those models is that they lack support for semantics and attributes. Arroyo Ohori et al. (2021)
explained that a semantic 3D city model is a data model which “is decomposed into classes that we
deem relevant for certain applications, for instance the city is decomposed into the classes ‘building’,
‘road’, ‘tree’, ‘lamppost’, etc. and each of the objects has its own 3D geometry and potentially (them-
atic) attributes (e.g. the owner of a building, the name of street, the city identifier for a lamppost,
etc.)”. To illustrate the applicability of semantics in CFD: a building is composed of walls and a roof,
where both of those classes can have different values of the roughness attribute attached to them. See
Section 2.3.2 for the roughness concept. Open Geospatial Consortium (OGC) adopted the CityGML
data model as the international standard that represents semantic 3D models of cities and landscape
(Open Geospatial Consortium, 2012). It contains classes commonly found in an urban context, such
as buildings, bridges, vegetation, and bodies of water to name the few; it also incorporates hierarchical
relationships between them, e.g. a building is composed of parts, which are formed of walls, which
have windows (Ledoux et al., 2019).

The most significant issue of CityGML is its XML-based encoding. XML requires special libraries
to handle the data, and GML has several different ways to store the same geometry (Ledoux et al.,
2019). All that makes CityGML very hard to parse or extract information from (Arroyo Ohori et al.,
2021). The sheer complexity of CityGML hardly motivates its application in other fields. If we
take a glance at the review of CityGML’s application domain extensions (ADE - application-specific
augmentations to the data model) by Biljecki et al. (2018b), we will notice there is not a single one
related to CFD.

Ledoux et al. (2019) addressed the main issues of CityGML encoding; they created a new JSON-
based encoding, CityJSON, that tackles most of the disadvantages CityGML has. Not only that,
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CityJSON files are on average six times more compact in size (Ledoux et al., 2019).

2.2.2 Levels-of-Detail

Biljecki et al. (2014) formalised the definition of the level of detail (LoD) in 3D city modelling
as the degree of correspondence between the model and the real-world object, being driven by the
geometry, appearance, semantics and other related metrics which can be quantified, with separated
exterior and interior concept. CityGML prescribed five standard LoDs for exterior representation
(Figure 2.4a). Biljecki et al. (2016b) extended the CityGML classification with a set of 16 LoDs to
remedy ambiguities that had arisen from the original classification. These are now referred to as
“TUDelft LoDs”.

To the best of my knowledge, there have not been attempts to adopt any of the LoD for buildings
in urban flows. From the CWE standpoint, the TUDelft classification is more useful than the one from
CityGML. My statement is supported by Mirzaei (2021) who proposed the introduction of TUDelft
LoDs in CFD applications. For example, Ricci et al. (2017) compared results of wind flow field between
what would be considered as LoD1.1 and LoD1.3; they found considerable differences in the flow field
between the two classifications. I will review this work in more detail in Section 2.3.2.

(a) LoDs defined by CityGML (Open
Geospatial Consortium, 2012).

(b) Extended LoDs by Biljecki et al. (2016b).

Figure 2.4: LoD definitions for buildings, from Biljecki et al. (2016b).

2.2.3 Validity

CityGML data model prescribes the subset of ISO 19107 (ISO, 2003) standard to represent the
geometry of its 3D objects. Figure 2.5 shows primitives relevant for the modelling in the built envir-
onment. In short, a 3D object should be 2-manifold, should have consistently oriented faces, should
not have duplicate vertices nor self-intersecting geometries (Arroyo Ohori et al., 2021). The two
restrictions that the CityGML imposes are:

1. GM Curves can only be linear (thus only LineStrings and LinearRings are used);

2. GM Surfaces can only be planar (thus Polygons are used).

Typical requirements for a geometry later used for finite volume mesh generation are: clean, free
of defects, watertight (Ho, 2019). Beall et al. (2004) marked gaps and overlaps as the most common
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Figure 2.5: ISO 19017 primitives relevant for the modelling of the built environment, from Ar-
royo Ohori et al. (2021).

defects in geometry preparation. The authors also acknowledged dangling faces as one of the common
reasons automatic mesh generation algorithms can fail. Some automatic finite volume mesh generators
manage to work around a few of the problems, but it is rarely without issues that require manual
repair.

Looking at CityGML specifications and then back at CFD requirements, it is safe to assume that a
valid ISO 19107 geometry is one of the foundations for a CFD-ready geometry. To investigate to which
extent 3D datasets are truly valid, Ledoux (2013) proposed a methodology which resulted in an open-
source software val3dity (Ledoux, 2018). Unfortunately, Biljecki et al. (2016a) observed that perfectly
valid 3D datasets are scarce. The good news is that in the recent years the geomatics community
recognised the importance of valid datasets, and the latest geometry reconstruction algorithms aim to
avoid as many errors as possible. Table 2.1 shows some of the validity issues and the importance of
avoiding them in CFD according to my own experience and the experience of others2 (Sadrehaghighi,
2018).

Table 2.1: Validity issues and problems it create in CFD

Issue Severity in CFD

Non-manifold Severe
Non-watertight Severe
Intersections Severe
Duplicated outer surfaces Severe
Wrong orientation Moderate
Duplicated vertices Moderate
Duplicated/missing inner surfaces None

Additional issues not covered by ISO19107 requirements for CFD include: small features, small
edges, and small gaps between buildings. The first two issues are handled with simplification; see
Section 2.3.2 for more details. The third one with the footprint generalisation (Section 2.2.5).

2https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/SimCFD-
UsersGuide/files/GUID-6758F06E-D52E-4191-B0FE-4A0A11EBC457-htm.html
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2.2.4 Automatic reconstruction of semantic 3D city models

Automatic building reconstruction is a balance between the data-driven and model-driven ap-
proaches; it combines the input data and modelling assumptions on the building shape to reach the
main goals: low complexity, high accuracy and geometric validity (Arroyo Ohori et al., 2021). The
importance of respective goals varies from one application to another, so some degree of flexibility in
algorithms is necessary. The 3D geoinformation research group has expertise in the development of
building reconstruction algorithms. Here, I will present a few of them.

Ledoux et al. (2021) developed an LoD1.2 footprint extrusion framework called 3dfier. The frame-
work uses 2D geographical datasets and “lifts” them to a height calculated from elevation data such as
LiDAR. It also defines a set of rules on feature reconstruction based on the semantic data from the 2D
dataset. For example, water polygons are horizontal, buildings are prismatic, and roads are smooth.
3dfier was used by Deininger et al. (2020) as a basis for geometry preparation in their semi-automatic
workflow for urban flows (see Section 2.3.1).

Ravi Peters developed an LoD2.2 automatic reconstruction algorithm whose overview is presented
in Arroyo Ohori et al. (2021). The algorithm, just like 3dfier, uses 2D geographical data and a point
cloud, more specifically the Dutch Register of Buildings and Addresses (BAG) and the Dutch National
Height Model (AHN). The algorithm was used as a part of the 3D BAG project (Dukai et al., 2021)
that successfully reconstructed 10 million buildings in the Netherlands. The algorithm, schematically
shown in Figure 2.6, detects roof planes (step 2 in the figure) and lines (step 3) from the point cloud,
regularises and clusters them (step 4) to create the so-called roof partitions — a planar partition of
the footprint where each face corresponds to a planar piece of the roof and is labeled with a roof
plane (step 5). In the end, roof partitions are lifted to their respective heights, and with vertical walls
they form a final building model (step 6). Geometric validity was one of the main goals during the
development of the algorithm; with that, the 3D BAG database contains around 85% valid buildings.
Limitations to this method is that it constructs 2.5D geometry and it is picewise planar.

Figure 2.6: LoD2.2 reconstruction algorithm by Ravi Peters, from Arroyo Ohori et al. (2021).

Nan and Wonka (2017) developed a reconstruction method that intersects primitives (planes) and
seeks an appropriate combination of them to obtain a manifold and watertight polygonal surface mode.
The method assumes that all surfaces are detectable from a point cloud, but this is never the case in
the airborne LiDAR — some surfaces do not get captured by the laser beam due to having obstacles
(other surfaces) in their way, i.e. the occlusion effect (Ledoux et al., 2020). Additionally, the method
is not optimised for large datasets. However, with a quality point cloud, the method can produce 3D
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geometry whose complexity (for instance small features like chimneys) can be regulated with a model
complexity term. Huang (2020) is currently working on a PhD topic that uses a similar method as
Nan and Wonka (2017), but detects and adds missing planes for the algorithm and enables city-scale
applicability, making the potential outcomes beneficial for my topic.

2.2.5 Generalisation

Generalisation provides the opportunity to rectify inconsistencies in detailed models and to simplify
data for application-specific usage (Labetski et al., 2017). Even though simplification is just one as-
pect of generalisation, the CFD community generally uses that term for any type of generalisation and
implicit modelling of geometrical features with mathematical formulae. For 3D city models, 2D foot-
print generalisation is fundamental as it can efficiently solve many problems, especially for buildings
obtained from extrusion. Commandeur (2012) proposed a generalisation algorithm tailored specific-
ally for building footprints, based on the 3D generalisation algorithm by Kada (2008). The algorithm
uses distance and angle threshold as a parameter, potentially very useful in CFD applications.

There have been attempts to make 3D generalisation specifically for CWE, but only with limited
success. Section 2.3.2 presents those methods as a part of a larger topic of simplification in CFD. For
LoD2 buildings, the reconstruction algorithm should offer some flexibility in the extent of details that
are being reconstructed. This way, the whole workflow can be less complicated and presumably more
time-efficient than a generalisation step after reconstruction. The automatic reconstruction algorithm
used in Dukai et al. (2021) does precisely this; it conducts graph-cut optimisation of planar roof
partitions, which directly affects the geometric complexity of the output.

2.3 3D City Models in CFD

Unlike 3D city models where each feature (building, road, tree, etc.) is represented with geometry
and attributes, 3D city models in CFD consist of different areas, some explicitly modelled with geo-
metries and the others that are implicitly modelled. Blocken (2015) made a distinction of five areas
of the computational domain widely used for urban flow simulations (Figure 2.7):

• Area 1: The area upstream of the inlet which is taken into account with an inflow bound-
ary condition and an aerodynamic roughness length z0,1 defined with the updated roughness
classification of Davenport (Wieringa, 1992).

• Area 2: The area between the inlet and the explicitly modelled buildings. Buildings and other
obstacles here are simplified, i.e. implicitly modelled with aerodynamic roughness length z0,2,
also defined by Wieringa (1992), as a porous media or additional drag terms. Modelling of that
area is further discussed in Section 2.3.2.

• Area 3: The area amongst buildings in the influence region or the area of interest. It includes
implicitly modelled features such as sidewalks, poles, trees, etc. This area can be modelled the
same way as Area 2 - with aerodynamic roughness length and porosities/drag terms.

• Area 4: The explicitly modelled buildings in the influence region or the area of interest that can
be created in different LoDs. The rough surfaces of those buildings (facades, windows, balconies)
can be implicitly modelled with a standard wall function (Launder and Spalding, 1974) with a
sand-grain roughness height ks modification (Cebeci and Bradshaw, 1977).

• Area 5: The area between the outlet patch and the influence region. This area can once again
be implicitly modelled with the aerodynamic roughness length z0,5.

It is worth noting that specific inflow boundary conditions (i.e. changing the inflow profile) cannot
account for perturbations caused by the city upstream of the zone of interest (Area 2 in Figure 2.7).
Liu et al. (2017) compared the full city model against a district of interest with enhanced roughness
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Figure 2.7: Five domain areas in a typical urban flow simulation, from Blocken (2015).

length for the inflow condition. They showed that the modified inflow boundary does not capture the
wind decay through the city sufficiently, leading to a gross overestimation, by a factor of two, of wind
velocity at the zone of interest.

When talking about explicitly modelled buildings (Area 4 in Figure 2.7), I have to add few im-
portant remarks. First, the concept of LoD has not found its way to CFD. Mirzaei (2021), in one
of the latest review papers on urban flows, recognised the necessity for LoDs and proposed the in-
troduction, using Biljecki et al. (2016b) as an example. Even more, there is no established standard
on storing geometry semantic data for CFD applications, nor research papers outline details on how
they handled semantics. Lastly, as already noted in the previous section, there are no guidelines nor
application-specific requirements on 3D city models for CWE. CFD practitioners solely use 3D city
models to extract geometry in one of the formats accepted by most CFD software (STL, STEP, IGES,
Wavefront OBJ); what follows is the geometry preparation step explained in the next section.

2.3.1 Creation of CFD-Ready 3D Urban Environment Models

The initial step of acquiring the unprepared geometry depends on the already available dataset or
methods introduced in Section 2.2; here, I will focus on the specifics and examples related to CFD.
These geometries are not ready for the finite volume mesh generation step, but typically undergo the
geometry preparation step consisted of geometry cleanup (Simões and Estanqueiro, 2016) and simpli-
fication (Section 2.3.2). The geometry preparation refers to the repair of issues with the geometry:
non-manifold edges, filling holes, resolving conflicting surfaces and other degenerate inputs, as well as
removal features that are smaller than the targeted finite volume mesh size. This process has been
automated to a certain extent. Lu et al. (2011) developed a framework that automatically cleans
extruded polygons in order to create an error-free, CFD-ready 3D city model. The main idea was to
generate polygon layers, repair those layers and then stitch them to get the final model. The main
methods used were the k -way boolean and the Minkowski sum operations. Even though the framework
showed to be computationally efficient and robust, the output mesh showed small, sharp features and
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sliver triangles, meaning not all issues could have been avoided. There are many open-source and com-
mercial software packages that offer geometry repair to some degree. Saeedrashed and Benim (2019)
made a review of seven of them, specifically checking their usability for urban wind simulations. They
concluded that no software could offer automatic geometry repair at the time to the point that it can
be considered simulation-ready.

Buildings in CFD simulations are commonly created in LoD1, be that as LoD1.1, LoD1.2 or
LoD1.3. As I already mentioned, the concept of LoD is still not recognised in the CWE community,
but I took the liberty to categorise other works myself. Zhang et al. (2021) used GIS data with storey
information to automatically reconstruct an LoD1.2 geometry of a city. They used 3 m as a storey
height approximation. Gao et al. (2018) had previously employed the same approach of extruding
polygons. Very few authors used LoD2 geometries on a larger scale, i.e. a city district or more. An
example of that is Toja-Silva et al. (2018) and Toja-Silva et al. (2017), where the authors used the
LoD2.1 model of a district in Munich. They noted that it took them a long time and a lot of manual
effort to get a geometry that is adequate for a numerical simulation.

H̊agbo et al. (2020) made a comparison of four different geometry acquisition methods: basic foot-
print extrusion, the Norwegian national feature catalogue FKB (Felles KartdataBase) stored in the
geographical information format SOSI (Systematic Organization of Spatial Information), photogram-
metry and LiDAR point clouds. They manually processed, i.e. cleaned all of the investigated models
before running any simulations, with the results shown in Figure 2.8. Their simulation on pedestrian
wind comfort showed similar results between the second, third and fourth acquisition methods, indic-
ating that LoD1.2 footprint extrusion might not be sufficient. The authors concluded that the FKB
model is the most promising for further applications, as it is easier to use than the two point cloud-
based models. Furthermore, they referred to the point cloud processing step as “time-consuming”.
Finally, they did not work on automation of the workflow, nor tried to combine different acquisition
methods to exploit their advantages, as done in 3D BAG (Dukai et al., 2021).

Figure 2.8: CFD-ready geometry from different acquisition methods, from H̊agbo et al. (2020).

The example of a largely automated workflow can be found in Deininger et al. (2020). The authors
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created a workflow that combined FME3 for point cloud processing, 3dfier (Ledoux et al., 2021) for
3D city modelling and workflow by Piepereit et al. (2019) for geometry repair and simplification. The
process is largely automated; however, there is still a need for some manual geometry repairs that
authors conducted in ANSYS SpaceClaim. The following section will give more information on the
simplification algorithm. Lastly, even the latest review papers on urban flows (Mirzaei, 2021) express
the need for automated algorithms that can reconstruct urban areas on a larger scale.

2.3.2 Simplification

Some features are too complex (i.e. they create too many finite volume cells or bad quality mesh)
to model them explicitly. The examples include short edges and gaps between buildings, balconies and
windows, vegetation, sidewalks, lamp posts, or even whole city regions away from the area of interest
(Blocken et al., 2012). This section gives an overview of simplifications typically used to make urban
flow simulations feasible. By simplification, I am referring to a set of algorithms, models, and rules
that replace the high-detail explicitly modelled urban features with computationally more efficient
approximations, mainly for the momentum exchange. It means that even there is some overlap,
simplification in CFD is not the same as a simplification in geoinformatics. I will also mention the
usage of different LoDs as a part of the simplification process.

The following section is divided into two distinct categories: simplifications done in the influence
region and outside of it. As mentioned earlier in this section, the influence region is the part of the
domain where the buildings are modelled explicitly. Outside this region buildings are parametrised.
Please note that vegetation modelling and its simplification are covered separately in Section 2.4.

Simplification within the influence region

The best practice guidelines (Blocken, 2015; Franke et al., 2007) ask for the highest detail of
buildings depending on available resources, without any other specific requirements. The accepted
practice in CFD is to remove features that are smaller than the targeted mesh size (Beall et al., 2004).
The widespread use in the literature shows this is also very much represented in CWE (Porter, 2020).
The combination of different LoDs within the influence region seems to be a prevalent option among
researchers, as done in Yoshie et al. (2007); van Hooff and Blocken (2010a); Montazeri et al. (2013);
Ricci et al. (2020a).

To give an example, van Hooff and Blocken (2010a) validated a natural ventilation case where
the building of interest was reconstructed in a high LoD, whereas the surrounding buildings in the
influence region had both the lower LoD and less detailed computational mesh (Figure 2.9). The
works mentioned above do not give much information on the geometry modelling nor simplifications,
but by visually observing, I can conclude they mostly resorted to LoD1.1 and LoD1.2 specifications
according to classification by Biljecki et al. (2016b). Moreover, none of the works investigated the
effect of those simplifications.

Ricci et al. (2017) published one of the first works that deal with the consequences of geometry
simplifications on the wind flow field. They compared geometries of a city block reconstructed in
what I would classify as LoD2.1, LoD1.3, and LoD1.1. They found substantial differences between
LoD1.3 and LoD1.1, but also a satisfactory agreement between LoD2.1 and LoD1.3. The authors
also addressed that the time required to create LoD2.1 geometry and the subsequent simulation took
five times longer than LoD1.3. Even though lacking the uncertainty quantification, this research has
shown that LoD1.1 might not be enough to capture the flow field in the influence region accurately.
The comparison of different acquisition methods by H̊agbo et al. (2020) also showed that there is a
notable difference between LoD1.2 and LoD1.3 for pedestrian wind comfort simulations.

3https://www.safe.com/fme/

14



Figure 2.9: Geometry for a CFD case with different LoDs for buildings, from van Hooff and Blocken
(2010a).

Certain works aimed to simplify geometry as least as possible, only in places where it could
potentially cause problems for finite volume mesh generators. The idea here is to reduce the number of
finite volume cells and increase the quality of the resulting finite volume mesh without a hefty penalty
on simulation results. This on par with the generalisation concept in 3D city modelling explained
in Section 2.2.5. Piepereit et al. (2019) proposed a simplification framework that incorporates the
merging of edges and faces, the combination of CGAL’s union operator (Hachenberger and Kettner,
2021) and Minkowski sum (Hachenberger, 2021), sweep-plane algorithm (Piepereit et al., 2018) and
coons algorithm (Piepereit et al., 2016). The core of the simplification is the sweep-plane algorithm
that iteratively eliminates edges that are shorter than a given threshold by sweeping nearby faces
(Figure 2.10). Deininger et al. (2020) employed the framework with a distance threshold of 2 m. The
outcome of the framework was that 2172 edges shorter than 2 m were practically removed (8 left),
the number of faces was reduced nearly 2.5 times, while the total volume of the buildings was around
2% smaller than the non-simplified one. However, the approach still requires some manual work after
the simplification as it can create edges with sharp angles that end up being problematic for mesh
generation algorithms.

Park et al. (2020) developed a 5-step simplification algorithm that also incorporates the geometry
repair. The basic steps of the algorithm are shown in Figure 2.11. The algorithm works by defining
each face of a solid as major and minor according to their area, distance and angle to adjacent
faces, and a user-defined threshold. The authors used cfMesh4 for automatic mesh generation and to
compare the change in finite volume mesh quality as a result of the simplification. Observed parameters
were the decrease in maximum non-orthogonality, decrease in maximum skewness and the increase
in the ratio of hexahedron cells compared to other types. The conclusion was that the simplification
algorithm results in a better quality mesh, especially with skewness, as its maximum value decreased
exponentially. The disadvantage of the algorithm is that the average execution of the algorithm was
137 s per building on a state-of-the-art workstation. This could possibly be accelerated if a part of
the simplification is initially made on floor plans of buildings.

Building walls are generally not smooth; they contain windows, doors, balconies, etc. Blocken
et al. (2012) used sand-grain roughness height in the wall function to account for those features, one
value for all explicitly modelled buildings. They also imposed aerodynamic roughness length on the
terrain, differentiating between streets and green surfaces. Liu et al. (2018); Toparlar et al. (2018)
used the same approach in their works.

In the end, the critical remark is that none of the reviewed papers conducted an investigation to
ascertain the influence of proposed simplifications on simulation results, i.e. flow field, heat transfer,
or pollutant dispersion.

4https://cfmesh.com/
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Figure 2.10: The results of a sweep-plane simplification algorithm, from Piepereit et al. (2018).

Figure 2.11: Geometry simplification process proposed by Park et al., from Park et al. (2020).

Simplification outside the influence region

Simplification outside the influence region can generally be divided into three approaches (Liu
et al., 2017):

1. Setting the roughness length patches,
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2. Treating the attributes as porous media, and

3. Parameterising the drag force created by buildings and inducing it as a source term in the
momentum equation.

The first approach seems to be prevalent in the urban flows community. The aerodynamic roughness
length can roughly be explained as a height at which the wind velocity is zero (Stull, 1988). Liu et al.
(2018) employed areas of different roughnesses between the weather station and investigated district
within a city, shown in Figure 2.12. They found a 5.5% difference in the mean wind velocity between
the simplified and detailed model, while the total number of finite volumes was 30% less. Different
roughnessess account for varying densities of the built environment, as well as the roughnesses of the
natural environment such as bodies of water, forests, fields and so on. These different rough patches
can be further found in Toparlar et al. (2015); Blocken et al. (2016). The values for aerodynamic
roughness lengths are mostly taken from a lookup table defined by Wieringa (1992), which contains
eight classes (from the open sea to city centres) with values ranging from 0.0002 m to 2 m. Several
other works proposed methods to calculate the aerodynamic roughness length using morphometrical
data; Grimmond and Oke (1999) gave the overview of those methods. Typical variables used in those
methods are the plan areas of roughness elements (buildings, vegetation and other surface features) and
their ratio to the total surface area, the height of roughness elements, the frontal area and density of
roughness elements. Since then, researchers have developed frameworks to estimate the aerodynamic
roughness length from LiDAR data; they aimed to extract parameters required for the estimation
methods mentioned above. Examples of such research can be found in De Vries et al. (2003); Holland
et al. (2008); Colin and Faivre (2010); Faivre et al. (2017). I could only find one application of those
methods in CFD simulations in the work of Lukač et al. (2017). In this publication, the authors did
not use the aerodynamic roughness length estimation to model the area outside the influence zone but
rather to obtain the logarithmic wind profile at the domain inlet.

Figure 2.12: Detailed 3D city model (left) and parameterised model with roughness patches (right)
between the inlet (star) and the zone of interest (in square), from Liu et al. (2018).

However, there is a concern on the usage of roughness patches if the height of the simplified part of
the domain and the explicitly modelled area adjacent to it is similar. The roughness length approach
was derived from the Monin-Obukhov similarity theory, which means its applicability encompasses
the inertial sublayer above the city-induced roughness sublayer (Basu and Lacser, 2017). One way
to alleviate this issue would be to use the roughness sublayer correction (Basu and Lacser, 2017).
Still, there should be some average height difference between the explicitly modelled and parametrised
buildings. The issue can be avoided by using one of the other two approaches.
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The second approach is the porosity parametrisation. Hang and Li (2010) developed a porosity
model for buildings which was validated with wind tunnel data of an idealised cluster of buildings.
The model was applied by Wang et al. (2021a) on a city block and compared to field measurements.
The results showed that the model was able to capture primary ventilation corridors and open spaces
of the residential area within the block. However, the formulation is quite complex.

The third approach is the drag force parametrisation. Chan and Leach (2007) developed a drag
force parametrisation method they called the virtual building approach. In its formulation, this method
is similar to the vegetation porosity model explained in the next section (which differs from the porosity
approach mentioned above). However, the model coefficients are formulated differently. The model
acts as a drag term in the momentum equation with its magnitude so strong it effectively stops the
fluid flow through the medium, i.e. the building. Muñoz-Esparza et al. (2020) extended this method
for arbitrary grid size and thermal effects; they implemented it into their GPU-LES solver and called
it the immersed body force method. The method was validated on a single building in Shin et al. (2021)
and the Oklahoma City Joint Urban field campaign (Allwine and Flaherty, 2006) in Muñoz-Esparza
et al. (2020). The authors reported that the method could capture flow patterns similar to explicitly
modelled buildings in both the wind tunnel and field measurements.

Size of the influence region

It is essential for an accurate simulation to define the size of the explicitly reconstructed region,
i.e. the influence region. Van Hooff and Blocken (2010b) explored the most extreme case — they
investigated the passageways into a building of interest with the building alone, and including the
surrounding buildings; they concluded there are notable differences in wind magnitude whether sur-
rounding buildings are explicitly modelled or not, approximately by a factor of two. Guidelines to
solve this issue were presented in Tominaga et al. (2008); Tong et al. (2016); Liu et al. (2018) and are
based on one target building. The guideline from Tominaga et al. (2008) is based on the height of the
target building. The explicitly modelled region includes two times the height and one additional block
of buildings. Tong et al. (2016) suggested including at least three layers of buildings around the target
building for regular street canyons. The problem, however, is the definition of layers when surrounding
buildings are unequally spaced. The last suggestion by Liu et al. (2018) proposes including three times
the largest dimension of the building. Figure 2.13 shows the comparison of these guidelines on a case
study.

Figure 2.13: The definition of the influence zone by Tominaga et al. (2008) (left), Tong et al. (2016)
(middle) and Liu et al. (2018) (right), from Liu et al. (2018).
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2.4 Vegetation Modelling

Even though vegetation is often omitted from urban flows, its effect on the wind flow (Hefny
Salim et al., 2015), pollutant dispersion (Amorim et al., 2013) and energy balance (Manickathan
et al., 2018b) is shown to be meaningful. Away from CFD, there have been developments that
offer automatic reconstruction of vegetation at different levels of details. For example, the works of
Raumonen et al. (2013) and Du et al. (2019) offer accurate, highly-detailed reconstruction of trees
from laser-scanned data (Figure 2.14a). Other works focused to provide a CityGML (Gobeawan et al.,
2018) and CityJSON (de Groot, 2020) compliant reconstruction on a large scale (Figure 2.14b).

(a) Tree reconstruction
by Du et al. (2019).

(b) LoD2 tree models by de Groot (2020).

Figure 2.14: Different level of details for tree reconstruction from LiDAR data.

Vegetation modelling in CFD, depicted in Figure 2.15, does not focus on the geometric repres-
entation. Creating the finite volume mesh around vegetation would further complicate the already
delicate process, and the total number of mesh cells would be hard to justify. A work by Wang et al.
(2021b) illustrates this, with a finite volume mesh for one tree that contains millions of cells. For
practical purposes, one can use three approaches to handle vegetation: the first is to omit it from
the simulation (Figure 2.15b); the second is to use roughness length, the same that has been used
for simplification of buildings (Figure 2.15c); the third is the porosity parametrisation (Figure 2.15d).
Omitting vegetation adversely affects simulation results, but it is still used even today. Research has
shown that the porosity approach is better than the roughness parametrisation (Hefny Salim et al.,
2015), and it has also been widely accepted in the literature (Kang et al., 2020).

Figure 2.15: Vegetation modelling in CFD: (a) street canyon with trees; (b) basic approach omitting
the vegetation; (c) increased roughness; (d) porous zones, from Hefny Salim et al. (2015).

The porosity approach does not aim to model the tree canopy but rather to mark finite volume
cells that roughly account for trees. For example, Sousa and Gorlé (2019) used cylinders to define
porosity regions. The effect of vegetation is defined as a source and/or sink term in the momentum
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equation and equations of turbulence in control volumes that account for porous zones. The most
used expressions in the literature, e.g. (Gromke and Blocken, 2015; Moradpour et al., 2017; Santiago
et al., 2019), are:

Sui = −ρ Cd LAD UiU
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where the first equation is the sink term for the three momentum equations, the second equation is
the source term for the turbulence kinetic energy equation, and the third equation is the source term
for the turbulent dissipation rate equation. In the case of pollutant modelling, these can be further
expanded with the expressions for deposition and resuspension (Hong et al., 2018). In the equation
above, ρ is the air density, U the velocity magnitude, k the turbulence kinetic energy, Cd the leaf drag
coefficient and LAD is the leaf area density; βp and βd are parameters that define the fraction of the
mean kinetic energy that is converted into wake turbulence kinetic energy, and short-circuiting of the
energy cascade respectively; Cε4 and Cε5 are empirical constants. Overview of proposed calculations
for βp, βd, Cε4 and Cε5 can be found in Buccolieri et al. (2018). Cd is experimentally obtained and
dependent on tree species, albeit Cd = 0.2 is a widely accepted approximation for an average value
(Gromke and Blocken, 2015; Buccolieri et al., 2018). LAD (m2m−3) is defined as a ratio of the
one-sided leaf surface area in a given volume:

LAD =
Aleaf

V
. (2.3)

Buccolieri et al. (2018) reports that LAD in CFD simulation is mostly defined as constant with
height, with values ranging from 0.1 to 4 m2m−3. Values of LAD depend on the type of vegetation
and the season, and different values can be found in the literature (Buccolieri et al., 2018). Santiago
et al. (2019) made a distinction between three different types of vegetation: hedgegrows and two types
of trees based on their size. On the other hand, Simscale (2021) defines LAD as a constant value, but
dependent on the tree height:

LAD =
LAI

h
, (2.4)

where h is the height and LAI is the leaf area index, the ratio of the leaf area to the ground area.
There have also been works that expressed LAD as a function of height. Liang et al. (2006) obtained
vertical LAD distribution by conducting wind tunnel experiments. Kenjereš and Ter Kuile (2013)
used the same distribution to make a case study on the TU Delft campus. Interestingly, their values
for LAD range from 0.5 to 36 m2m−3. Another method of ascertaining height-based LAD is presented
in Shaw and Schumann (1992). The authors defined generalised canopy density curves that depended
on cumulative forest LAI (m2m−2), as shown in Figure 2.16. In this case, the LAD-LAI relation is
defined as

LAI =

∫ h

z
LAD(z) dz. (2.5)

Von Der Grün et al. (2020) expanded the model by Shaw and Schumann (1992) with more LAI
curves, applied and validated it on an urban case with different vegetation heights. This expanded
model was utilized by Deininger et al. (2020) in their considerable effort to automate the vegetation
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Figure 2.16: Vertical profiles of LAD for two values of LAI, from Shaw and Schumann (1992).

modelling in urban flows. They combined the point cloud with vegetation classification and the tree
cadastre data of Stuttgart to create the FME workflow. To the best of my knowledge, this is the only
publication that exploits the airborne LiDAR data to automatically model vegetation in numerical
simulations. Furthermore, research has been done to quantify LAD and LAI from airborne LiDAR
data (Oshio et al., 2015; Kamoske et al., 2019; Carrasco et al., 2019). Those are voxel-based methods
that use the information on the number of returns in a specific voxel to reconstruct the LAD profile.
The applicability of those methods in CFD simulations is yet to be investigated. Finally, I have not
managed to come across any research that compares the effect of different LAD acquiring methods
that I just wrote about on the results of numerical simulations.

Manickathan (2019) greatly expanded the modelling of vegetation, implementing an interaction
between the soil, plant and atmosphere. However, a detailed model like that is still too demanding
for city-scale applications (Manickathan, 2019). Thus, larger scales require simplifications. The same
author expresses the need to account for the seasonality of vegetation; deciduous trees can be neglected
during the winter season (Manickathan et al., 2018a).

Please bear in mind that some authors refer to the porosity approach as “explicit” modelling.
I disagree with the term, as explicit would mean that the features of vegetation are geometrically
modelled as objects.

2.5 Uncertainty Quantification

Even though numerical simulations are mainly presented as deterministic, many parameterisations
and simplifications are necessary to make them feasible. This indicates that there should be a measure
of confidence attached to them. The role of uncertainty quantification (UQ) is to stipulate the measure
of confidence. The uncertainty can be divided into two types (Iaccarino et al., 2009):

• Aleatory : physical variability intrinsic to the modelled system,

• Epistemic: varability due to lack of knowledge and assumptions introduced in the derivation of
the mathematical model.

As its names suggest, aleatory uncertainty, also known as stochastic uncertainty or irreducible uncer-
tainty, can not be reduced. It is characterised by the nature of the observed problem, e.g. material
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properties, operating conditions, manufacturing tolerances (Iaccarino et al., 2009). On the other hand,
epistemic uncertainty can be reduced with models that offer better predictability, or for example, with
better data. An obvious example of epistemic uncertainty reduction would be to replace RANS turbu-
lence modelling with LES; however, that raises the question of whether the reduction in uncertainty
justifies the added computational cost, especially for urban flows (Garćıa-Sánchez et al., 2014).

“In practical simulations of the ABL, the flow conditions are subjected to the large variability that
characterizes the atmospheric environment. This renders the UQ approach particularly interesting
for this type of applications, since there is a need for quantifying the uncertainty in the predictions
if computational tools are to be used for design or regulatory decisions.” (Gorlé, 2021). From the
preceding quote, we can see a strong argument to use UQ in urban flows. Gorlé et al. (2015) created
a UQ framework for urban flows that combined previous works on UQ of inflow conditions (Garćıa-
Sánchez et al., 2014) and RANS turbulence model (Gorlé and Iaccarino, 2013). The uncertain variables
for the inflow conditions were determined to be the velocity magnitude and direction at a certain
height and the atmospheric roughness height used to calculate the friction velocity. A polynomial
chaos expansion response surfaces are generated for each of the uncertain variables by running a
large number of simulations with different inflow conditions (729 simulations in Garćıa-Sánchez et al.
(2014)) and subsequently sampled according to predefined probability density functions (PDF’s).
The turbulence model uncertainty is investigated by conducting a baseline RANS simulation and
then introducing perturbations to Reynolds stresses. Gorlé et al. (2015) performed 153 additional
simulations to evaluate the turbulence model uncertainty. While such a large number of simulations
makes the framework impractical for engineering purposes, it serves as a systematic and thorough way
to evaluate new developments. This framework was applied for the uncertainty estimation of pollutant
dispersion in Garćıa-Sánchez et al. (2017).

The framework mentioned above belongs to the uncertainty propagation, also known as the forward
analysis or data-free approach to UQ modelling (Xiao and Cinnella, 2019). The disadvantage of the
approach is the approximation of PDF’s describing the uncertain variables. Measurements used for
inflow conditions are usually obtained from weather stations that are not always near the inlet of
the domain. For the inflow conditions of ABL flows in Gorlé et al. (2015); Garćıa-Sánchez et al.
(2017), this has been approximated with the beta distribution and the beta distribution with reduced
variance by Vervecken et al. (2013). The authors recorded a dependency of the UQ results on the
shape of the PDF, mainly the standard deviation; the mean values of the UQ largely remained similar.
Solution to this issue could be to employ the second approach to UQ modelling, the Bayesian inference
(backwards analysis or the data-driven approach) (Xiao and Cinnella, 2019). This approach can be
used when data is available at the output, i.e. where the quantities of interest are. An example of
that would be field data measurements from an anemometer. It uses that data to iteratively estimate
the PDF’s for the inflow conditions utilizing the data assimilation, i.e. the inverse ensemble Kalman
filter (Iglesias et al., 2013). The schematic comparison of the two approaches is shown in Figure 2.17.
The data-driven approach has been utilized for urban flows by Sousa et al. (2018). The results were
promising for the quantification of inflow conditions; however, the robustness of the data assimilation
algorithm depended on the noise in experimental results and the location of sensors. The succeeding
validation (Sousa and Gorlé, 2019) showed better predictions with this approach than the uncertainty
propagation.

To recap, the developed framework has been used to quantify uncertainty in urban flows arising
from inflow conditions and the turbulence model, and has been applied to model pollutant dispersion.
To the best of my knowledge, nobody has conducted a systematic investigation on the effect of building
LoD within the UQ framework. As reported by H̊agbo et al. (2020), the review of urban microclimate
studies by Toparlar et al. (2017) included 183 works, albeit not a single one evaluated the influence
of geometry inputs on the wind flow. In the succeeding publications, Ricci et al. (2017) made a
heuristic comparison between three different LoDs. However, this comparison was done for a limited
number of cases and did not include uncertainties associated with the numerical model and inflow
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Figure 2.17: Schematic representation of the two approaches to UQ, from Xiao and Cinnella (2019).
QoI stands for the quantity of interest.

conditions. That is as far as investigations of LoDs on urban flows have reached. Furthermore, the
acquisition-based error manifested as the misalignment between building footprints and a point cloud
is an investigated topic in spatial analysis (Biljecki et al., 2018a); however, to the best of my knowledge,
the aleatory uncertainty in CFD arising from this error has not been investigated.

The situation with UQ of vegetation modelling is similar, if not worse. As presented in Section 2.4,
the expressions used for vegetation modelling contain the drag coefficient and the leaf area density
whose values are empirical, to say the least. Again, no efforts have been made to quantify the influence
of those variables. The UQ of vegetation is something that should be investigated, and it was also
pointed out by others (Š́ıp and Beneš, 2016).
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Chapter 3

Proposed PhD Research

3.1 Problem Statement

Based on the literature review in Chapter 2, I can conclude there are gaps in research that require
attention:

Problem 1: There is still a considerable amount of manual labor involved in preparation of CFD-
ready geometries.

With the increase in computational power in the past decade, the computational wind engineering
community has steered towards applying existing methodologies on a larger geometrical scale rather
than employing more complex methodologies on the same scale (Blocken, 2018). The already tedious
job of manual geometry preparation is becoming one of the main obstructions to the progress of the
whole field. Some improvements have been made, and some research managed to attain some level
of automation, but it has not nearly been enough. As recently reported by Blocken (2021), around
80% of human time is still spent on geometry preparation and mesh generation. Even in case of
improvements, they combine different frameworks and software, some of which are expensive, closed
source commercial packages. Geometry creation and geometry preparation are decoupled processes in
practically all state-of-the-art applications. There is evidently a strong need to offer application-specific
3D city model reconstruction in CWE. On the other hand, the geomatics field provides open-source
frameworks that can reconstruct buildings at a large scale in different LoDs. What they are missing
are adjustments to make them entirely suitable for CWE.

Problem 2: The CWE field has not utilised the full potential of semantic data in 3D city models.

Semantic data plays an important role in 3D city models. The most meaningful semantic data for
CWE would be roughness and porosity parameters. However, nobody proposed a data structure,
issued guidelines, or gave detailed information on how they handled the semantics. By reviewing the
up-to-date research, I concluded that many city details are left out because there are no standards or
accepted practices when it comes to storing data for such large-scale simulations. That is why we often
see one roughness value for all buildings or one porosity value for all trees in the domain. Problem 1
is another factor contributing to this problem, as automatic extraction and handling of semantic data
is not an active research topic in CWE.

Problem 3: Vegetation modelling in CWE is handled rather arbitrarily.

CWE has universally accepted guidelines, most of them dealing with meshing requirements and domain
size, choice of turbulence models and numerical schemes. However, vegetation modelling is still an
uncharted territory. The porosity approach has gained the most support over the past years, but
the coefficients used in porosity formulation are typically defined heuristically. This problem is also
connected to problems 1 and 2. Information on vegetation is not stored as a part of the semantic 3D
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model even though it contains parameters that are worth storing. Furthermore, automatic vegetation
modelling is another problematic area in CWE. Research dealing with this issue is scarce, and nobody
presented a universal solution thus far. It is, in my opinion, one of the main contributors to why
vegetation omitting is an acceptable practice even today. On the other hand, geomatics and remote
sensing fields contain solutions that have the potential to facilitate CWE efforts with some adjustments.

Problem 4: There are no uncertainty quantification studies that deal with geometry uncertainties
in urban areas.

The literature review confirms that nobody has systematically investigated the influence of building
LoDs on urban flow prediction uncertainties. It is unknown how different LoDs impact the wind flow
or pollutant dispersion. There are no guidelines and no recommendations. Furthermore, the aleatory
uncertainty arising from building footprints and point cloud misalignment is currently unknown. Also,
there have not been any studies that quantified uncertainties related to vegetation parameters that
are often chosen heuristically. It is essential to get an insight into uncertainty as the results could
increase accuracy and lower computational demands. One could only speculate the reasons why
nobody conducted a similar study. It could be that the previous three problems I emphasised are all
agglomerated within the last problem. If obtaining the CFD-ready city geometry was not as big of an
issue, comparing different representations of the same geometry would not be as problematic.

3.2 Research Objective and Questions

Based on the identified gap, and guided by the preliminary research, I have identified the main
research objective to be the following:

Develop a framework that automatically reconstructs semantic three-dimensional urban environ-
ment models optimised for CFD at different levels-of-detail.

I plan to reach the research objective using the the following guide questions:

• Can the geometry preparation step of urban flow simulations be fully automated?

– What are the main bottlenecks in the automatic generation of 3D city models for CFD
applications?

– Is it possible to create error-free geometries suitable for CFD applications?

• How can state-of-the-art 3D city models be modified and expanded to suit the requirements of
CFD simulations better?

– Which data useful for CFD is missing from the international standards for 3D city models?
How can that data be stored and later used by CFD software?

• How can the vegetation data from point cloud be quantified and utilised in numerical simulations?

– What is the acceptable way to store CFD-ready vegetation in a semantic 3D city model?

• What is the uncertainty introduced by geometry?

– What is the epistemic uncertainty arising from different building LoDs?

– What is the aleatory uncertainty caused by misalignment of footprints and point cloud
data?

• What is the uncertainty caused by vegetation modelling?

• Can a single LoD specification be recommended for different types of urban flow simulations
such as wind flow and pollutant dispersion?
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3.3 Methodology

Methodology of this research can be split into two integral parts:

1. Automatic 3D city geometry preparation, and

2. Uncertainty quantification.

The first part focuses on algorithms and methods that are beneficial for creating error-free CFD-ready
buildings and the digital terrain model (DTM). It also presents a plan to calculate and store semantic
data used for CWE simulations. Figure 3.1 summarises the methodology related to the first part.
The second part outlines methods that will be used for uncertainty quantification and the resulting
verification and validation.

Figure 3.1: Geometry preparation workflow.

The workflow starts by defining the domain boundaries and the influence region. With the in-
fluence region defined, the following algorithms are being invoked: the creation of the digital terrain
model (DTM) (Section 3.3.3), CFD-ready building reconstruction (Section 3.3.2), vegetation mod-
elling (Section 3.3.5), and modelling of the area outside the influence region (Section 3.3.4). The
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outputs of algorithms are all saved in a semantic 3D city model that uses CityJSON encoding as the
format. The CAD model containing only explicit features is then extracted from the CityJSON model
and provided to the finite volume mesh generator. Semantic data from the CityJSON model are then
attached to the newly created mesh in the CFD software pre-processor (presented in Section 3.3.6). To
make this step feasible, it is necessary to develop a CityJSON parser for an individual CFD software.
I will provide the plan and goals regarding the respective parts in the continuation of this section.

3.3.1 Input Data and Preparation

The goal in the choice of the input data is to use the ones that are most commonly available. This
is why the framework will accept two types of data:

• The combination of 2D topological data and a point cloud,

• 2D topologically consistent data with height information.

The second type of input data is just a simplified version of the first type; it alters the proposed
workflow. First, the second type of data input can only provide footprint extrusion, meaning the
buildings cannot be reconstructed in LoD higher than LoD1.2. Second, vegetation will be modelled
using the information from a point cloud; therefore, it is not possible to model vegetation. Finally,
DTM has to be handled differently in case there is no point cloud data to model it.

The configuration file will be in a JSON format and contain all necessary parameters for a setup.

The first task of the workflow will be to define the influence region or the area of interest, as the
methods are split between it and the rest of the domain, with the creation of DTM encompassing
both. The configuration file will contain the middle point of the influence region and the radius of the
influence zone. All buildings within or on the border of the area covered with radius will be included.
It is also possible to automatically determine the influence region in case one particular building is
being investigated. In that event, the guideline on the influence region by Liu et al. (2018), explained
in the literature review and shown in Figure 2.13, will be used. The algorithm will use the elevation
data to calculate the height of the building closest to the coordinate and compare it to footprint edges.
Three times the largest dimension will be defined as the radius.

Domain boundaries will be circular with dimensions adhering to the best practice guidelines
(Franke et al., 2007; Tominaga et al., 2008; Blocken, 2015). Figure 3.2 schematically shows a round
domain that will be used, excluding the DTM and vegetation. The green building is the building of
interest; three times the largest dimension (height) is defined as the influence region, with blue build-
ings being within or on the border of the influence region and thus explicitly reconstructed. Buildings
outside, coloured red, are modelled with the drag force parametrisation approach, presented in Sec-
tion 3.3.4. The 15Hmax distance is suggested in the best practice guidelines. These types of domain
where one boundary is simultaneously used for inflow and outflow, depending on the wind direction,
have already been used for urban flows in Juretić et al. (2017); H̊agbo et al. (2020).

3.3.2 CFD-Ready Building Reconstruction

Generating error-free CFD-ready buildings is the greatest challenge of this proposal. For CFD,
it is important that buildings are detailed but without “small features” such as chimneys and short
edges. It is also important that geometries are valid, meaning 2-manifold, watertight and without
self-intersections. I present here the methodology that is aimed to accomplish that. Figure 3.3 shows
a reconstruction workflow for a single building.

The first part is the footprint preparation, where invalid footprint polygons are repaired and the
shortest edges are removed. Then the workflow proceeds to conduct the building reconstruction at the
specified LoD, be that LoD2.2, LoD1.3 or LoD1.2. In case the reconstruction algorithm is unable to
provide a valid geometry, the workflow proceeds with the reconstruction at a lower LoD, noting down
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Figure 3.2: Schematic representation of the domain.

Figure 3.3: Building reconstruction workflow.

the buildings that failed the validity check. In case the higher LoD decomposition algorithm cannot
produce a valid geometry, the final reconstruction is done with a simple extrusion. As Labetski et al.
(2017) stated, it is better to have an error-free model at a lower LoD, rather than a highly detailed
model of questionable quality.
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Footprint preparation

Prepared 2D polygons are a precondition for successful CFD-ready building reconstruction. Pre-
paration includes polygon generalisation and subsequent validation and repair. The work of Com-
mandeur (2012) resulted in a 2D footprint generalisation algorithm. It is an adaptation of the 3D
generalisation method developed by Kada (2008). The method decomposes the space along the major
planes of the buildings and is controlled by the minimum size of the building elements generated. The
intuitive distance threshold value controls which vertices are kept and which are removed. Several
other methods aim to do the same. I plan to investigate the suitability of generalisation algorithms.
It is a balance between the fidelity of geometry, the resulting number of finite volume cells and the
attainable quality of the finite volume mesh.

Validation and repair refer to obtaining valid polygons according to ISO 19107 (ISO, 2003). It
benefits the reconstruction by handling ambiguities, such as open polygon rings and self-intersections,
that could cause problems in succeeding steps. 2D polygon repair is considered a solvable problem in
geomatics, and multiple methods proposed solutions for it. Not to mention that it is both easier and
faster to work on 2D polygons rather than 3D geometry. My plan is to use the constrained triangulation
(CT) based polygon repair method by Arroyo Ohori et al. (2012). The method preserves topology
and guarantees valid polygons after the repair.

Building reconstruction

As already stated in the literature review, the 3D geoinformation research group has expertise
in the development of building reconstruction algorithms. I plan to assess the applicability of those
algorithms for CFD simulations and implement one of them as a part of the workflow. Some of the
algorithms offer the removal of small objects as part of the optimisation process. The small objects
tend to ruin mesh quality or drastically increase the mesh size without noticeable benefits. This small
object removal can be considered as the 3D simplification step. Both the methods used in 3D BAG
(Dukai et al., 2021) and (Nan and Wonka, 2017) offer this feature. The former method will be the first
whose applicability in numerical simulations I will test due to proven scalability and ease of use. The
method was introduced in Section 2.2.4 and available in more detail in (Arroyo Ohori et al., 2021).
By manipulating the smoothness operator, the graph-cut optimisation algorithm, implemented in the
method, can remove small features such as chimneys, potentially aiding the mesh quality.

LoD1.2 is the lowest LoD of the workflow and relies on the preceding footprint generalisation
with eventual 2D repairs. With valid 2D polygons, the simple footprint extrusion will result in a
valid dataset. It is the only possible way to generate a 3D city model in case of 2D polygons with
elevation data and without a point cloud. With a point cloud, it can be easily calculated by conducting
operations on the elevation data that falls within the limits of polygons.

Validity check

Three basic requirements are a prerequisite for a good geometry: 2-manifold, no self-intersections
and watertight. All three of them are part of ISO 19107 specifications. While some automatic mesh
generators are able to work around the requirements, it is almost certain that the invalid geometry
will make the mesh quality lower. Therefore, it is necessary for an automated workflow to create a
valid geometry. I plan to use val3dity (Ledoux, 2018) to check whether building reconstruction has
been done correctly. The reconstruction method of 3D BAG integrates val3dity into the algorithm.
Even though this algorithm aims for valid geometries, there are still around 15% invalid buildings
measured over the whole territory of the Netherlands. This renders the validation step necessary, as
well as the feedback loop that lowers the LoD of invalid buildings.
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Contingency plan

In case of repeating invalid reconstruction or unsatisfactory reconstruction quality, the contingency
plan is to refer to other footprint repair and CFD-specific simplification methods mentioned in the
literature review. I will also closely follow the ongoing research in the group. Labetski (2017) is
working on error-free generalisation and Huang (2020) is improving an LoD2 automatic reconstruction
algorithm of Nan and Wonka (2017). Worst case scenario, I can fall back on LoD1.2 reconstruction,
i.e. the footprint extrusion.

3.3.3 Digital Terrain Model

Terrain representation and storing is a well-covered topic in geomatics (Ledoux et al., 2020). DTM
is the only feature in the workflow that is modelled the same in the whole domain. For CWE, the
terrain should be smooth, as abrupt jumps on the surface are prone to cause a bad quality finite
volume mesh. CGAL library1 offers a robust implementation of most required algorithms for terrain
modelling, including triangulated irregular network (TIN) for the initial terrain and Gaussian filters
for smoothing of the TIN (Giraudot, 2021). To ensure that the terrain is well connected to building
footprints, I will use the constrained Delaunay triangulation with building edges as constraints. The
average height of the terrain at the location of constrained points serves as the ground height of
buildings.

Terrain surfaces, such as roads and lawns, can have roughness values attached to them; instead of
modelling those entities as respective city objects in the CityJSON model, it is enough to semantically
enrich parts of the terrain, denoting the entities with one value.

3.3.4 Outside the Influence Region

The area outside the influence region (or the area of interest) will have two ways of parametrisation.
The first way is to use the virtual building or the immersed body force approach by Chan and Leach
(2007), which was introduced in Section 2.3.2. The method uses the drag force that effectively stops
the flow in cells that would otherwise be occupied with a building geometry. The expression used by
this approach is

Fi = −Cd ρ UiU, (3.1)

where Cd is the drag coefficient (m−1). Chan and Leach (2007) found that the magnitude of Cd affects
the flow field near buildings and concluded that the fixed value of 100 m−1 shows best performance.
The problem with the fixed value is that Equation 3.1 was derived from Equation 2.2 for canopy flow,
so the term Cd is actually

Cd = C ′d Ap, (3.2)

with C ′d (-) denoting the canopy drag and Ap the leaf area density (LAI) (unit m−1) in case of
vegetation modelling. Muñoz-Esparza et al. (2020) observed dependence of fixed Cd on different grid
sizes and proposed a scale-independent formulation:

Cd = C1 αs ∆−1, (3.3)

where C1 is the coefficient, αs is the volume fraction of cell occupied with the solid (1 for solid, 0 for
fluid and 0 < αs < 1 for border cells), and ∆ is the nominal grid size (=

√
∆x ∆y ∆z). The validation

study showed C1 of 103 provides best results.

1https://www.cgal.org/

30



The formulation by Muñoz-Esparza et al. (2020) has not been applied in conjunction with body-
fitted mesh nor implemented for RANS simulations, which would make me the first one to utilise this
approach in such applications. While the formulation is convenient to use and provides satisfactory
results, it has to be implemented in CFD software, which requires advanced user knowledge and
separate implementations for individual packages. I will nevertheless implement and test the approach
due to its potential. From the geometry standpoint, explicitly reconstructed buildings are necessary;
investigations need to be conducted whether LoD1.2 is enough for this simplification method.

The other feasible approach is to conduct the roughness parametrisation. Using information
gathered from building footprints and height, one can estimate aerodynamic roughness length with
expressions by Macdonald et al. (1998):

z0 = z
(

1− zd
z

)
exp

[
0.5

1.2

κ2

(
1− zd

z

)
λf

]0.5
[m]

zd = z
[
]1 + 4.43−λp (λp − 1)

]
[m],

(3.4)

where λp = Ap/AT denotes the ratio between the building footprint area Ap and the total ground area
AT , λf = Af/AT is the ratio of the building frontal area Af and AT , κ is the von Karman constant
(typically 0.4) and z is the average height of the whole area. The approach rasterises the domain and
calculates z0 for every individual raster. More details on the implementation of this method for CFD
is available in Lukač et al. (2017).

The roughnness approach can be further simplified by comparing object heights and density to
tabular values (Wieringa, 1992) and deriving a heuristic relation. Some CFD software use sand-
grain roughness rather than aerodynamic roughness length. In that case, the two parameters can be
correlated with the formulation by Blocken et al. (2007):

kS,ABL =
9.793 z0
CS

, (3.5)

where CS is the roughness constant.

In any case, it is possible to conduct roughness parametrisation without modifying state-of-the-art
CFD solvers.

3.3.5 Automatic Vegetation Modelling

It is evident from the literature review (Section 2.4) that modelling the trees as a porous medium
(Equation 2.2) is an established approach. Since trees are a part of the CityJSON specification as the
SolitaryVegetationObject or PlantCover, the existing city objects can be semantically enriched with
the two parameters of the tree porosity model - LAD/LAI and the drag coefficient.

De Groot (2020) developed a workflow that automatically reconstructs trees from airborne LiDAR
at different LoDs. The workflow classifies, segments, cleans and finally reconstructs the geometry of
trees from a point cloud. The LoD1 (according to classification proposed by the author) reconstruction
creates hexagonal shapes (Figure 3.4) that can be defined as porous zones in the CFD pre-processor.
There is an active research that deals with vegetation classification and segmentation from point
clouds. I will closely follow new developments, as the outcomes could be relevant for my research.

While the drag coefficient is almost exclusively defined as a constant value in the literature, the
LAD is usually taken as a tabular value or integrated from an empirical profile. I will investigate the
prospect of using open-source LAD estimation methods from point clouds, mentioned in Section 2.4.
Worst-case scenario, the LAD can be defined through the configuration file.
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Figure 3.4: LoD1 trees reconstruction, from de Groot (2020).

Lower vegetation, such as hedges and lawns, are represented with the aerodynamic roughness
length attached as a semantic information to the DTM, as explained in the Digital Terrain Model
section above.

3.3.6 Data Parsing From 3D Models to CFD Software

To answer the question of why a parser is a necessity, analysing steps that follow after the creation
of a semantic 3D city model is essential. First, created geometry undergoes the meshing process that
results in a finite volume mesh. Meshing software typically accept few of the many “standard” CAD
formats2, but Steleolitography (STL) and Wavefront OBJ seem to be universally accepted, as indicated
by frequently used mesh generators (snappyHexMesh3, Pointwise4, cfMesh, etc.); obviously, the input
3D city geometry also has to be in one of those formats. The resulting finite volume mesh is generally
exported in a proprietary format of CFD software. Most commercial packages have integrated mesh
generators; for instance, ANSYS5, STAR-CCM+6, and AVL FIRE7 have their own meshing utilities,
whereas Pointwise is an independent mesh generator.

The issue that has to be tackled is introducing semantic data from a 3D city model to the simulation
setup. Formats mentioned in this section are semantically poor; in the case of OBJ, storing semantic
data is possible but limited in scope (Biljecki and Arroyo Ohori, 2015). Finite volume mesh cannot
store semantic data, only topological information and designation of boundary patches — it is only
the simulation preparation step in the CFD software where attributes are added to the mesh. This is
why, as shown in Figure 3.1, the semantic 3D city model has to be segregated into a CAD model that
undergoes the meshing process and the parsing part that attaches semantic information to the finite
volume mesh in the CFD software.

While the semantic data used for CWE (roughnesses, porosity) are mostly universal for different
CFD software, their implementations in individual CFD software are not; consequently, a different
parser is required for every CFD solver. I will be using OpenFOAM (Weller et al., 1998), an open-
source general-purpose CFD library, to conduct all of my simulations. Therefore, I will make a
CityJSON-OpenFOAM parser and thoroughly document all the steps to make potential parsing to
other software easier.

2https://transmagic.com/cad-formats/
3https://cfd.direct/openfoam/user-guide/v6-snappyhexmesh/
4https://www.pointwise.com/
5https://www.ansys.com/products/meshing
6https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
7https://www.avl.com/fire-m
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3.3.7 Computational Fluid Dynamics

I will use incompressible, steady-state Reynolds-averaged Navier-Stokes equations with neutrally
stratified ABL flow for my simulations. The mass (continuity) and linear momentum conservation
equations are:

∂uj
∂xj

= 0, (3.6)

uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

−
∂u′iu

′
j

∂xj
+ Fi, (3.7)

where ui denotes the time-averaged velocity components, ρ the density, p the pressure, ν the
kinematic viscosity, u′iu

′
j the specific Reynolds stress tensor, and Fi the source or sink term. The

source/sink term is equal to Equation 2.2 in case of tree modelling, and to Equation 3.1 in case of the
virtual building/immersed body force approach; otherwise, it is zero.

For turbulence closure, I plan to use the k-ε model; it is well-established turbulence model in urban
flows (Blocken, 2018; Ricci et al., 2020b). The model is based on the linear eddy viscosity hypothesis:

u′iu
′
j =

2

3
kδij − 2νtSij , (3.8)

where k is the turbulence kinetic energy, nut the turbulent viscosity and Sij the time-averaged shear
stress tensor. The turbulent viscosity is a property of a flow and defined as

νt = Cµ
k2

ε
, (3.9)

with ε being the turbulence dissipation rate and Cµ a model constant equal to 0.09. The turbulence
kinetic eneergy and dissipation rate are calculated from their transport equations:

uj
∂k

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − ε, (3.10)
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ε

k
Pk − Cε2

ε2

k
, (3.11)

where Pk is the turbulent production term and σk, σε, Cε1, and Cε2 model constants, with values of 1.0,
1.3, 1.44, and 1.92, respectively. I will use UQ (see the next section) to account for the uncertainties
arising from the use of a RANS model.

The inflow boundary condition will be modelled as a fully-developed neutral boundary condition
with the following profiles for the velocity, turbulence kinetic energy, and dissipation (Richards and
Hoxey, 1993):

u =
u∗
κ

ln

(
z + z0
z0

)
, (3.12)

k =
u2∗√
Cµ

, (3.13)

ε =
u3∗

κ (z + z0)
, (3.14)

with u∗ being the friction velocity, z0 the aerodynamic roughness length and κ the von Karman
constant with a value of 0.41.
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3.3.8 Uncertainty Quantification

Geometry carries both epistemic and aleatory uncertainties; epistemic uncertainties come from
the choice of LoD, whereas aleatory uncertainties come from errors in datasets. On the other hand,
vegetation modelled with the porosity approach contains uncertainties due to the choice of porosity
parameters. The answer on how these uncertain variables affect simulation results gives an insightful
look into the reliability of employed methods. I plan to use the UQ framework by Gorlé et al. (2015)
and RANS approach to carry out my research. Their UQ framework couples OpenFOAM with Dakota8

to conduct necessary investigations.

It is hard at this moment to pinpoint the exact uncertainty propagation algorithms that I will use.
What I can do is define uncertain variables and their intervals. This is presented in the following two
sections for geometry and vegetation, respectively. Those uncertain variables will be propagated along
with already established UQ methods for inflow conditions and turbulence model (Gorlé et al., 2015)
to get the total uncertainty estimation, but also to investigate the influence of individual variables
using Sobol indices (Garćıa-Sánchez et al., 2017). The results should give a final answer on the effect
of LoD on simulation results, as well as help to devise guidelines regarding geometry and vegetation
modelling.

Geometry uncertainty for Buildings

Biljecki et al. (2018a) explored LoD and acquisition-based errors for the error analysis of: 1) area
of the building envelope, 2) gross volume of a building, and 3) solar irradiation of rooftops. The LoD-
based error arises from the choice of reconstruction algorithm, whereas the acquisition-based error
manifests as the magnitude of a building positional error. My goal is to conduct UQ in CFD with the
same uncertain parameters.

Uncertainty arising from errors inherited in point clouds or building footprints is aleatory, and
it cannot be improved from the standpoint of CFD. Nevertheless, the influence of acquisition-based
errors on simulation results is unknown. Biljecki et al. (2018a) used normal distribution to conduct
perturbations of building vertices while keeping the same angles; the same approach can be used
as an input for CFD UQ. Alternatively, errors between building footprints and the point cloud can
be measured on an individual dataset, and a distribution function can be derived from captured
data. Distributions are then used to conduct deterministic simulations and calculate the influence
of uncertain variables on quantities of interest, such as wind magnitude and direction, or pollutant
concentration.

The second part of geometry UQ is related to the representation-induced error, i.e. the choice
of LoD. I plan to add three representations — LoD1.2, LoD1.3, and LoD2.2 to the geometry UQ
variables proposed above. UQ findings can serve as a guide and decision-maker in automatic geometry
preparation, presented in Section 3.3.2. It will also help to determine which LoDs are recommended
to use for wind flow and pollutant dispersion, respectively.

Vegetation uncertainty

The vegetation model proposed in Section 3.3.5 contains two parameters — drag coefficient Cd
and LAD. Cd is determined rather heuristically as a modelling assumption, with the exception of few
case-based calibrations such as Manickathan (2019). Buccolieri et al. (2018) reported typical drag
values from 0.1 to 0.3 m−1, with most studies using values equal or close to 0.2 m−1. Wilson and
Shaw (1977) and Vogel (1989) defined this interval to be Cd ∈ [0.2, 0.5], while Manickathan (2019)
observed from his sensitivity analysis that even Cd = 0.6 m−1 can produce best result. Evidently,
there is an interval Cd ∈ [0.1, 0.6] where drag coefficients can be chosen from. Having a clear interval
but no known value to use makes the choice of Cd an epistemic uncertainty.

8https://dakota.sandia.gov/
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LAD depends on the tree type, canopy size and the season for deciduous trees. They are either
empirically determined and available as a tabular value or a profile or measured, for example, using
a point cloud. Empirical profiles change depending on LAI value (see Figure 2.16), which is another
epistemic interval that can be investigated. On the other hand, the aleatory uncertainty is incorporated
in the point cloud when using it for LAD calculation. Depending on the method that ends up being
used for LAD modelling, I will combine the uncertainty with Cd and aim to narrow down the means
of modelling those parameters.

3.3.9 Validation

This research is purely numerical, meaning no experimental studies will be conducted. I plan to rely
on publicly available wind tunnel (AIJ; EWTL) and field measurement data (Allwine and Flaherty,
2006) to perform validation studies, as well as potential collaborations that might develop during the
course of the research. I also plan to contact researchers who published studies that included field
measurements for validation studies, such as Kenjereš and Ter Kuile (2013); Sousa and Gorlé (2019).

Wind tunnel studies offer greater control of parameters and potentially more straightforward an-
swer on which approach performs better. For example, a wind tunnel experiment will answer which
LAD/LAI modelling approach yields the best results. Nevertheless, field investigations are necessary
to answer how investigated uncertainties compare to the overall uncertainties of the system. Follow-
ing the previous example, a more complex way of modelling vegetation parameters might yield better
results than the less complex one; however, if there is a negligible influence on the overall uncertainty
on a field case, added complexity and more computational effort do not improve the methodology.
In words of Garćıa-Sánchez et al. “Reducing the epistemic uncertainty in a system with significant
aleatory uncertainty might only result in a small improvement of the predictive capabilities of the
simulations, while coming at a significantly higher computational cost”.
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Chapter 4

Preliminary Results

4.1 CFD-Ready Reconstruction Framework

The initial plan for the research was to use 3dfier as the base and adapt it for CFD applications.
During the initial work, in consultation with promotors, I came to a conclusion that 3dfier might not
be suitable after all due to strict rules on connecting different classes — a step that authors refer to
as “stitching” (Ledoux et al., 2021). For instance, the height of a road is calculated differently from
water, and its connection to the water surface is handled differently than a connection to terrain.
These modelling-based decisions resulted from a cooperation with the Dutch Kadastre. Notice that
CFD favours smooth surfaces (where smooth surfaces can be achieved), so water surfaces, terrain and
roads can be incorporated in the DTM with a roughness value accounting for surface specifics. These
modelling-based decisions complicate the code without providing benefits to CFD; even worse, they
can complicate the meshing process.

Following the previous decision, I have begun developing my own framework in C++ using the
CGAL library. The framework, so far, reconstructs DTM (Section 4.1.1) and buildings at LoD1.2
(Section 4.1.2), and prepares the geometry for CFD by creating a closed round domain with side and
top sections (Section 4.1.3). The particular example of the TUD campus I am about to show was
made using the BAG dataset for building footprints and the AHN3 database for the point cloud.

4.1.1 Digital Terrain Model

I made the DTM using the constrained Delaunay triangulation of the ground points from the
AHN3, with BAG polygon edges specified as constraints. First, I defined the point of interest that
serves as the centre of the domain and a radius that acts as the edge of the round domain. Next,
following the proposed methodology in Section 3.3.3, I applied the Gaussian filter to smooth the
terrain. I defined one height per polygon (the constrained edges) by averaging the elevation of 10
nearest neighbours of the first polygon vertex. Figure 4.1 shows the detail in resulting DTM, with
(right) and without the Gaussian filter (left). Notice that smoothing handles local jumps in the terrain
but preserves the overall shape. This is crucial to achieve, so the boundary cells near the ground are
free from issues but without penalties on the final wind profile. Bear in mind that the tallest point in
the figure is around 5 meters high.

4.1.2 LoD1.2 Building Reconstruction

The reconstruction of each building was done by calculating the average height of all points falling
within polygon boundaries and extruding them to height. I reconstructed all buildings that are within
60 per cent of the radius used for terrain; influence zone definition from guidelines (Blocken, 2015)
will follow. Note that I left out the footprint preparation step, which is the next thing I’m planning
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(a) Without smoothing. (b) With smoothing.

Figure 4.1: Digital terrain model, detail.

to implement. Furthermore, I plan to investigate the 75-99 percentile height as geometric reference in
the following iterations, as proposed by Dukai et al. (2019). To determine which geometric reference is
the best for CFD, I will have to conduct a sensitivity analysis. The resulting combination of buildings
and terrain are shown in Figure 4.2. For the purpose of easier mesh generation, I extruded footprints
whose average height is over 5 m.

Figure 4.2: Combination of the DTM and LoD1.2 buildings.

4.1.3 CFD Domain and Meshing

The next step was to create the domain suitable for CFD and test how the produced geometry
copes with an automatic finite volume mesh generator. The domain creation included the following
steps:

1. Extruding the terrain outer rim to get round and flat area close to domain boundaries. This newly
created outer rim was set to be 20 per cent larger than the terrain radius in this initial testing
phase. The rim extrusion is done to avoid potential convergence issues by having perturbations
close to inlet and outlet boundaries (H̊agbo et al., 2020).

2. Constructing the inlet/outlet boundary as vertical walls that extend to the prescribed domain
height,

3. Closing the domain with a surface on the top.
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Figure 4.3 shows the final domain with numbers denoting individual steps from the list above. Di-
mensions in steps 1 and 2 were purposely made smaller than indicated by the best practice guidelines
to accelerate the mesh generation and facilitate mesh handling. This closed domain now represents
the space that is discretised with finite volumes.

Figure 4.3: Domain used for finite volume mesh creation.

The first meshing tests were done with cfMesh, with the goal of pinpointing problematic areas for
the meshing software. The first results are shown in Figure 4.4. Please bear in mind that a better
quality mesh could have been achieved by adjusting the meshing parameters. But the goal of this
research is to provide a geometry that does not require a lot of adjustments of the meshing parameters
to obtain a simulation-worthy computational mesh.

With that said, the first problem I have encountered is the worsening of mesh quality close to
the connection of the terrain and buildings. Notice in Figure 4.5a that some terrain polygons have
sharp angles between them. This is caused by the choice of one average height for the entire building
footprint. If the average height is noticeably different from the terrain height at a particular point,
the constrained triangulation will result in issues denoted with number “1” in Figure 4.5b. My next
course of action will be to set building height for each footprint point individually.

The second issue is the problematic meshing of short edges whose length is relatively small com-
pared to the mesh size (locations “2” in Figure 4.5b). The necessity for footprint generalisation is
evident in this case, and my next steps will be to implement the footprint generalisation presented in
the methodology (see Section 3.3.2) and observe if there are any improvements.
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Figure 4.4: Computational domain made with cfMesh

(a) Geometry. (b) Finite volume mesh at the wall boundary.

Figure 4.5: Problematic locations for mesh generation.
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Chapter 5

Planning and Practical Aspects

5.1 Timetable

Figure 5.1 gives an overview of my planned activities over the course of the next three years. The
main idea is to work on the geomatics part (automatic geometry preparation) and CFD simulations
(uncertainty quantification) simultaneously and use UQ findings to steer decisions related to automatic
geometry preparation. It will also serve to establish guidelines related to LoD in CFD. Along with
the core research, I plan to conduct other activities that complement the PhD process:

• Publications in scientific journals,

• Assisting with courses and supervising master’s thesis,

• Participating in conferences and workshops,

• Research visits and collaborations with other research groups,

• Fulfilling Graduate School obligations.

5.1.1 First Year Report

Along with the research presented in Chapter 4, during the first year, I followed four master
courses to gain education in PhD-related topics such as digital terrain modelling, modelling of the
built environment, atmospheric turbulence and C++ programming. I supervised one master’s thesis
and served as a substitute supervisor for another.

5.2 Tools and Technical Aspects

Table 5.1 provides a list of software, programming languages and libraries used or planned to be
used for this research. All the tools developed during the course of this research will be published as
open-source and available through git repositories of the 3D geoinformation group1 or my personal
git2. Also, I will use the group’s computational resources, as well as a high-performance computing
(HPC) cluster to conduct my simulations.

5.3 Graduate School Obligations

In conjunction with research, PhD candidates at TU Delft are required to complete the Doctoral
Education (DE) programme at the university’s Graduate School (GS). There is a requirement to

1https://github.com/tudelft3d
2https://github.com/ipadjen
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Current Status

2020-2021 2021-2022 2022-2023 2023-2024

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Initial literature review

Master courses

Writing proposal

Go/No-Go

3D city modelling

Digital terrain model

Building reconstruction

Footprint preparation

Immersed boundary force implementation

Roughness estimation from point cloud

Vegetation modelling

Vegetation detection from point cloud

LAI estimation from point cloud

Uncertainty quantification

Geometry uncertainty

Vegetation uncertainty

Verification & validation

Formalization & Writing dissertation

Figure 5.1: Planning overview

Table 5.1: Tools and Technical aspects

Technology Purpose

Software

OpenFOAM CFD solver
Dakota Uncertainty quantification
CLion Coding & debugging
Meshlab Visualisation
Paraview Post-processing & visualisation

Programming Languages

C++ CFD geometry preparation, OpenFOAM implementations
Python Scripting

Libraries

CGAL Geometry processing
LAStools LiDAR procesing
nlohmann/json JSON file processing in C++
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earn a total of 45 GS credits where 1 GS credit is equal to 8 hours of coursework and 4 hours of
preparation/assignment. The DE programme is divided amongst three skill categories:

• Discipline-related skills (15 GS credits of which 5 - 15 can be Learning on-the-Job)

• Research skills (15 GS credits)

• Transferable skills (15 GS credits)

Table 5.2 summarises the plan to complete the DE programme including completed GS credits.
In total, I have achieved 20/45 GS credits.

Table 5.2: Graduate School Progress and Plan

Category Name GS Credits Status

Discipline
Related

MS Course: Atmospheric Turbulence 4 Completed
MS Course: Digital Terrain Modelling 5 Completed
MS Course: OO Scientific Programming with C++ 3 Completed
OpenFOAM workshop 3 Planned

Research

Supervising MSc students 6 In Progress
Work consultation with research partners 1 Planned
Writing the first conference paper 1 Planned
Writing an international, peer-reviewed journal article 4 Planned
TA: assisting in laboratory course 3 Planned

Transferable

Brain Management 2 Completed
PhD Start-Up 2 Completed
Scientific Text Processing with LATEX 1.5 Completed
Teamwork, Leadership and Group Dynamics 1.5 Completed
Time Management I - Foundation 1 Completed
Personal and Career Development 1 Planned
Writing a Scientific Article in English 3 Planned
Writing a Dissertation 3 Planned

5.4 Data Management Plan

The data management plan has been filled and submitted through the online form of the TUD.
In short, my research will be open-data, publicly available (GitHub) free and open-source software
(FOSS) with a license that depends on terms and conditions of other open-source code I use as a part
of my workflow.

5.5 Publications

5.5.1 Publication Plan

My plan with publications, both journals and conferences, is to establish a balance between the two
communities. The goal is to bring two fields closer, so publications should reflect that with publishing
in journals both dedicated to geomatics and fluid dynamics. Examples of journals include but are not
limited to:

• For CFD: Computers & Fluids, Building and Environment, Journal of Wind Engineering &
Industrial Aerodynamics,
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• For geomatics: Computers, Environment and Urban Systems, International Journal of Geo-
graphical Information Science,

• For the final automated workflow: Journal of Open Source Software.

I am not able to devise a plan on the number of publications, as this largely depends on the
research progress.

5.5.2 Previous Publications

• Paden, I., Petranović, Z., Edelbauer, W., and Vujanović, M. (2021). Numerical modeling of spray
secondary atomization with the Euler-Eulerian multi-fluid approach. Computers and Fluids, 222

5.6 Acknowledgements

I want to thank my colleague Anna Labetski for providing me with this LATEXtemplate.
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Š́ıp, V. and Beneš, L. (2016). CFD Optimization of a Vegetation Barrier. In Numerical Mathem-
atics and Advanced Applications ENUMATH 2015, pages 471–479, Cham. Springer International
Publishing. 23

Slotnick, J., Khodadoust, A., Alonso, J., and Darmofal, D. (2014). CFD Vision 2030 Study: A Path
to Revolutionary Computational Aerosciences. NNASA/CR-2014-218178. 1
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