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The validity of 3D primitives in 3D GIS datasets is often a prerequisite for using
them in simulation and decision-making software, eg visibility analysis, noise pol-
lution assessment, and energy estimation. However, while agreed definitions exist
(in the international standard ISO19107), most software vendors ignore them and
implement simpler 3D primitives, for instance by excluding interior boundaries in
surfaces and/or solid. Such limitations prevent practitioners from exchanging and
converting datasets, and thus to use these in other software and applications.

I present in this paper val3dity, an open-source software to validate 3D primi-
tives according to the international definitions of ISO19107. Practitioners can use
it directly, without limitations: its code is freely available under the GPLv3 license,
both binaries and a web-application are publicly available. It takes as input several
formats (including the international standard CityGML), and outputs a report that
helps users identify and understand the errors.

I describe some of the engineering decisions supporting val3dity, and show that
it can be used to validate real-world datasets.

Introduction

Three-dimensional GIS datasets, containing volumes and surfaces embedded in 3D, are being
increasingly used as input in different applications, see Biljecki et al [2015] for an overview. The
3D GIS community is mostly focused on 3D city models (such as CityGML [Gröger and Plümer,
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2012; OGC, 2012] and IndoorGML [Kang and Li, 2017]), but there are other 3D representations
used, eg GeoSciML [Sen and Duffy, 2005]. As highlighted by Biljecki et al [2016], in practice the
quality of available 3D datasets is often poor: they contain geometric and topological errors,
eg duplicate vertices, missing surfaces, self-intersecting volumes, etc. Often these errors are
not visible at the scale the datasets are visualised [Laurini and Milleret-Raffort, 1994], and, as a
consequence, practitioners are not aware of the problem. In most cases, these errors prevent us
from using the datasets in other software and applications, see Nouvel et al [2017], Steuer et al
[2015], and Bruse et al [2015] for concrete examples. However, it should be noticed that, even
for visualisation purposes, errors can be problematic since the shading/colouring of surfaces
is often based on the orientation of their normals. We can assume that errors in 3D models
are very common since: (1) McKenney [1998] reports that practitioners using 3D CAD models
for finite element analysis applications spend as much as 70% of their time fixing the input
models; (2) there is a growing field of science that deals with the automatic repair of single 3D
models [Attene et al, 2013].

I present in this paper the new and extended version of val3dity (version 2.0), an open-source
software to validate 3D primitives according to the international definitions. As explained
below, val3dity builds upon its first version in which only single solids were validated; the
details of the original methodology are given in Ledoux [2013]. The main extension presented
in the following is that all the 3D primitives defined in ISO19107 [ISO, 2003] are now sup-
ported: MultiSurface, CompositeSurface, Solid, MultiSolid, CompositeSolid. Unlike other
implementations, val3dity fully supports interior boundaries for both surfaces and for solids,
and also the interactions between different solids can be validated. The only restriction is that
edges need to be linear, and surfaces planar. This is a common restriction in the GIS world
(CityGML does not support curves arcs and parametric surfaces) and primitives from other
fields (IFC) can always be discretised into linear/planar ones. Furthermore, val3dity supports
a few GIS input formats, the validation reports have been designed to help users easily iden-
tify errors, and the validation of CityGML BuildingParts (namely their topological interaction
with others) is now supported.

Background

Definitions of 3D primitives in ISO19107

ISO19107 [ISO, 2003] has the following geometric primitives for representing its objects: a 0D
primitive is a GM Point, a 1D a GM Curve, a 2D a GM Surface, and a 3D a GM Solid. A d-
dimensional primitive is built with a set of (d − 1)-dimensional primitives, eg a GM Solid is
formed of several GM Surfaces, which are formed of several GM Curves, which are themselves
formed of GM Point.

Geometric primitives of the same dimensionality can be combined together into another
primitive, namely:

aggregate: a collection of primitives of the same dimensionality that is simply used to bun-
dle together geometries. An aggregate does not prescribe any topological relationships
between the primitives, they can overlap or be disconnected.

composite: a collection of d-dimensional primitives that form a d-manifold, which is a topo-
logical space that is locally like a d-dimensional Euclidean space (Rd). A concrete example
would be a composite of surfaces (2-manifold): each surface is a 2-manifold, and all the
surfaces together also form a single 2-manifold. This implies that they are not allowed to
overlap and/or to be disjoint.
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MultiSurface CompositeSurface Shell

LinearRing PolygonPoint

MultiSolid CompositeSolidSolid

Figure 1: The 3D primitives supported by val3dity. Light blue primitives are those representing
interior boundaries. A Shell is not validated explicitly (no input possible), but it is
implied as the boundary of a Solid.

Definitions of 3D primitives in val3dity

While the ISO19107 primitives do not need to be linear or planar, ie curves defined by mathe-
matical functions are allowed, for val3dity, as in CityGML and most 3D GIS packages in use,
the following two restrictions are used:

• GM Curves can only be linear

• GM Surfaces can only be planar

In the following, the GML nomenclature [OGC, 2007] is followed for naming the primitives: an
aggregate is a Multi* and a composite is a Composite*. The following 3D primitives are thus
supported by val3dity:

• MultiSurface

• CompositeSurface

• Solid

• MultiSolid

• CompositeSolid

Figure 1 shows the 3D primitives that val3dity supports; LinearRings are linear GM Curves,
and Polygons are planar GM Surfaces.

A CompositeSurface that is closed (it does not contain any boundary; it is ‘watertight’) and
orientable is referred to as a Shell. Shells are the basis to define the boundaries of a Solid;
notice that in the figure the Solid has two Shells: one representing the exterior boundary (the
cube in grey) and one the interior one (the cube in light blue), the latter defines a ‘void’ in the
solid. The boundaries of a Solid are allowed to interact with each other under certain rules,
these are explained in details in Ledoux [2013].

A MultiSolid is an aggregate of Solids, and they are allowed to intersect and/or be discon-
nected.

A CompositeSolid, formed by the Solids A and B, should fulfil the following two assertions:
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• Assertion #1: their interior should not overlap (Ao ∩ Bo = ∅)

• Assertion #2: their union should form one solid (A ∪ B = one Solid)

Related work

In this section I only discuss the existing validation software, and the scientific papers for which
there is an implementation available (and thus ignore purely theoretical solutions). The first
thing to notice is that while many commercial GISs offer surfaces embedded in 3D as primi-
tives, they rarely offer volumetric primitives. Volumes are often represented with the equiva-
lent of a MultiSurface, ie a set of surfaces embedded in 3D which could, or not, form a volume.

ArcGIS Pro1 is one such example, it contains a function (called isClosed()) to verify whether
a set of surfaces forms a closed volume. This does not support interior shells, and the docu-
mentation does not specify whether self-intersection is verified or whether non-manifoldness
is taken into account. Also, errors in each surface are not validated, one would have to project
each of them to a 2D plane and run the 2D validation functions separately. Aggregates and
composites are not handled.

Oracle Spatial2 has a volumetric primitive that can contain interior shells, but unfortunately
there are two major omissions that make this primitive diverts from the ISO19107 definitions:
(1) Oracle’s shells are not 2-manifold, they simply have to be interior-connected (non-manifold
vertices and edges are thus allowed); (2) Polygons cannot have interior rings. In two scien-
tific papers describing the details of Oracle’s validation capabilities in 3D, Colley et al [2017]
and Kazar et al [2008] falsely claim that this definition is ISO19107-compliant, while most
of the figures clearly indicate otherwise; tests I ran with Oracle Spatial also confirms this.
CompositeSolids are listed as 3D primitives in the documentation, but since the volumetric
primitive used to build them are not following the international definitions, the CompositeSolid
does not either.

CityDoctor3 contains validation functions, although its primary goal is automatic repair
of buildings stored in CityGML. According to the papers explaining the details of the soft-
ware [Alam et al, 2013, 2014; Wagner et al, 2015], the only volumetric primitive used is restricted
to having only an exterior shell (interior ones are disallowed), and interior rings in Polygons

are disallowed.
The transformer GeometryValidator in Safe’s FME4 supports the validation of ISO19107-compliant

Solids because the first version of val3dity is used in the background. Aggregates and com-
posites are however not currently supported.

An OGC Quality Interoperability Experiment about CityGML was carried out a few years ago,
and contains more details concerning the validation capabilities of different software [OGC,
2016], although interior boundaries in Solids, as well as aggregates/composites, were ignored.

Implementation

Primitives are validated hierarchically

The methodology to validate the five different 3D primitives, as defined in the previous section,
follows the methodology described in Ledoux [2013] for single Solids, and extends it so that
MultiSolids and CompositeSolids are handled.

1https://pro.arcgis.com
2version 11g Release 2 (11.2): https://docs.oracle.com/cd/E11882_01/appdev.112/e11830/sdo_

objrelschema.htm
3http://city-doctor.com/
4https://www.safe.com/transformers/geometry-validator/
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Figure 2: The hierarchical workflow used by val3dity to validate one CompositeSolid.

The methodology uses many of the internals of the CGAL library5 to represent and vali-
date the 3D primitives, and uses existing methods to validate the 2D primitives. Because the
geometric types and modules of CGAL do not follow the definitions of ISO19107, the geomet-
ric types available in different packages were modified and combined. One example is that a
Solid is represented by a list of Shells (which are CGAL::Polyhedron 3), and the interactions
between the different shells are validated with my own code using the Boolean operations in
CGAL::Nef polyhedron 3.

As Figure 2 shows for one CompositeSolid, the 3D primitives are validated hierarchically:

• the lower-dimensionality primitives (the LinearRings and Polygons) are validated by
first projecting them to a 2D plane (obtained with least-square adjustment), and then
using 2D validation methods;

• then these are assembled into Shells and/or surfaces, and their validity is analysed;

• then the Solids are validated (eg the interactions between different Shells, the orienta-
tion of the normals, etc.)

• finally, for CompositeSolids, the interactions between the Solids are analysed.

This means that if one Polygon forming a CompositeSolid is not valid, the validator will report
that error but will not continue the validation at the next level (to avoid “cascading” errors); all
the primitives at one level are however validated.

At each level, the validator can report different error codes. As Figure 3 shows, there are in
total 32 different codes. Notice also that there are other errors:

5Computational Geometry Algorithms Library: http://www.cgal.org
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CompositeSolid

Solid & MultiSolid

CompositeSurface

MultiSurface

LinearRing level

101 TOO_FEW_POINTS
102 CONSECUTIVE_POINTS_SAME
103 RING_NOT_CLOSED
104 RING_SELF_INTERSECTION 

Polygon level

201 INTERSECTION_RINGS
202 DUPLICATED_RINGS
203 NON_PLANAR_POLYGON_DISTANCE_PLANE 
204 NON_PLANAR_POLYGON_NORMALS_DEVIATION 
205 POLYGON_INTERIOR_DISCONNECTED
206 INNER_RING_OUTSIDE
207 INNER_RINGS_NESTED
208 ORIENTATION_RINGS_SAME

Shell level

301 TOO_FEW_POLYGONS
302 SHELL_NOT_CLOSED
303 NON_MANIFOLD_CASE 
305 MULTIPLE_CONNECTED_COMPONENTS
306 SHELL_SELF_INTERSECTION
307 POLYGON_WRONG_ORIENTATION

Solid level

401 INTERSECTION_SHELLS
402 DUPLICATED_SHELLS
403 INNER_SHELL_OUTSIDE
404 SOLID_INTERIOR_DISCONNECTED
405 WRONG_ORIENTATION_SHELL

Solid interactions level

501 INTERSECTION_SOLIDS
502 DUPLICATED_SOLIDS
503 DISCONNECTED_SOLIDS

these 2 not possible 
for CompositeSurface

CityGML Objects

601 BUILDINGPARTS_OVERLAP
609 CITYOBJECT_HAS_NO_GEOMETRY

Others

  901 INVALID_INPUT_FILE
902 EMPTY_PRIMITIVE
903 WRONG_INPUT_PARAMETERS
999 UNKNOWN_ERROR

Figure 3: The 32 error codes of val3dity.

• errors related to specific City Objects in the CityGML data model [Gröger and Plümer,
2012; OGC, 2012]. Currently these are only for CityGML Buildings, but they will be in
the future extended to other classes if there is a need from practitioners. And also other
standards will be included, eg IndoorGML is currently under development.

• input errors, eg with files that do not respect the schema. These are common in practice,
and can influence the validation process [OGC, 2016; van Walstijn, 2015].

A fast C++ implementation

The source code of val3dity is freely available under the GNU General Public License v3.0.
Compiling binaries for macOS, Linux, and Windows is easy; for Windows executables are even
offered. It is written in C++ and uses these two open-source libraries: (1) CGAL library to
represent some 3D primitives (as explained above); (2) GEOS6 is used to perform the validation
of the 2D primitives, the error codes (eventually) thrown by GEOS are mapped to the error
codes of val3dity.

CGAL was chosen because it contains several of the building blocks required to implement
a validator, and because it offers the possibility to use exact arithmetic for all the packages [Yap
and Dubé, 1995]. Besides the basic components of CGAL, the following packages are used:

• 2D Polygons: used to represent each ring of a Polygons;

• 2D Triangulation: in val3dity all the surfaces are triangulated with a constrained Delau-
nay triangulation [Boissonnat et al, 2002], which allows us to support interior rings in
Polygons and helps in catching complex cases of planarity [Hossein Cheraghi et al, 1996];

• 3D Polyhedral Surfaces: used to represent one Shell;

6Geometry Engine—Open Source: http://trac.osgeo.org/geos/
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console

elvis-computer$ ./val3dity mycity.gml -r ~/temp/
---
val3dity Copyright (c) 2011-2017, 3D geoinformation research group, TU Delft
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions; for details run val3dity with the '--license' option.
---
Reading file: /Users/elvis/data/mycity.gml
Translating all coordinates by (-4.42465e+06, -5.48261e+06)
XLinks found, resolving them...done.
CityGML input file
# City Objects found: 111
Primitive(s) validated: All
(CityGML/CityJSON have all their 3D primitives validated)
Parameters used for validation:
   snap_tol                 0.001
   planarity_d2p_tol         0.01
   planarity_n_tol             20
   overlap_tol               none
[==================================================] 100%

+++++++++++++++++++ SUMMARY +++++++++++++++++++
Total # of CityObjects:     111
# valid:                     91 (82.0%)
# invalid:                   20 (18.0%)
+++++
Total # of primitives:      111
# valid:                     91 (82.0%)
# invalid:                   20 (18.0%)
+++++
Errors present:
  204 -- NON_PLANAR_POLYGON_NORMALS_DEVIATION
          (18 primitives)
  306 -- SHELL_SELF_INTERSECTION
          (2 primitives)
+++++++++++++++++++++++++++++++++++++++++++++++

Full validation report (in HTML format) saved to "/Users/elvis/temp/report.html"

Figure 4: val3dity is a command-line only software.

• 3D Boolean Operations on Nef Polyhedra: used to represent one Solid and to model and
verify the interactions between the Shells, but also the interactions between the different
Solids of a CompositeSolid and the different parts of a Building;

• 3D Minkowski Sum of Polyhedra: used when a tolerance is used to validate CompositeSolids
and BuildingParts (see the section below);

How to use it. val3dity is a command-line program only, there is no graphical interface (see
Figure 4). Several parameters can be set by the users, these are mostly related to the tolerances
that val3dity uses. Indeed, while both ISO19017 and CityGML mention that each Polygon

must be planar, the concept of tolerance is not mentioned. Tolerances for the following can be
defined:

• planarity of Polygons: the tolerances used have been agreed upon by the community in
the OGC Quality Interoperability Experiments [OGC, 2016];

• snapping between vertices: since in many formats, eg GML, the same vertex needs to
have its coordinates listed for each Polygon, a tolerance must be used to identified if they
are the same;

• overlap between Solids or BuildingParts, as explained below.

As an alternative to the command-line interface, one can use the web-application of val3dity
(see Figure 5), which is freely available to everyone (there is however a maximum file size that
can be uploaded).
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Figure 5: val3dity has a web-application publicly available.
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Figure 6: Example of how the tolerance is applied when validating a CompositeSolid contain-
ing 2 Solids.

Input formats. The following formats can be used as input: CityGML, CityJSON7, GML file
of any flavour, OBJ8, and OFF9. For CityGML and CityJSON files, all the City Objects (eg
Building or Bridge) are processed and all their 3D primitives are validated. Other GML files
are simply scanned and their 3D primitives are validated according to the rules in ISO19107,
all the rest is ignored. For OBJ and OFF files (formats without semantics and used mostly for
visualisation), each primitive will be validated according to the ISO19107 rules, therefore one
must specify how the primitive(s) should be validated (as MultiSurface, CompositeSurface,
or Solid).

Interactions between solids are validated with a tolerance

A CompositeSolid, formed for instance by the Solids A and B, should fulfil the 2 assertions
defined in the ‘Background’ section. While these can be verified with Boolean operations, in
practice we often encounter datasets where two Solids overlap (or are disjoint) by a very small
amount, eg the overlapping volume would be around 10cm3 for a Building. While the overlap
is an error, in practice reporting this as an error can be a nuisance for the user.

val3dity therefore uses the concept of an overlap tolerance to validate CompositeSolids. This
can be seen as a generalisation to 3D of the tolerance used for the 2D validation of polygon, see
for example van Oosterom et al [2004]. As shown in Figure 6, the mathematical morphology
theory in 3D [Serra, 1982] is used to erode and dilate Solids by a user-defined parameter.
Erosion is performed when the overlap between Solids is verified (Ao ∩ Bo = ∅), and dilation
when disjointness is verified (A ∪ B = one Solid). These operations are realised by a series
of operators that uses the Minkowski sum of a Solid with a structuring element (a cube or
dodecahedron in this case); as shown in Boeters et al [2015] and Donkers [2013] the shape of
the element will influence the resulting shape and thus the results. The perfect structuring
element would be a sphere (would not yield errors, as an approximation by a dodecahedron

7A JSON-based implementation of the CityGML data model currently under development: http://www.

cityjson.org
8https://en.wikipedia.org/wiki/Wavefront_.obj_file
9https://en.wikipedia.org/wiki/OFF_(file_format)

9

http://www.cityjson.org
http://www.cityjson.org
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/OFF_(file_format)


Figure 7: An example of an HTML report. Left: the summary report; Right: the details for each
Building in a CityGML file.

does), however the closer the structuring element approximates a sphere the more computation
time will be necessary.
Buildings having one or more BuildingParts can also be validated with an overlap toler-

ance. However, only the overlap assertion is verified, since BuildingParts are allowed to be
disjoint; the CityGML standard is not clear about this, but this was confirmed as the intended
behaviour [Kolbe, 2017].

It should be noticed that using an overlap tolerance when validating slows down the process
since the implementation of the Minkowski sum in CGAL runs in O(n3 m3) time in the worst
case [Hachenberger et al, 2007], where n and m are the number of primitives (of any dimen-
sionality) in the input (the Solid and the structuring element). This can be observed in the
experiments with real-world datasets in the next section.

Reporting errors to the user

Some validators, in 2D and 3D, report only the first error encountered, and then stop. This can
be frustrating and time-consuming for the user because she needs to fix the error and rerun the
validation again. val3dity was designed to avoid this, and aims at validating as many parts of
a 3D primitive as possible, but stops to avoid so-called ‘cascading errors’, ie errors that do not
exist but are cause by another error. This is why a hierarchical validation is used, as previously
explained. For each error, extra information is usually given, for instance: (i) if a Shell contains
a hole, its location is provided; (ii) if a Polygon forming a Solid is invalid, then its identifier is
reported (and if it does not have one then its position in the input file is reported); (iii) if two
Solids in a CompositeSolid overlap, the identifiers of the Solids are reported, etc. val3dity
outputs a validation report, in JSON format, where for each (CityGML) object and 3D primitive
the validation errors are listed. The report is both human- and machine-readable. As shown in
Figure 7, it is also possible to navigate this report with an interactive HTML viewer containing
a summary and a list of detailed errors for each primitive and object.
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Figure 8: A few examples of unit tests for Solids, the numbers refers to the errors in Figure 3.

Results

How is the validator validated?

A comprehensive suite of tests to validate val3dity was implemented, it builds upon and ex-
tends the results of the OGC Quality Interoperability Experiments [OGC, 2016]. It uses the
Python pytest framework10 and a custom setup, and tests, among others:

• all the error codes one by one; there are several files and each of them contains one and
only one error, see Figure 8 for eight randomly chosen cases;

• empty files and geometries, invalid input file formats. It should be noticed that val3dity
does not validate the schema of the input, the main reason is that often small errors are
not an issue for the validation and val3dity can recover from them (in the same way that
a web browser can often display invalid HTML);

• various valid geometries, larger files and boundary conditions;

• command-line user input.

All the tests can be automatically ran after compilation, which ensures that val3dity is ISO19107-
compliant on different operating systems.

Testing with different real-world 3D city models

To demonstrate that val3dity is useful in practice, I have chosen four 3D city model datasets,
in CityGML, that are available as open data; a list of all open 3D city models is available at
https://www.citygml.org/3dcities/. The aim of this section is not to perform a thorough
analysis of the errors that were reported by val3dity, but rather to demonstrate that it can be
directly used by practitioners for their daily work, and to demonstrate some of the validation
options that are available. The four datasets are listed in Table and shown in Figure 9, they are
all subsets of bigger datasets, and their exact area/file is specified. The tests were performed
on a “standard laptop”: a MacBook Pro 2.2GHz Intel Core i7, 16GB of main memory, and an
SSD harddrive.
10https://docs.pytest.org
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Table 1: Details of the four datasets validated (see Figure 9).

Buildings Primitives time validation

size(a) total Parts rep(b) valid total valid default overlap tol=0.05(c)

Berlin(1) 933MB 22 771 3 S+Sem 74% 89 736 90% 1m19s 1m19s (74%)
DenHaag(2) 22MB 844 507 S 61% 1 990 85% 39s 10m29s (80%)
Montréal(3) 125MB 581 0 Sem 73% 1 744 88% 3s 3s (73%)
NRW(4) 16MB 797 95 S 83% 928 77% 5s 35s (83%)
(a) size contains all the CityGML tags for the appearances (textures), although the size of the textures is not considered
(b) S = Solid; Sem = only semantic surfaces
(c) between brackets the % of Buildings that are valid with 5cm tolerance
(1) area “Charlottenburg-Wilmersdorf”, http://www.businesslocationcenter.de/en/downloadportal
(2) file 01 buildings.xml, https://data.overheid.nl/data/dataset/3d-model-den-haag
(3) tile VM11 2009.gml, https://tinyurl.com/yasunwpj
(4) file LoD2 496 5733 1 NW.gml, https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/

Figure 9: The four datasets used for explaining the validation process.
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For each of the four datasets, the command used to validate it is explained below. All were
validated with the option ‘--report json report.json’ so that a report is generated, and the
default values were used:

• snap tolerance: 1mm

• planarity tolerance (distance-to-plane): 1cm

• planarity tolerance (normals orientation): 20 degrees

• overlap tolerance: unused/0cm; and as explained below with 5cm too

Notice that all of the datasets can be read directly by val3dity, ie without any format conversion
necessary as a pre-processing. Furthermore, the XLinks are resolved, but only if they point to
other elements in the same file; external URIs are not resolved.

Berlin dataset is a large file (nearly 1GB) that contains more than 22,000 Buildings (with,
oddly, only 3 having BuildingParts). Some of these are stored as Solid, and for some only se-
mantic surfaces are stored, without any geometry defined. For the second case, we can assume
that the meaning was that the semantic surface should be represented as a MultiSurface, and
thus val3dity offers that option on-the-fly (‘--geom is sem surfaces’). Observe that the whole
process (parsing the file, validating, and outputting the report) takes only 1m19s. However, it
should be observed here that speed was not the main goal of val3dity, its main goals are that it
is accurate and that it provides meaningful feedback to the user. Informing the user about the
nature of the error and having the most efficient code are contradictory goals. One could easily
and quickly report that a Shell is non-manifold, but reporting to the user the location of the
non-manifold case, with the identifier of each surfaces involved, requires using different data
structures and a slower processing time.

$ ./val3dity Berlin.gml --geom_is_sem_surfaces

DenHaag dataset contains 844 Buildings stored as Solids, but 507 of them have BuildingParts.
The validation performed with the default values, and thus no overlap tolerance overlapping
buildings, leads to several errors (only 61% of Buildings are valid). However, if we use an
overlap tolerance of 5cm, then this number goes up to 80%; notice that the validation time is
greatly affected: it is 16 times slower and takes 10m29s.

$ ./val3dity DenHaag.gml --overlap_tol 0.05

Montréal dataset contains 581 Buildings, but as it is often the case with CityGML, no ge-
ometry is explicitly stored, only semantic surfaces are present. The dataset was thus validated
with these as MultiSurface, and the whole process took only 3s. This dataset is interesting
because the only errors present are very simple ones that could be fixed easily: errors 101 and
102 (see Figure 3).

$ ./val3dity Montreal.gml --geom_is_sem_surfaces

NRW dataset (North Rhine-Westphalia state in Germany) is only one small part of a very
large dataset containing 10+ million Buildings. All the buildings are stored as Solids, but
interestingly there is a mix of LoD1 and LoD2 (which has no influence as far as validation is
concerned). As is the case with other datasets containing BuildingParts, using an overlap
tolerance (of 5cm) significantly slows down the validation process, but in this case removes
the two errors 601 that were present. Furthermore, there are 76 primitives that are non-planar
(errors 203 and 204), but if a planarity tolerance of 10cm is used and error 204 is ignored (does
not cause problems for several applications) then this number goes down to only 2 primitives.
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$ ./val3dity NRW.gml --overlap_tol 0.05 --planarity_d2p_tol 0.10 --ignore204

Conclusions

val3dity allows a practitioner to validate her 3D city models directly without having to convert
them to other formats (since several are supported), and without having to deal with the id-
iosyncrasies present in other software (where for instance interior rings and interior cavities
are not supported, and where the definitions of the primitives are not given). The validation
respects the definitions as found in ISO19107, with the sole exception that lines/surfaces must
be linear/planar (this is common in the 3D GIS community). The source code is open and
available under the GPLv3 license, and furthermore: (1) executables for Windows are provided
with every release; and (2) there is a web-application publicly available. The software comes
with an extensive documentation11 that defines unambiguously the 3D primitives, how they
are validated, and which options are available. I hope that the availability of these will help us
exchange 3D datasets and increase their usability, and that it will foster interoperability in the
3D GIS domain.

For the future, I plan to add validation functions so that the topological relationships be-
tween different objects are verified, and not only for BuildingParts. For instance, one could
verify whether two of the Buildings in her file are overlapping, or whether these are properly
connected to the terrain (so that they do not float a few centimetres above it). I also plan to
implement other semantic models and develop specific geometric validation functions, eg in
IndoorGML ensuring that the navigation graph is consistent with the subdivision space.

Availability and requirements

• Project name: val3dity

• Project home page: https://github.com/tudelft3d/val3dity

• Documentation: http://geovalidation.bk.tudelft.nl/val3dity/docs/

• Operating system(s): Platform independent

• Programming language: C++

• Other requirements: CGAL, GEOS, Boost

• License: GNU General Public License v3.0
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Gröger G, Plümer L (2012) CityGML—interoperable semantic 3D city models. ISPRS Journal of
Photogrammetry and Remote Sensing 71:12–33

Hachenberger P, Kettner L, Mehlhorn K (2007) Boolean operations on 3D selective Nef com-
plexes: Data structure, algorithms, optimized implementation and experiments. Compu-
tational Geometry 38(1–2):64–99, DOI DOI:10.1016/j.comgeo.2006.11.009, special Issue on
CGAL

15



Hossein Cheraghi S, Lim HS, Motavalli S (1996) Straightness and flatness tolerance evaluation:
an optimization approach. Precision Engineering 18(1):30–37

ISO (2003) ISO 19107:2003: Geographic information—Spatial schema. International Organiza-
tion for Standardization

Kang HK, Li KJ (2017) A standard indoor spatial data model—OGC IndoorGML and imple-
mentation approaches. ISPRS International Journal of Geo-Information 6(4):116

Kazar BM, Kothuri R, van Oosterom P, Ravada S (2008) On valid and invalid three-dimensional
geometries. In: van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds) Advances in
3D Geoinformation Systems, Lectures Notes in Geoinformation and Cartography, Springer
Berlin Heidelberg, chap 2, pp 19–46

Kolbe TH (2017) Personal communication

Laurini R, Milleret-Raffort F (1994) Topological reorganization of inconsistent geographical
databases: A step towards their certification. Computers & Graphics 18(6):803–813

Ledoux H (2013) On the validation of solids represented with the international standards for
geographic information. Computer-Aided Civil and Infrastructure Engineering 28(9):693–
706

McKenney D (1998) Model quality: The key to CAD/CAM/CAE interoperability. Tech. rep.,
International TechneGroup Incorporated, Milford, OH

Nouvel R, Zirak M, Coors V, Eicker U (2017) The influence of data quality on urban heat-
ing demand modeling using 3D city models. Computers, Environment and Urban Systems
64:68–80

OGC (2007) Geography markup language (GML) encoding standard. Open Geospatial Consor-
tium inc., document 07-036, version 3.2.1

OGC (2012) OGC city geography markup language (CityGML) encoding standard. Open
Geospatial Consortium inc., document 12-019, version 2.0.0

OGC (2016) OGC CityGML quality interoperability experiment. Open Geospatial Consortium
inc., document OGC 16-064r1

van Oosterom P, Quak W, Tijssen T (2004) About invalid, valid and clean polygons. In: Fisher
PF (ed) Developments in Spatial Data Handling—11th International Symposium on Spatial
Data Handling, Springer, pp 1–16

Sen M, Duffy T (2005) GeoSciML: Development of a generic geoscience markup language.
Computers & Geosciences 31(9):1095–1103

Serra JP (1982) Image Analysis and Mathematical Morphology. Academic Press

Steuer H, Machl T, Sindram M, Liebel L, Kolbe TH (2015) Voluminator—approximating the vol-
ume of 3D buildings to overcome topological errors, Springer Science, pp 343–362. Lecture
Notes in Geoinformation and Cartography

Wagner D, Alam N, Wewetzer M, Pries M, Coors V (2015) Methods for geometric data valida-
tion of 3D city models. Int Arch Photogramm Remote Sens Spatial Inf Sci XL-1-W5:729–735

van Walstijn L (2015) Requirements for an integral testing framework of CityGML instance
documents. Master’s thesis, Institute of Geodesy and Geoinformation Science, Technische
Universität Berlin

16
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