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Drainage networks play a crucial role in protecting land against floods. It is there-
fore important to have an accurate map of the watercourses that form the drainage
network. Previous work on the automatic identification of watercourses was typically
based on grids, focused on natural landscapes, and used mostly the slope and curva-
ture of the terrain. We focus in this paper on areas that are characterised by low-lying,
flat, and engineered landscapes; these are characteristic to the Netherlands for in-
stance. We propose a new methodology to identify watercourses automatically from
elevation data, it uses solely a raw classified LiDAR point cloud as input. We show
that by computing twice a skeleton of the point cloud — once in 2D and once in 3D
— and that by using the properties of the skeletons we can identify most of the water-
courses. We have implemented our methodology and tested it for three different soil
types aroundUtrecht, theNetherlands. Wewere able to detect 98%of thewatercourses
for one soil type, and around 75% for the worst case, whenwe compared to a reference
dataset that was obtained semi-automatically.

1 Introduction
Several areas around the world, such as the Netherlands, are characterised by low lying, flat, and
engineered agricultural lands. As shown in Figure 1a, the drainage network of these areas—
which is artificial—consists of connected linear features such as channels, culverts, and reshaped
gullies [Bailly et al., 2011]; we refer to these hereafter as “watercourses”. These form a network
that transits water from the fields into larger canals [Bouldin et al., 2004]. Typically, these areas
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Figure 1: A typical landscape in the Netherlands, for a region around Utrecht. (a)Watercourses
identified in redover an aerial image. (b)Elevationobtained fromaerial laser scanning.

have very little variation in elevation, see in Figure 1b how the elevation varies only by around
1.4m over the area (0.5km). Because engineered lands are sensitive to flooding [Parry et al.,
2007], it is of the utmost importance to have an up-to-date and accurate model of the water-
courses [Cavalli et al., 2013]. Such amodel will consist of the planimetric geometry of the water-
courses (their centreline), their connectivity, but also of other characteristics such as the width
and the shape of the banks (which is useful to calculate the storage capacity). This information
can help us design measures to avoid floods [Cazorzi et al., 2013], and can play an important
role in designing drainage channels and pumping stations [Malano and Hofwegen, 1999].
In this paper, we investigate how the network of watercourses in flat and engineered land-

scapes can be automatically identified. Currently, such networks are typically identified with a
semi-automatic methodology using LiDAR point clouds, aerial imagery and field surveys. This
is labour-intensive, and subjective [Gandolfi and Bischetti, 1997]. The vast majority of meth-
ods and algorithms developed in interdisciplinary studies have not been designed for our case,
but for natural landscapes. These usually assume that the slope along a watercourse is always
positive [Costa-Cabral and Burges, 1994; Lohani and Mason, 2001], or that the curvature of the
terrain is higher than a certain threshold [Meisels et al., 1995; Brzank et al., 2005; Passalacqua
et al., 2010]. Furthermore, when LiDAR datasets are used, usually a derived product of the origi-
nal dataset is used as input, e.g. a 5mX5mgridded digital elevationmodel (DEM) seems standard.
This is an inherent problem since they contain missing data where the water is located (due to
the absorption of LiDAR signals by water), and because the conversion to grids inevitably im-
plies a certain decrease of accuracy, due to the interpolation process and the resampling [Gold
and Edwards, 1992; Fisher, 1997; Brzank et al., 2008]. Furthermore, as can be seen in Section 4,
a 5m resolution DEM is not useful for our case because typically watercourses can be less than
1mwide, and several ones can be closer than 5m to each other. We further describe in Section 2
the few methodologies that have been designed for our case.
We present in Section 3 an automatic identification methodology that uses only a raw LiDAR

dataset as input. The only requirement is that the elevation samples must be classified (into
ground, water, buildings, and vegetation); algorithms for such classifications are readily avail-
able, see for instanceTóvári andPfeifer [2005]. Weuse twocomplementary skeleton-basedmeth-
ods— one in 2D and one in 3D— to extract the centrelines of the watercourses. The 2Dmethod
makes use of the absence of LiDAR points on water surfaces and constructs the alpha-shape of
the LiDAR samples projected to the 𝑥𝑦 plane, then computes a 2D skeleton for the resulting poly-
gons to obtain the centrelines. For watercourses that are dry and/or covered by canopy, we di-
rectly compute a 3D skeleton of the LiDAR points to identify concave profiles in the landscape
and extract centrelines. We have implemented our methodology and we report in Section 4 on
experiments in which we compare the results of our automatic methods with an existing water-
course dataset that was obtained in a semi-automatic manner. Our three study areas are located
in rural areas around the city of Utrecht in the Netherlands, and differ in their type of subsoil
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Figure 2: Identification of watercourses by Passalacqua et al. [2012] (with GeoNet software) for
an area with peat soil near Utrecht in the Netherlands. The dataset is compared to
a reference dataset provided by the HDSR (background aerial photo courtesy of www.
pdok.nl).

(clay, peat, and sand). By combining both the 2D and 3Dmethods, we have been able to identify
over 95% of the watercourses in the peat and clay areas, and around 75% in the sand area.

2 Relatedwork
Bailly et al. [2008] identifies narrow watercourses in agricultural areas with slopes using LiDAR
by analysing the profile at defined locations perpendicular to field boundaries, and choosing a
threshold for the curvatures (those above the threshold are ditches). They achieved ditch omis-
sions of around 50%, and ditch commissions of around 15%. They attribute the poor perfor-
mance to insufficient sampling of LiDAR points (around 10 points/m), and to vegetation cov-
erage along the ditches. Their method only works if the boundaries of fields are given as input,
and may not perform well for watercourses which are largely filled with water.
Passalacqua et al. [2012] argue that watercourses can typically be characterised by positive

curvature, and by high values of flow accumulation. Their method was designed specifically for
flat and engineered landscapes. They successfully extracted the network using a 3m DEM for
the low-relief human-impacted landscape of an area along a basin in the USA. However, their
study area has elevation differences of up to 60m, and therefore seems to be less flat than the
area we use for our study (see Figure 1b and Section 4). Since their method is freely available
in the package GeoNet [Sangireddy et al., 2016], we have tested it for our area. Figure 2 shows
that it performs poorly for our peat area (many errors of omission and commission), although it
performed slightly better for the clay area. It struggles in places with very low relief since there
is little surface curvature, and thus picks the slightest change.
Cazorzi et al. [2013] extracts local low-relief features from a 1mDEM, and extract the network

by labelling peak values based on a threshold value that is taken as the standard deviation of
the local relief. Their results proved to be more reliable than their outdated cartography-based
reference data, and a median distance of reference points to the extracted watercourse network
was registered to be about 1m. The usage of a threshold on the local relief can have implications
on the ability of the method to identify watercourses of different forms, and as stated above, is
less suitable for low-relief watercourses.
Cho et al. [2011] detect stream channels in very low-relief landscapes, based on local min-

ima and maxima in elevation values from a 1m DEM, but comment that the method requires
significant training and computation.
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(a) Workflow to obtain watercourses from the 2D skeleton.
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(b) Workflow to obtain watercourses from the 3D skeleton.

Figure 3: Ourworkflows that summarise howwe extract thewatercourses using 2D and 3D skele-
tons on a LiDAR point cloud.

Possel et al. [2010] try to detect very wide (100m) buried channels in an area in the Nether-
lands from a 2mDEMwith a maximum likelihood classifier based on slope, curvature and rela-
tive elevation.
Höfle et al. [2009] extract the edges of a water body by modelling the locations of laser shot

dropouts along with the surface roughness, after which potential water regions are detected by
using a region growing algorithm. Toscano et al. [2014] proposes a similarmethod that requires
less pre-processing, but themethod uses a DEM. The original LiDAR samples are converted (pix-
els having no LiDAR signal get a low value) and then an analysis of the height histogram allows
them to identify low area (which should be water). We believe that histogram analysis will not
suffice for smaller water bodies such as ours, since these do not generate high enough peaks in
the elevation data. Both Höfle et al. [2009] and Toscano et al. [2014] are unable to classify dry
watercourses or those completed covered by canopy.

3 Ourmethodology based on the 2D and 3D skeletons
We propose two skeleton-based approaches to automatically identify watercourses from a classi-
fied aerial LiDAR point cloud. The first one (see Figure 3a) uses the alpha-shape (also commonly
called “concave hull”) of ground and vegetation points to compute water polygons from which
the centrelines are derived using a 2D skeleton. The second one (see Figure 3b) computes centre-
lines as the lower envelope of the 3D skeleton of ground points and aims at identifying concave
profiles, which means it can also identify dry watercourses and watercourses covered partly by
canopy. Both 2D and 3D skeletons are used because they allow us to make use of different char-
acteristics of the input point clouds, as further explained below.
Since the 2D method uses mostly a series of known algorithms and standard GIS operations,

we shortly describe it in Section 3.1. We focus in Section 3.2 on the 3D skeleton-based method
because it is most novel. Furthermore, since both methods have complementary strengths, we
also describe how to integrate them into a unified and more robust approach that yields better
overall results. For both methods we assume, as is the case in the Netherlands, to have a point
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(a) Displayed is a 3m uniformly spaced subset of
LiDAR points, but alpha-shape was computed
for the full set of points. Aerial photo as back-
drop.
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(b) The majority of the watercourses are rep-
resented by the space between these alpha
shapes, while some are interior polygons of
the alpha shapes.

Figure 4: The alpha-shape of LiDAR points classified as ground.

cloud available that is classified into at least 1) ground points, 2) building points, 3) water points
and 4) other points (e.g. vegetation).

3.1 Computing centrelines using the 2D skeleton
We take advantage of a key property of red laser-based LiDARdatasets above openwater bodies: it
is almost completely absorbed, only LiDAR signals emitted at or near nadir are reflected strong
enough to be detected by the sensor. The few LiDAR measurements which did reflect on the
water bodies can be filtered out [Höfle et al., 2009]. As input for this method we use two sets of
points: 1) ground points (which includes the building points to fill the voids in the ground class
where buildings are), 2) vegetation points. What remains is a dataset with separate disconnected
groups of ground points, with voids in between these groups representing the waterbodies (see
Figure 4). These groups of ground points are then converted intomultiple disconnected ground
polygons using alpha-shapes (see Edelsbrunner et al. [1983]); the alpha parameter was manually
chosen based on the density of the LiDAR dataset.
We also consider vegetation points. Generally these should be omitted since they might cover

waterbodies. However, theremay also be vegetation that is so dense that it prevents LiDARpulses
from reaching the ground surface below. This results in holes —we call these vegetation arte-
facts— in the ground polygons as illustrated in Figure 5a. This is undesirable, since the alpha-
shape method is based on the assumption that all voids in the point cloud are watercourses,
which they are not in this case. To fix these artefacts, we use vegetation polygons that are com-
puted from the alpha shape of the vegetation points. We consider holes in the ground polygons
that are fully covered by vegetation polygons to be vegetation artefacts and subsequently remove
them. The resulting ground polygons are then free of vegetation artefacts. Polygons represent-
ing the watercourses can now be obtained by taking the inverse of the ground polygons (see step
3 in Figure 3a). Remaining irregularities in the water polygons are removed using a “buffer-
debuffer operation” to fill tiny holes, followed by aDouglas-Peucker line simplification [Douglas
and Peucker, 1973] to smooth the boundary (see Figure 6a).
Finally, we compute the Voronoi diagram (VD) of the boundaries of the water polygons. We

do this by first discretising the polygon boundaries (e.g. with point every 1m). Then we compute
the VD of the resulting set of points, as illustrated in Figure 7; notice that we do not compute
the VD of line segments [Held, 2001]. The 2D skeleton is a subset of this VD, it is defined as the
set of edges in the VD of the polygon that completely reside in the polygon’s interior, which is
conceptually similar to the algorithm described in Gold and Snoeyink [2001].
When using the VD of a polygon boundary to compute the 2D skeleton, a number of unwanted

branches are generated next to the desired centrelines; this is a normal property of the skeleton.
These unwanted branches are defined as any edge incident to a vertex of degree 3 and one of
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(a) The alpha shapes of the vegetation points
cover the vegetation artefacts.

(b) A clean dataset of ground surface alpha
shapes is formed by removing the vegetation
artefacts.

Figure 5: Vegetation artefacts are removed by detecting vegetation polygons that are completely
surrounded by ground.

(a) Watercourses are regularized using buffer-
debuffering and Douglas-Peucker line sim-
plification. (b) centrelines are regularised using pruning.

Figure 6: Regularisation of polygon boundaries and skeleton results for the 2D skeleton based
method.
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Figure 7: TheVDof a set of densified boundary points is used to compute the 2D skeleton (black)
of a water polygon (blue), in between two river banks (red and green). The 2D skeleton
is defined as all edges of the VD which are completely within the water polygons.

Exterior skeleton
Interior skeleton
Ground Surface

(a) Cross section of a watercourse. The 3D
skeleton is obtained by reconstructing me-
dial balls that touch the ground surface in two
points.

Skeleton points
Ground points

(b) Perspective viewof the 3D skeletonof simple
watercourses.

Figure 8: Profile view of 3D skeleton of the terrain

degree 1. We automatically prune these unwanted branches by setting a threshold on the branch
length (Figure 6b).

3.2 Computing centrelines using the 3D skeleton
Whereas the 2D skeleton method is based on the absorption of the red LiDAR signal by water
surfaces, the 3D skeleton method is based on the three-dimensional morphology of the land-
scape to identify watercourses and allows us to identify watercourses that are dry or covered by
canopy.
Our 3D skeleton approach is based on the Medial Axis Transform that was originally intro-

duced by Blum [1967]; the MAT — called 3D skeleton in the remainder of this text — models
the space between surfaces as a collection of medial balls. Each medial ball is tangent to the sur-
face at two or more points and the centres of the medial balls form amedial skeletal structure of
the object (see Figure 8a). Similar to the 2D skeleton there are branches structured in a hierarchy,
but in the 3D skeleton these are surfaces that we call medial sheets (see Figure 8b). The 3D skele-
ton of a typical watercourse results in three medial sheets: one exterior (above ground), and two
interior (under ground). The exterior medial sheet of a watercourse thus forms a ‘centre plane’
that contains the centreline of the watercourse. We define the centreline of a watercourse as the
projection to the 𝑥𝑦-plane of the lower envelope of its exterior medial sheet (see also Figure 3b).
For the computation of the 3D skeletonwe use the shrinking ball algorithmofMa et al. [2012],

extended with the denoising heuristics from Peters and Ledoux [2016]. We compute the 3D
skeleton for all points that are classified as ground. The result is a point approximation (i.e. a
point cloud) of the 3D skeleton. Next, we performa segmentation of the point cloud into distinct
medial sheets using a region-growing segmentation algorithm, conceptually similar to the one
described in Rabbani et al. [2006], but instead of the angular difference in normals we use the
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Figure 9: Each medial ball touches the surface in two points (𝑝 and 𝑝). The medial bisector �⃗� is
defined as the bisector of the vectors from the center 𝑐 to 𝑝 and 𝑝.

(a) Perspective view of skeleton and ground points. (b) Plan view of exterior skeleton sheets.

Figure 10: Segmentation of 3D skeleton sheets. Each distinct sheet was assigned a random
colour. The surface points are coloured by elevation (yellow = low; blue = high).

angular difference inmedial bisector. Themedial bisector (as defined in Figure 9) is very suitable
to distinguish between different medial sheet because it is by definition locally similar within
the same sheet, but different where two sheets intersect (see Siddiqi and Pizer [2008] for more
details). An added benefit of this approach is that outliers in the 3D skeleton point cloud can be
omitted, since they are not part of anymedial sheets and are therefore not assigned to a segment.
Figure 10 shows the segmentation result for a LiDAR dataset of watercourses. Observe that each
watercourse is delineated by a medial sheet. Prior to deriving the 2D centreline representation
of each sheet, we triangulate themedial sheets using the ball pivoting algorithm fromBernardini
et al. [1999]. A centreline of the water surface can then be derived by selecting the lower edge
segments on the boundary of the triangulated sheet (see also step 4 in Figure 3b). We identify
these by walking around the boundary edges of the triangulation (i.e. those edges that are only
incident to one triangle), and then selecting the edgeswhose two endpoints are below (i.e. having
a lower z coordinate) the opposite vertex in the triangle to which that edge belongs. We finally
obtain a 2D representation of the resulting polyline simply by omitting the z-coordinates.

3.3 Combined approach
In Section 4 we show that the 2D and 3D skeleton methods have different strength. We are able
to combine the strengths of both methods using a few common GIS operations. First we buffer
the resulting centrelines from both methods. If we then dissolve these buffers, one polygon re-
mains for every watercourse. Finally, the centrelines of these polygons are generated using the
2D skeleton again (see Figure 11).

8



0 2 4 m

Buffer polygon
Merged centreline
2D centreline
3D centreline

Figure 11: The centreline generated by the 2D and 3D skeletonmethods are combined bymerg-
ing the centrelines, subsequently buffering them, and lastly by generating a new cen-
treline using the 2D skeleton centreline extraction method.

4 Experiments & results
Wehave implemented themethods described in the previous section using a combination of ex-
isting tools and our own programs. The 2D skeleton method was implemented using primarily
QGIS1 and LAStools2. For the 3D skeletonmethod, we have used primarily our own software im-
plementations3, with the exception of the ball pivoting algorithm for which we used Meshlab4.

4.1 Study area & experiments
Our study areas are all 3x3 km and are situated around the city of Utrecht, the Netherlands (see
Figure 12). This area consists for the most part of flat (elevation typically ranges between -2
m to +6 m) and engineered landscapes (see Figure 13). We have selected three different types
of environments with different characteristics that can be classified according to their subsoils;
clay, peat, and sand:

Clay: little vegetation and fairly wide watercourses with a very clear concave profile.

Peat: little vegetation and very wide watercourses with a less clear concave profile.

Sand: a lot of vegetation and narrow watercourses with a clear concave profile.

More detailed information on the study areas can be found in Table 1.
The publicly available AHN35 aerial LiDAR point cloud data was used, which is the most cur-

rent version of the national elevation dataset of theNetherlands, it has a point density of around
10 points per squaremeter. For validation purposes, we have used an existing centreline dataset,
whichwasobtainedwith a semi-automaticmethod, fromHDSR (HoogheemraadschapDeStichtse
Rijnlanden, i.e. the water board responsible for water management in our study areas).
For the experiments, first we applied our two skeleton-based approach separately on all three

study areas. Then we combined the results using the method described in Section 3.3. The gen-
erated datasets of watercourses were compared to the HDSR dataset of watercourses, i.e. our ref-
erence dataset. We use the following error metrics (see Lillesand et al. [2008]):

1QGIS: http://www.qgis.org.
2LAStools: https://rapidlasso.com/lastools/.
3partially open source at https://github.com/tudelft3d/masbcpp
4MeshLab: http://meshlab.sourceforge.net.
5www.ahn.nl
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Figure 12: The three study areas we use in our experiments.

Table 1: Details on study areas. The specified location in EPSG:28992 is the lower left coordinate
of the area (they are all 3x3 km in size). The percentage of vegetation coverage is based
on the relative number of vegetation points in the point cloud. The percentage of water
coverage is computed by taking the total surface area of all water polygons in the HDSR
reference dataset and dividing it by the total surface area of the study area.

Area

Characteristic Clay Peat Sand

Location (EPSG:28992) (120279 (116785 (147565
, 440768) , 457391) , 446180)

Location (city / village) Cabauw Zegveld Langbroek
Vegetation coverage (%) 5 8 47
Water coverage (%) 9 14 5
Elevation range (cm) -250/+300 -250/+150 +150/+600
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Figure 13: Terrain elevation of the study areas. Interpolated from ground points. No data pixels
are white.
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Table 2: This table lists themetrics which were computed for the centrelines generated by the 2D
skeleton, the 3D skeleton, and the combined approach, for clay, peat and sand areas.

dataset

Error metric Clay Peat Sand

Positional accuracy (m) 2D skeleton 0.5 0.7 0.6
3D skeleton 0.6 0.8 0.8
Combined 0.6 0.7 0.9

Error of omission (%) 2D skeleton 5 5 58
3D skeleton 4 15 26
Combined 2 3 24

Error of commission (%) 2D skeleton 1 2 4
3D skeleton 8 8 17
Combined 8 8 17

• Positional accuracy: Refers to the extent to which the actual position of the watercourses is
correctly indicated. It can be estimated by calculating the average positional deviation for
multiple watercourses in the generated dataset with respect to the reference dataset.

• Error of omission: The percentage of watercourses in the reference dataset that are not in the
generated dataset.

• Error of commission: The percentage of watercourses in the generated dataset that are not in
the reference dataset.

To compute the error metrics we have uniformly discretised the centrelines into points, and
then identified for these points what is the shortest Euclidean distance to the centreline in the
reference dataset. By aggregating and averaging these point distances per centreline, an estimate
is obtained of the generated dataset’s positional accuracy. To obtain the mapping accuracies we
use threshold distances, e.g. if a threshold distance of 2 m is set, and the distance between a
point on the generated centreline and the reference centreline is larger than this distance, then
this point counts as an error of commission. Similarly, points can be selected on the generated
centreline to find the error of omission. The metrics are computed by taking the number of
points omitted or committed, relative to the total number of points.
Notice that our evaluationmethod is comparable to the one proposed by Heipke et al. [1997].

The main difference is that Heipke et al. [1997] use a buffer to match line features between the
reference and the generated data instead of the shortest distance between the points on the line
features. A benefit of our approach is that it can do partial matching, i.e. a parts of the same
line feature are matched separately, whereas Heipke et al. [1997] match only the complete line
features. We believe this is an advantage espically in the case where the topology of the networks
of the reference and the generated datasets are different, which is very likely since they are gen-
erated using different methods.

4.2 Results
The outcome of our experiments, for all combinations of methods and study areas, are shown in
Table 2 and summarised below.
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Both our skeleton-based methods perform very well for the clay area with only 5% of water-
coursesmissing (error of omission) and a low error of commission. As we explain in Section 3.1,
our 2D skeletonmethodworks based on the assumption that water surfaces can be detected from
the point cloud because water typically is the only surface type that does not reflect red laser. The
3D skeleton method on the other hand works based on the assumption of concavity, i.e. water-
courses often have significant surface curvature at the water banks. It is therefore not surprising
that both methods perform well on the clay area that has significant concavity and wide water-
course surfaces with little vegetation covering it.
For the peat area, the 2D skeleton performed nearly equally well, since water surfaces are even

wider and again there is little vegetation covering these surfaces. However, the watercourses
display less clear concave profiles, since relative water levels are higher here (thus many water-
courses have only very small banks), which impedes the effectiveness of the 3D skeleton. Al-
though the 3D skeleton performs less for this area, it still manages to identify some of the wa-
tercourses which were not identified by the 2D skeleton method. This is indicated by the fact
that the combined 2D+3D skeleton method identifies roughly 97% of the watercourses, which
is more than the 2D skeleton method identified by itself.
The sand area clearly stands out in Table 2 since the errors for both methods are significantly

worse than for the two other areas. Especially the 2D skeleton method does a poor job at identi-
fying the watercourses with a 58% error of omission. The main problems here are: (1) the fact
that water is not well visible in this landscape, (2) water surfaces are often narrower than 1m,
and (3) many patches of forest are present. The 3D skeleton is much more effective with only
26% error of omission, but it also struggles with the identification of the narrower watercourses
that are naturally also represented with relatively few points in the point cloud. The combined
method for the sand area raises the commission error only marginally to 24%, indicating that
the 3D skeleton method identified almost all of the watercourses identified by the 2D skeleton,
and is clearly the better performing method for this area.

5 Discussion
Our 2D- and 3D-skeleton methods both have different strengths and limitations. Summarising,
we can say that the 2D skeleton method is particularly efficient with open water watercourses
of sufficient width. The (lack of) surface curvature does not affect its effectiveness. And it is
characterised by a low error of commission. Its limitations are watercourses with a width of less
than 1 m (i.e. depending on the parameters used while creating the alpha-shapes, which itself
depends on the density of the LiDAR point cloud; for a denser point cloud, this parameter could
be lowered significantly), the presence of large patches of vegetation that cover water bodies (due
to the cleaning method of vegetation artefacts), and voids in the LiDAR point cloud that are not
the result of waterbodies. The former also means that the 2D skeleton method is ineffective in
case of low water levels at time of LiDAR measurements. Thus, the 2D skeleton method is par-
ticularly suited for use in areas where water levels are high and water is a predominant feature
of the landscape. The 3D skeleton on the other hand does not depend on the presence of water
or voids in general, and is effective as long as the canopy is not too dense and allows the LiDAR
signal to pass through. The limitations of the 3D skeleton are its dependence on surface curva-
ture (high water levels may obfuscate this) an its tendency to find concavities in the landscape
where one would not immediately expect a watercourse, e.g. levees or piles of earth or dirt (see
Figure 14a).
The 3D skeletonmethod is therefore mostly suited for areas with watercourses that have a low

water level, clearly concave profiles and may be covered with large patches of vegetation.
Our approach to combine the results of both the skeleton-based method is effective because

it always decreases the commission and omission errors. Only the error of commission never
improves since watercourses are never discarded by our current combination approach.
Finally, we note that the reference dataset that we used is not a perfect ground truth: we dis-

covered many errors and this should be considered when evaluating the error metrics, Multiple
situations were encountered where a watercourse was present in the reference dataset, which
was clearly not present in the point cloud data and the resulting generated datasets. The oppo-
site happened especially in the sand area where our 3D skeletonmethod in particular identified
a large number of watercourses that are not present in the reference dataset, but which based
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Figure 14: Remarkable cases in the results of our experiments.

on shape and size clearly were valid watercourses. These watercourses are hard to identify, since
they are covered by forest, thus this likely indicates an incompleteness of the reference dataset.
While the 3D skeleton shows an error of commission of over 17% for the sand area, we estimate
that at least half of these are not actually errors, but rather watercourses that were missing in
the reference dataset, and do exist in reality (see Figure 14b). We also noticed some erroneous
results due to deficiencies of the point cloud, such as shadowing effects. In case of the 2D skele-
ton method this may lead to the creation of voids that are not watercourses, but would still be
identified as such. This is especially the case near buildings (see Figure 14c). As a last remark
we note that especially the 2D skeletonmethod verymuch depends on a correct classification of
the point cloud into the necessary classes (ground, vegetation, buildings and water).

6 Conclusions and futurework
With omission rates of only 2%, for one soil type, we have successfully demonstrated that we are
able to automatically derive centrelines for watercourse from classified aerial point clouds in the
Netherlands. While the effectiveness of our2D+3Dskeleton-based approachdepends onvarious
properties of the landscape (such as vegetation coverage and curvature), the same can be said of
current approaches, as we have noticed from the authoritative reference dataset (obtained using
a semi-manual approach) that we used to validate our results. Furthermore, by combining the
results of both 2D and 3D skeletons we are able to compensate for this to some degree. By using
highly accurate raw point cloud data as input, we are able to identify very narrowwatercourses of
less than 1m wide, whereas existing automated methods from literature are typically limited to
the cell size of a grid (often 5mX5m). Thus, the strengths of our skeleton-based approach are that
it is automatic, effective, that is it able take full advantage of a raw point cloud dataset (instead
of using a derivative), and it is feasible to implement.
There are a number of things we believe deserve further research. First, and most interest-

ingly, the computation of additional watercourse properties such as the width and shape of the
banks, and the water storage capacity. We believe that especially our novel 3D skeleton method
has great potential here, since it has a well-defined link to the watercourse banks, and also de-
fines a volume through its medial balls (which fill the watercourse). Second, to examine how our
methods performs on an area with significant relief. And finally, tomake ourmethodology work
with larger areas, since in this work we have only looked at relatively small study areas. We are
at this moment limited by the main memory of a computer, but it should be trivial to scale the
computation of the 2D skeleton using a tiling scheme. Futhermore, Peters and Ledoux [2016]
showed that also the 3D skeleton can be constructed for billions of points using a tiling scheme.
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