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A field is a model of the spatial variation of an attribute over a spatial domain, and
it is used to represent continuous geographical phenomena such as the elevation of a
terrain, the salinity of a body of water or the humidity of the air (phenomena that can
change over time). Fields are more problematic than objects to store in a computer
first because they are intangible, and second because they are continuous (while com-
puters are discrete machine). This entry presents an overview of the different strate-
gies to represent fields as found in GIS-related applications. These strategies take into
account the fact that while geographical fields are continuous, we first have to collect
samples to study them. Higher-dimensional representations, where for instance time
is integrated as an extra dimension to the spatial ones, are also discussed.

1 Introduction

While we all have a certain idea of what ‘space’ is because we constantly interact with it, most of us
would be hard pressed to give a definition. The nature of space has been a debate for a long time,
and no clear and uncontroversial definition exists because different disciplines (eg mathematics,
physics and geography) have different definitions, and these are context-related. However, we
know that humans conceptualise space with two contrasting views: the object and the field views.
The former considers space as being ‘empty’ and populated with discrete entities embedded in
space and having their own properties. We usually use this view when we reason about the spatial
arrangement of the buildings and streets in our neighbourhood, or about the pieces of furnitures
in our house. The latter view considers space as being continuous, and every location in space
has a certain property (there is something at every location); entities are formed by clusters of
properties. We usually use this view for geographical phenomena such as the amount of rainfall
in a given province, or the temperature of a body of water.

When we want to represent and store a certain part of space in a computer, ie to build a spatial
data model and realise it with a data structure, the field-view approach is much more problematic
than its counterpart. The causes of this are many. First, a field is intangible and is not part of
our intuitive knowledge. It is easy for us to see and describe entities such as churches and rivers,
but, although we can imagine a field, it is somewhat of an abstract concept. Second, fields are by
definition continuous while computers are discrete machines. Third, there is much confusion
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Figure 1: Top: a profile view of a terrain, with one tree and one house with a balcony. Bottom:
the profile view if the elevation is a dependent variable of the (x,y); notice that the walls
of the house and the sides of the tree are not fully vertical (dotted lines)

among users because for years the GIS world has reduced each view to one of the two spatial
models: “object = vector model” and “field = raster model”. Goodchild, [1992], among others,
explains that this standpoint is simply false as both views can be stored with either spatial model.
For example, the elevation of a terrain can be represented with a raster or with a set of triangles,
and buildings in a city with polygons or with a binary raster.

This entry begins with the definition of a field, as usually used in GIScience. It should be
noticed that fields as found in GIS-related disciplines are not restricted to two dimensions, and
we consider three and higher dimensions (for spatial-temporal modelling). Different strategies
to represent higher-dimensional fields in a computer are described in Section B. These strategies
take into account the fact that while geographical fields are continuous, we first have to collect
discrete samples to study them. Section [ presents different interpolation methods that can be
used to reconstruct the continuity of a field from its set of samples. Section [§ presents different
spatial models to discretise a field into a finite number of parts; these spatial models can be based
on the samples or be arbitrarily subdividing the space. For each of the spatial models, potential
data structures for an efficient implementation in a computer are briefly discussed.

2 Whatisafield?

The definition usually used in GIScience is borrowed and adapted from physics. Physicists in the
19th century developed the concept of a force field to model the gravitational force, where a force
(a vector with an orientation and a length) has a value everywhere in space, and changes from
location to location. For most GIS applications, the vector assigned to each point is replaced by
a scalar value, and we obtain scalar fields; unless otherwise explicitly stated, in the following all
fields are scalar.

A field is a model of the spatial variation of an attribute a over a spatial domain, we assume this
domain to be RY, the d-dimensional Euclidean space. It is modelled by a function mapping one
point p in R? to the value of 4, thus

a=f(p)

The function can theoretically have any number of independent variables (ie the spatial domain
can have any dimensions), but in the context of geographical phenomena the function is usually
bivariate (x,y) or trivariate (x,y, z).

Bivariate functions are commonly used in GIS to model the elevation of a terrain. However, it
should be noticed that the dependent variable a (the elevation in this case) can have one and only
value for each location (x, y). This restricts the real-world cases that can be modelled because, as
shown in Figure [I], vertical surfaces (eg walls of a building if we model all man-made objects with
the terrain to construct a digital surface model), overfolds (eg the balcony of a house) and caves



are impossible to represent. Modelling the elevation (or other attributes) with a bivariate func-
tion is sometimes referred to as ‘2.5D GIS’; we model the function with a surface (ie topologically
a two-dimensional object) but we embed this surface in R®.

Geographical phenomena tend to vary over time, and, as a consequence, we obtain dynamic
fields. If we assume that time is continuous and linear, it is possible to incorporate it as an extra
dimension, perpendicular to the spatial ones. It becomes a new independent variable, and if we
already had a trivariate function (x,y, z) then it becomes a quadrivariate one (x,y, z, t). A dynamic
field representing the salinity of a body of water over time is thus modelled in R*.

The value of the attribute a can be measured according to different scales, and depending on
the scale used different types of fields will be obtained. We distinguish between two types of
fields:

Continuous fields: the scale of measurement is a real number R. Most fields studied in the geo-
sciences fall into this category: temperature, precipitation or salinity are examples because
they can be measured precisely. The measurements scales ‘ratio’ and ‘interval’ are of this

type.

Discrete fields: the possible values of an attribute 4 are simply labels. An example is a map of Eu-
rope where each location contains the name of the country. The labels can also be ordered,
eg a certain region can be categorised from 1 to 5 according to its suitability for producing
wine: 1 being poor, and 5 excellent. These are respectively the scales ‘nominal’ and ‘ordi-
nal’. It should be observed that in the former case the only comparison possible between
two values is whether they are the same or not; in the latter case operations such as ‘greater
than’ and ‘less than’ can be made, but no arithmetic operations are possible. Discrete fields
act also as objects because each regions can be modelled as a unique object.

Notice that the terms ‘continuous’ and ‘discrete’ can be misleading because in mathematics con-
tinuity has a slightly different meaning. Here they refer only to the scale of measurement, and
not to the spatial continuity of a field. Indeed, both types of fields are spatially continuous, since
they are represented by a function and there exists a single and unique value at every location in
space; this is called a C° function in mathematics. For the representation of fields, it is however
often desirable to have a function for which the first or second derivative is possible everywhere,
such functions are respectively referred to as C! and C2.

3 Strategies to represent fields in a computer

The representation of a field in a computer faces many problems. First, fields are continuous
functions, and, by contrast, computers are discrete machines. Fields must therefore be discre-
tised, ie broken into finite parts. Second, in practice it is usually impossible to measure continu-
ous phenomena everywhere, and we have to resort to collecting samples at some finite locations
and reconstructing fields from these samples. The discretisation task therefore begins at the ac-
quisition phase, and is affected by the acquisition tools and techniques. This fact is aggravated
for fields as found in GIS-related disciplines because, unlike disciplines like medicine or engi-
neering, we seldom have direct access to the whole object of interest. Indeed, to collect samples
in the ground we must dig holes or use other devices (eg ultrasound penetrating the ground); un-
derwater samples are collected by instruments moved vertically under a boat, or by automated
vehicles; and samples of the atmosphere are collected by devices attached to balloons or aircrafts.
Moreover, because of the way they are collected, geoscientific datasets often have a highly sparse
and anisotropic distribution: as shown in FigureJ, the distribution can be for instance dense ver-
tically (with a sample every 2m in that real-world case) but extremely sparse horizontally (water
columns are located at about 35km from each others). Even if a sensor is used to collect samples,
the result (eg an image with pixels) is not a complete representation since each pixel usually
averages the value of the studied phenomenon over the pixel area, or each pixel represents the
value for one location inside the pixel. Third, another peculiar property of geoscientific datasets
is that the samples they contain represent the spatial variability of a given attribute only at time
t, and many geographical phenomena in geosciences change and evolve relatively quickly over
time.
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Figure 2: An oceanographic dataset in the Bering Sea in which samples are distributed along
water columns. Each red point represents a (vertical) water column, where samples are
collected every 2m.

3.1 WHAT IS NEEDED TO REPRESENT A FIELD?
To represent a field in a computer, two things are needed:

1. a set of samples that were collected to study the field, eg these can be the elevation of a
terrain obtained with airbone laserscanning or the humidity of the soil collected with a
certain device. This set forms the ‘ground truth’ of the field, and its importance is such that
it has been dubbed the meta-field by Kemp and V¢kovski, [1998].

2. a set of rules to obtain one and only one value for the attribute studied at any location, in
other words, to reconstruct the continuity of the phenomenon studied from the discrete
samples. This operation is referred to as spatial interpolation.

Section [ presents the first strategy: storing the original samples with the parameters of the
global spatial interpolation method that is best suited to the distribution of the samples and their
accuracy. Notice that this strategy permits us to reconstruct the continuity of a field from the
samples by calculating the value of the attribute, but that this value is not persistently stored in
the computer.

Section [J presents an alternative strategy: the spatial interpolation function used is piecewise
(instead of being global). That is, the field is tessellated, or partitioned, into several pieces, and
for each of these we assign an interpolation function describing the spatial variation. Piecewise
models imply that a supporting data structure is constructed, and stored, to represent the tes-
sellation (it is however possible to construct on-the-fly some well-known structures only when
they are needed since they have formal rules). Some of these tessellations partition arbitrarily
the space, while some are based on the set of samples that were collected.

3.2 INCOMPLETE REPRESENTATIONS

In the GIS literature, different representations for two-dimensional fields are often listed. For
instance, these six are common:

1. regularly spaced sample points;
irregularly spaced sample points;
contour lines;

rectangular cells (raster);

triangulated irregular networks (TIN);
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planar partition with arbitrary polygons.



While these are by no means exhaustive, they represent how a typical practitioner would store
her two-dimensional fields. Theoretically, these representations all generalise to three and higher
dimensions (these are discussed in Section [j)).

Although the first three representations are commonly used, they are incomplete: the set of
rules to reconstruct the continuity of a field at unsampled locations is not explicitly given. These
should therefore not be considered valid representations of a field. It should be noticed that
while finding a spatial interpolation function suitable for the first case is simple (a few are dis-
cussed below), for the third case it is a complex task. Indeed, Dakowicz and Gold, [2003] demon-
strate that using simple rules (nearest-neighbour for instance) yields fields that are not realistic
and have bad slope, which is in practice problematic for several applications. Obtaining good
slope from contour lines is possible, but is in practice a complex process.

4 Samples + global interpolation rules

We consider as ‘samples’ any data that were collected to study a phenomenon. In practice, these
data can take different forms:

1. a set of scattered points;

2. aset of lines. The most common case is a set of contour lines coming from a topographic
map;

3. a set of scattered polygons (or polyhedra or polytopes) to which one value is attached. Al-
though this case is theoretically possible, in practice this is very rare. It is nevertheless
always possible to discretise each primitives into a set of points, and then perform interpo-
lation.

Observe that it is also possible to collect directly a raster image, coming from remote sensing,
where the value of each pixel represents the temperature of the sea for instance. The value is
the average of the all the values within the pixel, and this case is considered as being already
tessellated (the pixels) and is discussed in the next section.

Interpolation methods are rather difficult to categorise because they are based on different
paradigms, and some methods fall into more than one category. No attempt is made in this
entry to introduce categories; the reader is referred to the other entries in the book Interpolation,
inverse-distance weighting and Interpolation, Kriging.

The following are a few examples of ‘global’ interpolation methods, ie the same function is ap-
plied everywhere to a subset of (regularly or irregularly spaced) sample points (and the function
is not piecewise, as in Section [5). Observe that these methods can all be used in three and higher
dimensions.

Nearest neighbour: the simplest interpolation method. The value of an attribute at location x is
assumed to be equal to the attribute of the nearest sample point.

Inverse-distance weighting (IDW): as described in the chapter Interpolation, inverse-distance weight-
ing, it requires different parameters to define which points are involved in the interpolation
ata given location, and also the power must be defined. The parameter to define the points
is usually a searching radius, which can be used in higher dimensions.

Kriging: as described in the chapter Interpolation, Kriging, while the modelling of a dataset is a
difficult and time-consuming task, the output of the modelling process (a function char-
acterising the dependence between the attributes of any two samples that are at a given
distance from each other) can be simply stored as a string.

Notice that while it is theoretically possible to find a polynomial function of high degree for
any set of real-world samples, in practice this is very rarely used because, as the degree of the
polynomial increases, so can the error at unsampled locations. That is, the error at the samples
is zero, but between two samples the function returns a value that can be far higher or lower
than the two values of the samples (known as the Runge’s phenomenon). Piecewise functions
formed by many polynomial functions, known as splines, are usually preferred and used in GIS,
see Mitasova and Mitas, [1993] for instance.



Storing explicitly the interpolation method is efficient because in practice only a few param-
eters have to be stored. For instance, in the case of IDW, it suffices to store the search radius
and the power used (two numbers). Finding the appropriate values for interpolation parame-
ters is a difficult and time-consuming task, as the user must have a good understanding of the
spatial distribution of the samples, and of the details of the method. A vivid example is Kriging,
with which experienced users can obtain very good results, but which also leaves newcomers
clueless with its many parameters and options. Using Kriging with the appropriate parameters
leads to results having statistically minimum variance, however, simply using the default values
for the parameters will most likely lead to unreliable results. Thus, it is better to let specialists
perform the modelling of a dataset and find the best interpolation method (and the parameters
to use), and store only the results of that modelling. The practitioners can then reconstruct the
field without having to find the optimal parameters, provided that they have access to software
to perform the interpolation.

5 Piecewise spatial models

In this section different spatial models needed to represent tessellations of space (this space
can be in our case two-, three-, or four-dimensional) are presented and discussed. While the
same spatial models can in theory be used in any dimensions, their implementations with a
specific data structures for the three- and higher-dimensional cases are more complex than the
two-dimensional case, and for this reason, potential data structures are also briefly discussed.

Once the d-dimensional space covered by a field is tessellated, the field function becomes piece-
wise: to each d-dimensional element of the tessellation—which is named a cell in the following—
is assigned a function describing the spatial variation in its interior. This function is usually a
simple mathematical function:

- constant function: the value of the modelled attribute is constant within one cell, for ex-
ample to represent a discrete field;

- linear function;
« higher-order function.

In general, we classify the tessellations of space into three categories (as shown in Figure B):
regular, hierarchical, and irregular.

5.1 REGULAR TESSELLATIONS

All the cells have the same shape and size. The most common regular tessellation in GIS is by
far the grid (or raster representation), in which the cells are squares in 2D (usually called pixels,
a portmanteau of ‘picture’ and ‘element, as an analogy to digital images). However, while they
are not common in practice, other regular shapes are possible, such as hexagons or triangles.
Regular tessellations generalise to higher dimensions: for instance, in 3D, instead of squares we
have cubes (called voxels; ‘volume’ and ‘element’), and tesseracts in 4D.

Observe that a regular tessellation often arbitrarily tessellates the space covered by the field
without taking into consideration the objects embedded in it (the samples) or the nature of the
phenomenon modelled. This is in contrast with irregular tessellation in which, most of the time,
the cells constructed are constrained by the samples. Kemp, [1993] states that “[a 2D grid] re-
quires us to enforce a structure on reality rather than allowing reality to suggest a more appro-
priate structure for our analysis”. In practice this means that, unless a regular tessellation is
obtained from an image sensor (remote sensing or photogrammetry), we can assume that it was
constructed from a set of samples by using spatial interpolation. Converting sample points to
cells is not optimal because the original samples, which could be meaningful points such as the
summits, valleys or ridges of a terrain, are not necessarily present in the resulting grid.

Concrete example: a 2D grid. A 2D grid, stored for instance with the GeoTIFF format, is thus
a piecewise representation of a 2D field: a regular tessellation where each cell has a constant
function. The value assigned to each cell is either an estimation previously obtained by spatial
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Figure 3: Type of tessellations and one example for each in two and three dimensions.

interpolation, or, in case of aerial imagery, the average values inside that cell. However, for a
given grid, it is usually unclear if the value of a cell is for its centre, or for one of its vertices
(and if it is the case, for which one?). Different formats have different rules, and converting a
field represented with one format to another one (while retaining the same cell resolution and
spatial extent) can shift the value from the centre to the top-left corner for instance.

Concrete example: a 3D/4D grid. As is the case for 2D grids, 3D/4D grids are piecewise repre-
sentations, and usually a constant function is used for each cell. Several implementations of a
voxel-based GIS exist, notably the open-source system GRASSY in which diverse operations such
as interpolation and visualisation are possible. Also, most of the earlier attempts at building
3D GISs were made using voxels. Four-dimensional grids can be stored, among others, in the
netCDF format®. It can actually be used for d-dimensional grids, with different spacing for dif-
ferent dimensions. They are binary and spatially structured, which means that parts of a dataset
can be efficiently retrieved and processed.

While the function assigned to each cell is often a constant, other functions can be used. No-
tice that a linear function is impossible (unless, for instance, in 2D, the 4 vertices of the cells
are coplanar), and instead bilinear interpolation is used. The method, which can be seen as an
extension of linear interpolation, performs linear interpolation in one dimension (eg along the
x axis), and then in the other dimension (y axis). The result is independent of the order in which
the axes are used, and can be generalised to higher dimensions.

The wide popularity of regular tessellations in 2D and 3D GIS applications is probably due to
simplicity and to the fact that they permit us to easily integrate 2D remote sensing images and
fields. Indeed, a grid is naturally stored in a computer as an array (each cell is addressed by its
position in the array, and only the value of the cell is stored), and thus the spatial relationships
between cells are implicit. This is true for any dimensions, thus, contrary to other tessellations,

!Geographic Resources Analysis Support System (http://grass.itc.it).
Zhttp://www.unidata.ucar.edu/software/netcdf/
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grids are very easy to generalise to higher dimensions. The algorithms to analyse and manipulate
(Boolean operations such as intersection or union) are also straightforwardly implemented in
a computer. On the other hand, grids also suffer problems. First, the size of a grid can become
massive for data at a fine resolution; this problem gets worse in higher dimensions. Second,
grids scale badly and are not rotationally invariant, ie if the coordinate reference system used
is changed, then the grid needs to be reconstructed to obtain regular cells whose boundaries are
parallel to the axes of the reference system. To assign a new value to the transformed cells, spatial
interpolation is needed, which is often performed not by re-using the original samples, but by
using the values of the neighbouring cells. Unfortunately, each time a grid is transformed its
information is degraded because not the original samples are used, but interpolated values.

5.2 HIERARCHICAL TESSELLATIONS

Hierarchical tessellations attempt to reduce the number of cells in a tessellation by merging the
neighbouring cells having the same value (thus yielding cells of different sizes). While both reg-
ular and irregular tessellations can be hierarchical, in the context of the representation of fields,
the former is more relevant and is often used in practice. Irregular hierarchical tessellations,
usually triangulations, are used for obtaining multi-resolution models [De Floriani and Magillo,
2002], or act as a spatial index for efficiently accessing triangles. Their use as a support to con-
struct a piecewise function is not necessary since, as shown in Section [§, irregular tessellations
have cells of different sizes and shapes. Consequently, only hierarchical regular tessellations are
discussed in the following.

A commonly used hierarchical structure in two dimensions is the quadtree, which is a generic
term for a family of tessellations that recursively subdivide the plane into four quadrants. As
is the case for grids, quadtrees are relatively easily implemented in a computer because they
are trees in which each node has exactly four children, if any. Different variants of quadtrees
exist, but the most relevant type in the context of this chapter is the region quadtree. As shown
in Figure B, it indexes and merges adjacent grid cells to save space by recursively subdividing
the space into four squares of equal size, until every square contains one homogeneous region
(based on the attribute of every grid cell, the colour in the figure). A region quadtree offers a
more adaptive subdivision of space than a regular tessellation because smaller cells are present
only when needed (to capture more details).

The region quadtree generalises to higher dimensions. For instance, in three dimensions, the
space is recursively subdivided into eight octants, and thus the tree is called an octree (each node
has eight children). In four dimensions, space is recursively subdivided into 16 cells (each one
of them being a tesseract).

Examples of the use of regular hierarchical tessellations in GIS for representing fields are more
numerous in 3D than in 2D, probably because the space issue (ie space used to store a field in
a computer) is more critical. However, it is possible that a GIS stores and handles internally
2D grids as region quadtrees—the user does not need to know as no information is lost in the
conversion, and important space and processing gains can be achieved.

The shortcomings of regular hierarchical tessellations are similar to those of regular tessella-
tions: the rotation and scaling operations are difficult to handle. The main advantage of using
them—saving memory space—is present only when there is spatial coherence between cells hav-
ing the same attribute value, ie when they are clustered together. Indeed, the size of a quadtree
is not dependent on the number of cells, but on their distribution. The quadtree of a 2D grid
having no two adjacent cells with the same value contains the same number of cells as the grid,
and its size would most likely be worse because of the overhead to manage the tree.

5.3 IRREGULAR TESSELLATIONS

The cells of an irregular tessellation can be of any shape and size, and they usually ‘follow’—or
are constrained by—the samples points that were collected to study the field, albeit this is not a
requirement. Subdividing the space based on the samples has the main advantage of producing
a tessellation that is adaptive to the distribution of the samples (and thus to the complexity of the
phenomenon studied). The subdivision is potentially better than that obtained with quad/octree
(which subdivides arbitrarily the space without any considerations for the samples).
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Figure 4: An example of a choropleth map (data from Statistics Netherlands).

The most known examples of the use of irregular tessellations in GIS for representing fields
are arguably the choropleth map, the TIN and the Voronoi diagram.

5.3.1 Choropleth maps

A choropleth map subdivides the plane into arbitrary polygons, and a constant function is used
within each polygon. They are mostly used to model and visualise discrete fields, such as densi-
ties, rates or proportions. Figure i shows one example where the percentage of people above 65
years of age per neighbourhood in a part of the Netherlands. Observe that since the field mod-
elled is discrete, using other functions (linear or quadratic) would not make sense. Operations
that are possible with continuous fields, eg interpolation, are also impossible.

The generalisation to higher dimensions of choropleth maps, ie of an irregular tessellation of
space into cells of different shapes and size, is possible. In three dimensions, the cells are poly-
hedra, and these are used, among others, in geological applications where one type of rock is
attached to each polyhedron. In four dimensions, the cells are polytopes, and can be conceptu-
alised as polyhedra modelled over time.

The storage of a discrete field such as a choropleth is done with one of the data structures
described in the chapter Data structure, vector, as this is simply a set of polygons to which one
attribute value is attached. For the three- and four-dimensional cases, more advanced data struc-
tures have to be used. One example is the structure generalised maps, as first introduced in Lien-
hardt, [1994]. It is capable of representing a wide class of objects in arbitrary dimensions. Prac-
tically, it also has the advantage of having been implemented in higher dimensions, and of being
used in different systems in three dimensions (eg it is used in GOCADB for geological modelling
and in Mokaf for geometric modelling).

5.3.2 Triangulated irregular networks (TINs)

As shown in Figure [§, a triangulated irregular network (TIN) refers to an irregular tessellation
of'a 2D field into non-overlapping triangles (whose vertices are formed by three sample points),
and to the use of a linear interpolation function for each triangle. While in theory any 2D field
can be modelled with a TIN, it is in practice mostly used for representing the elevation of an
area because the lifting of each sample point to its elevation creates a surface, embedded in three
dimensions, approximating the morphology of the terrain. The value of the attribute of a field at
an unsampled location x is obtained by linearly interpolating on the plane passing through the

3http ://www.gocad.org/
4http ://moka-modeller.sourceforge.net/
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Figure 5: A TIN is obtained by lifting the triangles to their elevation. All the triangles are Delau-
nay, ie their circumcircle is empty of any other points in the plane. (The circumcircle
for the green triangle is shown here.)

three vertices of the triangle containing x. TINs are the most popular alternatives to 2D grids for
modelling elevation; both representations have advantages and disadvantages.

Given a set of points in the plane, there are several ways to construct a triangulation. A TIN
usually refers—although this is not a strict requirement—to a Delaunay triangulation (DT) of the
set S of sample points projected on the two-dimensional plane. A triangle respects the Delaunay
criterion if the unique circle on which its three vertices lie does not contain any other point
in the set S (see Figure [§)). This also means that, among all the possible triangulations of a set
S of points, the DT maximises the minimum angle (the max-min property) and minimises the
maximum circumradii; in other words, it creates triangles that are as equilateral as possible. This
property is useful in applications where interpolation is necessary (such as the reconstruction
of a field) since with long and skinny triangles the estimation of the field attribute at location x
by linear interpolation in the triangle will use samples that can be far away from x. In a DT the
three vertices of the triangle containing x will most likely be close to, and around, x.

A TIN in which a linear interpolation function is used yields a C° piecewise representation,
ie it is a continuous function but at the edges of the triangles the first derivative is not possible.
Akima, [1978] shows the advantages of using higher-order functions in each region of a TIN, to
construct a C! or C? field. In other words, if elevation is the attribute modelled, the slope of the
terrain will be ‘good’, which is important for several applications, for example flood modelling.

Storing a TIN can be done with any of the data structures described in the chapter Data struc-
ture, vector since a TIN is formed by a set of triangles. However, more efficient data structures,
in terms of storage space and in terms of complexity, exist. The simplest of these, the triangle-
based data structure, considers the triangle as being its atom and stores each triangle with three
pointers to its vertices and three pointers to its adjacent triangle; it can be easily implemented
in an array. Shewchuk, [1997] reports the implementation of his program to compute the DT to
be nearly twice as fast when this structure is used, instead of a generic structure for polygons. It
is being used in several packages, notably by the open-source project CGALF. It is also possible
to see a TIN as a graph and to compress that graph, see for instance Blandford et al., [2005]. The
data structure is more complex to construct, but can take five times less memory than the alter-
natives mentioned above. It should however be noticed that, from a practical point of view, if the
triangulation used is Delaunayj, it is easier to store only the sample points and reconstruct on the
fly the DT when needed since the DT is unique for a given set of points (if no four or more points
are cocircular). This is conceptually equivalent to the solution described in Section [, and it is
known that the DT of a set of points can be reconstructed very efficiently [Snoeyink and Kreveld,
1997].

The generalisation to three dimension of the Delaunay triangulation is the Delaunay tetrahe-
dralization: each triangle becomes a tetrahedron that satisfies the empty circumsphere rule. How-
ever, obtaining nicely shaped tetrahedra that can be used for linear interpolation of a field is
more difficult than finding good triangles because the max-min property of two-dimensional
Delaunay triangles does not generalise to three dimensions (nor to higher dimensions). A three-
dimensional DT can indeed contain some tetrahedra, called slivers, whose four vertices are al-

Shttp://www.cqal.or‘q

10


http://www.cgal.org

Figure 6: The two-dimensional Voronoi diagram. The cell in grey represents the space closer to
the point in the middle of the grey cell than to any other point.

most coplanar, and thus have a volume of nearly zero. (Observe that slivers do not have two-
dimensional counterparts.) For the reconstruction of a three-dimensional field with linear in-
terpolation inside a tetrahedron, these tetrahedra are not optimal and should be removed. This
is unfortunately a rather convoluted operation. However, it should be said that in most cases
Delaunay tetrahedra have a more ‘round’ shape than arbitrary tetrahedra.

The DT generalises to four and higher-dimensions, the circumball around each simplex (the
simplest element in a given dimension: vertex, edge, triangle, tetrahedron, etc) is empty of any
other points. It can be constructed, among other ways, with the algorithm and the implementa-
tion described in Barber, Dobkin, and Huhdanpaa, [[1994].

Storing a 3D or 4D Delaunay triangulation is simpler than storing an higher-dimensional
arbitrary subdivisions of space, and can be done with a straightforward generalisation of the
triangle-based data structure: the atom is a d-dimensional simplex having d + 1 pointers to its
vertices and d + 1 pointers to its neighbours. However, as is the case for the cases in 2D and 3D,
the reconstruction on the fly is a simpler alternative in practice.

5.3.3 Voronoi diagram

Another example of an irregular tessellation is the Voronoi diagram (VD) of a set of points in
a d-dimensional space, where each point is mapped in a one-to-one way to a cell representing
the space closer to the point than to any other in the set. Figure [§ shows an example, and more
details about the properties of the structure are discussed in the chapter Data structures, Voronoi
diagram.

The VD is the geometric dual structure of the Delaunay triangulation (DT), and that in any
dimensions. In brief; it means that both structures represent the same thing, but from a different
viewpoint. The sample points collected to study a field are not on the boundary of the cells of
a VD, but are rather the points generating each Voronoi cell (they are ‘in the middle’). As is
the case with the DT or other irregular tessellations, perhaps the main advantage of the VD for
representing fields is that it permits us to preserve the original samples. The main advantage of
the VD over the DT is that, for the three- and higher-dimensional cases, the shape of the cells
is always ‘good’, ie even if slivers are present in the DT, the Voronoi cells will still be ‘relatively
spherical’ (which is an advantage for interpolation).

If a constant function is assigned to each Voronoi cell, the VD permits us to elegantly repre-
sent discrete fields. Indeed, if sample points were collected to study a discrete field, it makes
little sense to use spatial interpolation functions such as IDW; the VD offers a natural way to
reconstruct the field. To know the value at a location x, one simply has to find the Voronoi cell
containing x and query its attribute value. Observe that this is conceptually equivalent to storing
the sample points and using a nearest neighbour function, as explained in Section M.

To reconstruct a continuous field from a set of samples, more elaborate functions are needed
since the VD creates discontinuities at the border of each cell. An interesting one is the natural
neighbour interpolation method [Gold, [1989; Sibson, 1981] because it has been shown by differ-
ent researchers to have many advantages over other methods when the distribution of samples
is highly anisotropic: it behaves consistently whatever the distribution of the samples is, and it
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is an automatic method that does not require user-defined parameters. The method is entirely
based on the VD for both selecting the samples involved in the interpolation process, and to
assign them an importance. The neighbours used in an interpolation are selected using the ad-
jacency relationships of the VD, which results in the selection of neighbours that both surround
and are close to x, the interpolation location. A field reconstructed with the natural neighbour
function will be smooth and continuous everywhere (C!), except at the samples themselves. It is
possible to use that method in any dimensions, see Ledoux and Gold, [2004].

Since the VD and the DT are dual structures, the knowledge of one implies the knowledge of
the other. In other words, if one has only one structure, she can always extract the other one.
Because it is easier, from an algorithmic and data structure point of view, to manage simplices
over arbitrary polytopes (they have a constant number of vertices and neighbours), constructing
and manipulating a VD by operating only on its dual structure is simpler and usually preferred.
In the context of representing fields, there is therefore no need to store a VD. When the VD is
needed, it is extracted on the fly from the DT. And since the DT is rarely stored in a computer as
far as the modelling of fields is concerned, neither is the VD.

6 Inbrief

The choice of a spatial model to represent geographical phenomena is a fundamental issue of
spatial data handling, and unfortunately one that is more than often overlooked by GIS practi-
tioners. For a given task, practitioners tend to simply use the spatial models, and data structures,
available in commercial GISs, without assessing the consequences of their choice. This is partic-
ularly problematic for the representation of fields as found in GIS-related disciplines because,
regardless of a few notable models developed in academia, the only solutions available are grid-
based models, and this is especially true in dimensions higher than two. The popularity of grids
is probably due to their conceptual simplicity and to the fact that they are easily and naturally
stored in computers. However, as it was demonstrated in this chapter, they have many shortcom-
ings, both conceptually and technically. They tessellate arbitrarily the space without taking into
consideration the objects embedded in that space (or the phenomenon being studied), which
yields an unnatural discretisation. Moreover, grids need to be resampled each time the carto-
graphic projection used is modified, and each resampling degrades the information stored in
the file, and can lead to errors and misinterpretations during the analysis.

The alternative representations presented in this chapter are often more complex to construct
and store in a computer, but practitioners should consider them because they would often per-
mit them to better represent the phenomena they are studying. Irregular tessellations indeed
permit us to obtain a subdivision that is based on the samples collected (which are preserved, by
opposition to grids where they are ‘lost’), and the cells constructed are adaptive to the spatial dis-
tribution of samples, which is crucial when dealing with highly anisotropic distributions such
as the ones found in the geosciences.
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