
Visibility analysis in a point cloud based on the
medial axis transform

Ravi Peters
r.y.peters@tudelft.nl

Hugo Ledoux
h.ledoux@tudelft.nl

Filip Biljecki
f.biljecki@tudelft.nl

This is the author’s version of the work. It is posted here only for personal use, not
for redistribution and not for commercial use. The authorative version is

Visibility analysis in a point cloud based on the medial axis transform. Ravi
Peters, Hugo Ledoux and Filip Biljecki. Eurographics Workshop on Urban Data
Modelling and Visualisation, UDMV 2015, Delft, the Netherlands, November 2015.

Visibility analysis is an important application of 3D GIS data. Current approaches re-
quire 3D city models that are often derived from detailed aerial point clouds. We present
an approach to visibility analysis that does not require a city model but works directly
on the point cloud. Our approach is based on the medial axis transform, which models
the urban environment as a union of balls, which we then use to construct a depthmap
that is used for point visibility queries. As we demonstrate through our experiments on a
real-world aerial LiDAR point cloud, the main benefits of our approach are 1) it is robust
to noise, irregular sampling and holes of typical aerial LiDAR datasets, 2) it gives visi-
bility results that are significantly more accurate than the often highly generalised city
models, and 3) it is a simple algorithm that is easy to parallelise.
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1 Introduction

Visibility analysis is one of the prominent use
cases of 3D GIS data, since this provides in-
formation about spatial relations and poten-
tial obstacles in the line of sight between two
points in space. For instance, such analyses
have been done in estimating the visibility of
a landmark Bartie et al. (2010), and in finding
the optimal location to place a surveillance cam-
era Yaagoubi et al. (2015). An important vari-
ant of the visibility analysis is the estimation of
shadows, since the position of the sun is vari-
able and it is located at a practically infinite dis-
tance Biljecki et al. (2016). Shadow analysis has
gained importance in several disciplines. For in-
stance, shadows are important to account for the
loss of the photovoltaic potential Nguyen and
Pearce (2012); Eicker et al. (2015), for determin-
ing solar envelopes Knowles (2003), for assess-
ing the value of real estate Helbich et al. (2013),
and for estimating the thermal comfort Hwang
et al. (2011); Yezioro and Shaviv (1994). Shad-
ows are also critical in geovisualisation Lovett
(2003).

Visibility analysis is usually performed on a 3D
city model, i.e. a geometric model that was re-
constructed from elevation information, such as
airborne LiDAR point clouds, and 2D datasets
(e.g. building footprints from a topographic
map). The analysis involves testing if a line of
sight (ray) intersect a face in the dataset, usu-
ally with algorithms developed in the computer
graphics domain, e.g. Möller and Trumbore
(1997). However, the creation and maintenance
of 3D city models often involves manual labour
and typically results in a generalised version of
the city that only contains the terrain and the
buildings Alexander et al. (2009); Rottensteiner
(2003); Biljecki et al. (2014), and sometimes
other man-made objects such as roads, over-
passes, and trees Oude Elberink (2010). De-
spite the fact that many 3D city models are con-

structed from very dense points clouds which
practically contain all urban features, many of
these details are lost in the final city model.
One cause is that many, especially automatically
generated city models are in fact 2.5D, which
means it is not possible to model truly 3D fea-
tures such as balconies and trees. And even
though a number of algorithms for 3D surface
reconstruction have been proposed and imple-
mented (see for instance Amenta et al. (2001),
Kolluri et al. (2004) and Dey and Goswami
(2006)), these have several assumptions on the
input point cloud, which usually come from
close range laser-scanners and are therefore not
suitable for e.g. airborne LiDAR point clouds
that are sampled sparsely, have irregular sam-
pling density and often contain significant noise
and holes. Hence, despite the availability of
highly detailed airborne point clouds, visibility
analysis on a derived city model typically devi-
ates significantly from reality. In this research
we attempt to skip the generation of a 3D city
model, and conduct shadow analysis directly
on the point cloud. Apart from not having to
first generate and store a city model, it yields
a more realistic visibility analysis that includes
all scanned objects in their true 3D appearance.
As we explain in Section 2, and demonstrate in
Section 4, our approach is based on the Medial
Axis Transform (MAT), which is an alternative
skeleton-like shape-descriptor that models an
object as a union of balls. We obtain these balls
using a robust adaptation of algorithm of Ma
et al. (2012) and use them to construct a view-
dependent depthmap, which is then used to effi-
ciently perform point visibility queries (see also
Figure 1).

Because the visibility computations are per-
formed in raster-space our algorithm can run
highly parallelised onGPUhardware. We there-
fore believe that our approach could be a simple,
fast, robust and cost-effective way of performing
visibility analysis.
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(a) Approximating MAT from point
cloud

(b) Computing depthmap (c) Point visibility querying

Figure 1: Our approach to visibility analysis in three steps.

2 Related work

Katz et al. (2007) introduced the hidden point
removal operator to determine the visible points
in a point cloud as viewed from a given view-
point by first performing a spherical flipping on
the point cloud and then a convex hull computa-
tion. The algorithm does not require point nor-
mals, and is shown to be useful for shadowmap-
ping and view-dependent surface reconstruc-
tion. However, unlike the algorithm that we
present in this paper, the hidden point removal
operator can only determine the visibility of
points that are part of the point cloud itself,
which limits its potential applications. Mehra
et al. (2010) extend the algorithm from Katz
et al. (2007) for handling noisy point clouds.

Pfister et al. (2000), Sainz and Pajarola (2004)
and Kobbelt and Botsch (2004) compute visibil-
ity forwell-sampled and oriented point clouds as
part of a point-based rendering pipeline. They
render points as splats; disks that are aligned
with the point normals. Using these splats a
depthmap is computed for the viewport to de-
termine point visibility. However, when the
sampling density of the point cloud is low and
non-uniform it becomes non-trivial to choose
optimal splat radii. Another significant differ-

ence with the approach we present in this paper
is that we compute a volumetric representation
of the sampled surface, whereas a splatting ap-
proach can represent only the boundary of the
sampled surface. Holes are therefore handled
quite differently (see also Figure 7).

Wald and Seidel (2005) perform ray-tracing in
a point cloud based on an implicit surface rep-
resentation. It works well for high quality point
clouds that are densely sampled.

Finally, Jalba et al. (2012) implement a render-
ing pipeline that performs on-screen surface re-
construction by directly rendering interior me-
dial balls. This is somewhat comparable to our
approach, but we focus specifically on perform-
ing efficient visibility queries for arbitrary query
points.

3 MAT-based visibiblity
computation

Our algorithm involves first constructing the
Medial Axis Transform (MAT) of the point
cloud, a skeleton-like structure where the vol-
ume of each object is represented as a union of
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balls. We use these medial balls to ‘block’ lines-
of-sight from a user-defined viewport to a given
set of query points. Whether the line-of-sight to
a query point is blocked or not is determined by
the use of a depthmap that encodes the distances
from the viewport to all visible medial balls.

For the sake of simplicity we assume an ortho-
graphic projection and consider only point vis-
ibility queries. However, it is a straightforward
task to extend our algorithm to work with a per-
spective projection andmore complex query ob-
jects such as triangular meshes.

3.1 Approximating the MAT of a point cloud

The Medial Axis Transform (MAT) is formally
defined as the set ofmaximal balls tangent to the
surface of shape at two or more points. The cen-
ters of these balls, commonly referred to as me-
dial balls, form a medial skeletal structure. Here
we are primarily interested in the union of me-
dial balls, which corresponds to the volume of
the shape (see Figure 1a).

We use an adapted version of the shrinking ball
algorithm introduced by Ma et al. (2012) to ap-
proximate a point approximation of the MAT
from an oriented input point cloud. The shrink-
ing ball algorithm is illustrated in Figure 2. For
each point p a medial ball is found by iteratively
shrinking a very large ball that is centered along
the point’s normal n⃗. At each iteration a point q
is found that is nearest to the ball’s center and
the ball is shrunk such that it touches both p
and q and remains centered along n⃗. The itera-
tion converges when the ball’s interior is empty
and there are no closer points to its center than
p and q, which is in effect how a medial ball is
defined.

When the normals point outward, such as in
Figure 2, the interior MAT is obtained. With
flipped normals that point inward, the exterior

~n
p

q2 q1

Figure 2: The shrinking ball algorithm.

MAT is obtained that occupies the complement
of the space that is occupied by the interior
MAT. For this paper we are only interested in
the interior MAT.

To improve the performance of the shrinking
ball algorithm for typical LiDAR point clouds
that contain significant noise (unlike the pris-
tine point clouds used by Ma et al. (2012) and
Jalba et al. (2012)), we extended the algorithm
with a number of heuristics that will stop the
shrinking of a ball prematurely based on the
progression of the separation angle, i.e. the an-
gle ∠pcq where c denotes the ball’s center. The
ball shrinking of a given point p is halted if ei-
ther the separation angle of the initial ball is be-
low a threshold ta or if the separation angle of
a succeeding ball drops below a second thresh-
old tb < ta. We choose the last ball that does not
violate both thresholds as the approximate me-
dial ball for p (see Peters and Ledoux (2016) for
more details).

Ultimately, the extended shrinking ball algo-
rithm is simple, fast, robust to noise and easy to
parallelize (see also Ma et al. (2012) and Jalba
et al. (2012)) which makes it a good choice for
approximating the MAT of large LiDAR point
clouds.
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Figure 3: Parameters that define the viewport

3.2 Depthmap computation

Prior to performing the visibility queries we
must generate a depthmap of the the interior
medial balls. The depthmap is computed for a
viewport that is described by a point p0 to fix its
position, two vectors v⃗x and v⃗y to fix its orienta-
tion and size in model space and a scalar s that
scales model units to the pixels on the screen
(see Figure 3).

Computing the depthmap is a fairly straightfor-
ward process that involves first projecting each
medial ball center, rasterising the ball to the
viewport and finally performing a depth test for
each pixel of the rasterised ball. Figure 1b illus-
trates this process.

Algorithm 1 which updates the depthmap for
one medial ball first projects the ball center to
the viewport. Then for each pixel in the ball’s
projected image it computes the depth, and per-
forms a depthtest. When a depth test succeeds
(i.e. the depth of the ball is smaller than the cur-
rent pixel depth), the pixel in the depthmap is
updated.

Prior to callingWriteBall for eachmedial ball,
the depthmap is initialisedwith an infinite depth
for each pixel.

Algorithm 1 WriteBall
Input: a ball with center c and radius r,the view-

port parameter s and depthmap D
Output: D is updated with the depths of ball
(c, r)

1: cs ← ProjectPoint (c)
2: for integer x from −rs to +rs do
3: for integer y from −rs to +rs do
4: h←

√
x2 + y2

5: if h smaller than rs then
6: d′ ← cs.z − (rs − h)
7: d← D[cs.x + x, cs.y + y]
8: if d′ smaller than d then
9: D[cs.x + x, cs.y + y]← d′

10: end if
11: end if
12: end for
13: end for

3.3 Point visibility queries

After the depthmap has been computed, we
use Algorithm 2 to perform the point visibility
queries, it involves projecting the query point to
the viewport, and then comparing its depth to
the corresponding depth in the depthmap (sim-
ilar to Williams (1978)). As illustrated in fig-

Algorithm 2 QueryPoint
Input: a querypoint qm in model coordinates,

depthmap D
Output: whether qm is visible or not
1: qs ← ProjectPoint (qm)
2: d← D[qs.x,qs.y]
3: if qs.z smaller than d then
4: qm is visible
5: else
6: qm is not visible
7: end if

ure 1c the query point is visible only if its depth
test succeeds. The depth test will fail for query
points that are behind any medial ball as seen
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from the viewport.

4 Implementation and Experiments

Wehave built a prototype implementation of the
algorithms we propose in this paper. To approx-
imate the interior MAT we use masbcpp1. Our
prototype utilises OpenCL 2 for parallel execu-
tion of the algorithms listed in Section 3.2 and
3.3.

We ran our experiments on two different
datasets:

1. A simple artificially generated point cloud
with its points and normals derived from a
triangular mesh (2 690 points), and

2. an airborne LiDAR dataset of a housing
block in Zagreb, Croatia (24 647 points).

For the latter dataset the normals were approx-
imated using principal component analysis of
the 6 nearest neighbours of each point. For
a good separation of the interior and exterior
MAT it is important that the normals are prop-
erly oriented. This can be achieved by flipping
the normals with respect to the scanner posi-
tion at the time a point is acquired. However,
because this information is not present in our
LiDAR dataset we used a city model to properly
orient the point normals.

For the visibility queries we randomly generated
1 million query points that are uniformly dis-
tributed inside the bounding box of the respec-
tive dataset. For both datasets the total com-
putation time (from raw point cloud to point
visibility queries) is in the order of a few sec-
onds, when all computations are performed on
a quadcore 2.9 GHz Intel Core i5 CPU. From
our pseudocodes it can easily be seen that the

1https://tudelft3d.github.com/masbcpp
2https://www.khronos.org/opencl/
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Figure 4: Artificially generated dataset. (a)
Depthmap for viewport, (b) top-down
view of pointcloud and (c) point visi-
bility from viewport with medial balls

computation of the depthmap (it must happen
once for every viewport) is the most expensive
(O((rs)2N) time, with N the number of me-
dial balls, r the ball radius and s the number
of pixels per model unit). However, once the
depthmap is computed point visibility queries
are extremely fast, since they run in constant
time (thus independent of depthmap resolution
or size of the dataset).

Figure 4 shows the results for the artificial
dataset. From the depthmap (4a) it is clear that
three-dimensional features in the point cloud
(4b) such as the tree in the center are accurately
modeled by the medial balls, given a sufficiently
dense and complete sampling. The invisible or
‘shadowed’ points (inside the bounding box of
the point cloud) as seen from the viewport (4a)
are depicted in Figure 4c.

Figures 5, 6 and 7 illustrate the results for the Li-
DAR dataset. First, note the difference in sam-
pling density between horizontal and the verti-
cal surfaces in the dataset (5a,c). Despite the low
number of samples on the vertical segments we
are still able to model the building facades with-
out holes that would distort our visibility analy-
sis (5d,e). Also note how various sparsely sam-
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a)

b)

c)

d)

e)

Figure 5: Aerial LiDAR point cloud dataset. Top-down view of point cloud (a) and point visibility
with medial balls (b). Viewport view with point cloud (c), medial balls (d) and depthmap
(e).

Figure 6: Visible (top) and invisible (bottom)
points for viewport and LiDARdataset
of Figure 5

pled details such as dormer windows and chim-
neys are modelled by the medial balls, and how
that affects the visibility analysis (5b and 6). In
case of a complete lack of samples for surfaces
such as the right side of the roofs in Figure 7 the
dimensions of an object may be wrongly repre-
sented due to protruding medial balls. Whether
this leads to realistic results in the visibility anal-
ysis depends on the actual (unknown) shape of
the roof. We do believe that this behaviour is
preferable to being able to see through the right
side of the roof to the backside of the left side of

Tree

Missing surface

Figure 7: Detail view of LiDAR dataset for point
cloud (top) and medial balls (bottom)
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the roof. Finally, from 7 it can be seen that trees
can also be handled by our approach. We must
notice however that especially in the case of trees
the orientation of point normals becomes rather
ambiguous, which leads to a fuzzy definition of
what is an interior or an exterior medial ball,
which can affects the visibility queries.

5 Conclusion and future work

We have introduced, implemented and demon-
strated a new approach to do visibility analy-
sis in urban scenes directly on a point cloud,
thus without the need of an overly simplified in-
termediate 3D city model. Because the visibil-
ity analysis is performed in the raster domain,
our algorithm can be implemented to exploit the
computing power of parallel computing devices
such as GPUs.

Our experiments show that our approach can
be successfully applied to a typical airborne
LiDAR dataset with holes, non-homogeneous
point density andnoise. Wenotice that theMAT
on which our algorithm is based depends on
properly oriented point normals, which may be
ambiguous to define for vegetation. However,
this did not lead to abnormalities in our exper-
imental results. We also observe that our al-
gorithm deals rather successfully with missing
walls and roof sides in the LiDAR point cloud.
This is a major advantage over existing point-
based visibility approaches such as splatting.

The most obvious extensions to our visibility al-
gorithmare 1) perspective projection (see for in-
stance Mara and McGuire (2012)), 2) handling
more complex query object such as triangular
meshes.
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