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November 30, 2015

While a database management system (DBMS) is usually the tool of choice to han-
dle massive amount of data, its use for point cloud datasets is somewhat problematic.
Indeed, storingmillions—or even billions—of unconnected points is feasible but to be
able to analyse and manipulate themmore is needed: we must reconstruct the surface
represented by the sample points, and we must also be able to efficiently access this
surface and derive values from it. I investigate in this paper the storage and the ma-
nipulation in a DBMS of one such surface: the triangulated irregular network (TIN). I
present a data structure that permits us to store at the same time—in only one table—
both the samples of a point cloud and a TIN (a Delaunay triangulation in this case); it
is based on the idea of storing the stars of vertices. I describe the basic properties of the
structure, explain how it can be implemented in a DBMS, and demonstrate with ex-
amples how it compares to alternatives. A star-based data structure has several advan-
tages over current alternatives for storing TINs: (i) it is space efficient; (ii) topological
relationships between triangles are stored explicitly, which allows the implementation
of efficient spatial analysis functions (such as interpolation, slope, profile, etc.); (iii) a
spatial index (such as an R-tree) is not needed as the triangulation implicitly stored
can act as an index; (iv) the structure is dynamic and can be efficiently updated. I have
implemented the structure in PostgreSQL and I report on experiments that weremade
with some real-world datasets that can be consideredmassive (i.e. around 280-million
points, or more than half a billion triangles).

1 Introduction

New technologies such as airborne altimetric LiDAR (Light Detection and Ranging) or multi-
beam echosounders permit us to collect millions—and even billions—of elevation/depth points
for a given area, and that very quickly and with great accuracy. One example of the use of these
technologies is the AHN2 dataset1 in the Netherlands. By the end of 2012 the whole country will
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be covered with at least 4 points/m2, and up to 30 or 40 points/m2 in certain areas, which means
a dataset containing about 640 billions points. What is ironic is that while datasets like this one
are being collected in several countries (because of their many possible applications such as flood
modelling, monitoring of dikes, forest mapping, the generation of 3D city models, etc.), in prac-
tice they are seldom used since the tools that practitioners have, and are used to, cannot handle
such massive datasets. As explained in Section 2, the traditional GISs and terrain modelling tools
are limited by the main memory of computers: if a dataset is bigger then operations will be very
slow, and will most likely not finish. Practitioners have to resort to simplify datasets, i.e. reduce
the number of points. However, selecting important points require the use of an auxiliary data
structure (Garland and Heckbert, 1995), which is a challenge to create in the first place for massive
datasets (Agarwal et al., 2005; Isenburg et al., 2006a).

LiDARormulti-beam echosounder datasets, also called point clouds, are formed by scattered points
in 3D space that are—in most cases—the samples of a surface that can be projected on the hori-
zontal plane (a so-called “2.5D surface”). To be able to analyse a point cloud, more then simply the
points are needed: we must be able to reconstruct the surface implied by the points, and we must
also be able to manipulate it (e.g. adding/removing new samples). The surface gives us the spatial
relationships between otherwise unconnected points in 3D space, which is required if processing
and extraction of values from the surface is wanted. Examples of point cloud processes useful for
many applications are: derivation of slope/aspect, conversion to a grid format, control of double
points, calculations of area/volumes, viewshed analysis, creation of simplified DTM, extraction of
basins, etc. While several ways to reconstruct the surface exist (the simplest way would be with
a grid), a triangulated irregular network (TIN) is arguably an attractive option since the original
points are kept and it adapts to the spatial distribution of the points (Kumler, 1994).

I discuss in this paper the storage and the manipulation of massive TINs. As discussed in Sec-
tion 2, while there are several solutions to deal with massive TINs, I investigate the use of database
management systems (DBMSs) since they are arguably the best tool to store andmanage very large
datasets (of any kind), are already part of the toolbox of most GIS practitioners, and offer several
advantages over file-based systems, e.g. security, versioning, scalability, etc. (Ramakrishnan and
Gehrke, 2001). If a TIN is entirely stored in a DBMS (the points, the triangles, and their topologi-
cal relationships), then one can rely entirely on the DBMS for memory management, and since the
whole TIN is available (and does not need to be recomputed), one can readily query andmanipulate
it.

I present in Section 3 a new data structure for representing compactly a TIN.This structure, which
uses recent advances in the compression of graphs inmainmemory (Blandford et al., 2005), departs
from the current alternatives (described in Section 2) since the atom of the structure is not the
triangle or the edge, but the star of a vertex (triangles are implicitly represented). Themain benefits
of the star-based data structure in a DBMS are many: (i) it is as space efficient as storing triangles
with triplets of point labels, and yet it is fully topological; (ii) the use of a spatial index is not needed,
since the triangulation itself acts as the indexing structure; (iii) it is dynamic (so new points can be
added and/or deleted from a TINwithout having to reconstruct it from scratch); (iv) triangulations
with constraints are possible.
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Section 4 demonstrates how this star-based structure has been implemented in a DBMS (as an
extension to PostgreSQL in this case) and elaborates on its advantages over existing solutions. It
also presents different spatial analysis functions that have been implemented in the PostgreSQL
extension. Since storing massive TINs first implies that that these must be constructed, I describe
in Section 5 tools to construct massive TINs and discuss an important concept for an efficient
DBMS implementation of a star-based structure: spatial coherence. Finally, Section 6 reports on
experiments that were carried out with different real-worldmassive datasets (containingmore than
half a billion triangles). These datasets were stored in a DBMSwith both a star-based data structure
andwith explicit triangles (PostGIS Simple Features), and I compare them in terms of space needed,
incremental updating and query time for different spatial analysis functions.

2 RelatedWork

While most GIS packages offer the possibility tomanipulate and analyse terrains and TINs, the size
of a computer’s mainmemory decides howmany points can be processed. Basically, once the main
memory is full, transfer of data between the disk and the memory starts, and if this happens too
much, the computations might simply stop (called trashing) (Isenburg et al., 2006b).

2.1 Reducing the size of a dataset

Themost common solution to dealing with massive datasets is thinning, i.e. keeping only every n-
th point in the original dataset. While it permits the user to process the data, it somehow destroys
the idea of working with high-resolution altimetry data in the first place, and “important points”
(representing for instance ridges or peaks) can potentially be discarded.

A second solution is tiling a big dataset into smaller parts that fit into memory, and working on
one given part at a time. While this solution is viable in some cases (e.g. for unconnected points
as implemented in Oracle Spatial 11g, see below), for TINs this is problematic since, unless many
points are explicitly added on the border of the tiles, triangles will overlap several tiles. The pro-
cessing of such a dataset can be problematic, especially if a global access to the TIN is needed (e.g.
calculation of areas/volumes of features, simplification, and flow modelling).

A third solution consists of creating a multi-resolution representation of a terrain (De Floriani and
Magillo, 2002). For instance, since version 9.2 ArcGIS2 has the Terrain type, which implements
this method (Peng et al., 2004). In a nutshell, all the points are stored in a DBMS but the triangles
are not explicitly stored. The user must select so-called “vertical indexes” so that a hierarchy of
points is created. For each level in the hierarchy, ArcGIS selects representative points to construct
on-the-fly a TIN, when needed. Because each TIN is small in size when compared to the original
dataset, one can use the usual ArcGIS tools for processing the TINs. The main problem with this
approach is how representative points can be selected. The method used by ArcGIS is unclear,
and it appears that they are randomly selected. Selecting important points involves constructing a

2http://www.esri.com/software/arcgis/index.html
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representation of the surface (Garland andHeckbert, 1995), which is a problemwith datasets larger
than memory.

2.2 Storing TINs in a DBMS

While TINs are widely used in GIS, there are, to the best of my knowledge, very few options de-
veloped for efficiently storing one in a DBMS. I review here the few existing solutions, and discuss
potential solutions that could be implemented, highlighting the pros and cons of each.

SimpleFeatures. Thesimplestway is to store each trianglewith a Simple Feature’s “Polygon” (OGC,
2006), and use a spatial index (e.g. a R-tree or one of its variants (van Oosterom, 1999)). This has
however several drawbacks. First the adjacency relationships between the triangles are not explic-
itly stored and have to be computed on-the-fly (an expensive operation since intersections tests
are involved). Second, indexing the data at the triangle level is problematic since the size of the
spatial index can become huge; I give in Section 6 concrete numbers for the size on disk of spatial
indexes and the use of that structure in PostgreSQL. Indeed, a spatial index usually requires the
bounding box of every element; for arbitrary polygons adding two points per objects is sensible,
but for triangles it increases instantly the storage by 67%. Also, spatial indexes are more complex
trees than a standard index such a B-tree (van Oosterom, 1999). It should also be said that the
number of triangles in a TIN is roughly two times that of the generating points: consider a dataset
with n points and m points that lie on the boundary of the convex hull of the dataset, then there
are 2n − 2 −m triangles (de Berg et al., 2000). (For real-world datasets m is often small compared
to n, as Section 6 shows.)

Triangles and their neighbours. Although I amnot aware of anyDBMS implementation, it would
also be possible to implement the well-known triangle-based structure, used by several triangula-
tors (Boissonnat et al., 2002; Shewchuk, 1997). The atom of this structure is also the triangle, but
adjacency relationships between triangles are explicitly stored. Storing it in a DBMS would require
two tables: one for the points (where an ID is given to each), and one for the triangles (which are
formed by triplets of points’ IDs). The triangle table would also need to have an ID per triangle,
and store the ID of the 3 adjacent triangles, ordered with respect to the 3 points. Spatially index-
ing such a structure would require first reconstructing the geometry of each triangle with a join
between the two tables, and then indexing these geometries. In practice this join is however not
efficient for massive datasets and implementations of topological data structure avoid it by storing
explicitly the geometries in the triangle table, see for instance van Oosterom et al. (2002), Oracle
(2012) and the new implementation in PostGIS3, which is the PostgreSQL extension that adds sup-
port for geographical objects. In brief, such a structure would take up asmuch space as the previous
(since triangles would also be explicitly stored and indexed), but some queries (where adjacency
information is needed) could be sped up (although that would require indexing also the triangles’
IDs, which would also add storage space).

3http://trac.osgeo.org/postgis/wiki/UsersWikiPostgisTopology
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Edge-baseddata structures. Similarly, edge-based topological data structures developed for stor-
ing triangulations and planar subdivisions in mainmemory could be used; examples are the DCEL
(Muller and Preparata, 1978) or the half-edge (Mäntylä, 1988). These permit us to store explicitly
not only the adjacency relationships, but also the incidence relationships between vertices, edges
and triangles. The same dilemma between storing explicitly the geometries of the edges and re-
constructing them with a join is present. However, we should keep in mind that for a dataset with
n points, the number of edges will be 3n, 1.5 times that of the triangles (2n triangles have each 3
edges, shared by 2 triangles). Also, the bounding box of a straight-line edge takes the same space
as the edge itself. This will lead to a bigger spatial index than that for the triangles.

Oracle Spatial’s SDO_TIN To my knowledge, the only DBMS types specifically designed for TINs
is the Oracle Spatial 11g SDO_TIN (Oracle, 2012). Although at this moment it is still under devel-
opment and is not fully functional, it is worth reviewing to gain insights about a TIN-specific type.
The SDO_TIN type is essentially the SDO_PC type (for the storage of points clouds see Ravada et al.
(2010) and Finnegan and Smith (2010)) with extra information about the triangles: each triangle
is defined as a reference to 3 vertices, and no adjacency information is stored. The SDO_PC type
subdivides a point dataset into blocks with a given maximum number of points (e.g. 5000), and
these blocks are then spatially indexed (thus the indexing is not performed at the point or triangle
level). Points, and triangles, inside a block are not further spatially indexed, since it is assumed that
a relatively small number of elements will be in a block. For creating the blocks, a variant of the
well-known kD-tree is used: nodes of the tree can either partition the space or act as a “bucket”
containing a maximum number of points (see Bentley (1990) for more information); the spatial
index used is an R-tree. While it is not possible to report on the performances of the type at this
point, the approach has the problems of tiling: several triangles overlap more than one block and
thus these are represented more than once (they have to be deleted on-the-fly when queries are
performed). It should also be said that the SDO_PC and SDO_TIN types permit users to store their
point clouds and TINs and perform basic queries (range queries with a rectangle or a circle are
possible), but no spatial analysis functions are available (at this moment). Also, perhaps the main
drawback for practitioners is that the data structure used is not dynamic, i.e. if one wants to add a
new point, then the whole dataset must be re-processed.

2.3 Constructing andmanipulatingmassive TINs

External memory algorithms. To deal with massive datasets, one can also design external mem-
ory algorithms (Vitter, 2001). These basically use disks to store temporarily files that do not fit in
memory, and instead of using the mechanism of the operating system, design explicit rules for the
swapping between the disk and the memory. Agarwal et al. (2005) construct massive TINs this
way, and Arge et al. (2006) and Agarwal et al. (2008) have implemented spatial analysis functions
on TINs based on that paradigm. Themain drawbacks of this approach are that the design of such
algorithms is rather complex, and for different problems different solutions have to be designed.
We can consider the approach as creating an optimised DBMS for a specific problem.
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Streaming of geometries. An alternative approach to dealing with massive datasets is spatial
streaming (Isenburg and Lindstrom, 2005; Isenburg et al., 2006a,b), which mixes ideas from exter-
nal memory algorithms with different ways to keep the memory footprint very low. The basic idea
of this paradigm is that of a streaming mesh: a format for representing triangulations (or meshes)
as a set of interleaved vertices, triangles and vertex finalization tags that indicate when a vertex will
not be used anymore. Standard mesh formats do not use finalization and can therefore suffer if
the mesh is larger than memory. A streaming mesh basically documents the spatial coherence of
a dataset, which Isenburg et al. (2006a) defines as: “a correlation between the proximity in space
of geometric entities and the proximity of their representations in the stream [the file]”. They also
demonstrate that real-world point cloud datasets often have natural spatial coherence and they ex-
ploit this coherence to compute Delaunay triangulations of massive datasets (instead of reordering
the points, which is expensive); this coherence is expected since LiDAR samples are often stored
in the order they were collected. The streaming ideas are very useful for certain local problems
(e.g. interpolation and creation of grids), but unfortunately cannot be used directly (or it would be
extremely challenging) for global problems such as visibility or flow modelling. I nonetheless use
streaming of geometries to construct massive TINs and load them in the DBMS, as explained in
Section 5. This permits me to naturally cluster the points in the DBMS, which leads to faster query
results, as Section 6 shows.

3 A star-based data structure

A star-based data structure considers the star of a vertex in the triangulation as its atom.

3.1 Stars and links

Given a set S of points in the plane, its two-dimensional triangulation (a simplicial complex) is
formed by a set of k-dimensional simplices σk, where 0 ≤ k ≤ 2. A simplex is the simplest element
in a given dimension: σ0 is a vertex, σ1 an edge, and σ2 a triangle. Notice that a k-simplex can be
constructed by simplices of lower dimensionality. Also, to simplify the notation, a simplex formed
by the vertices a, b and c is simply denoted abc.

Let v be a vertex in a two-dimensional triangulation. Referring to Figure 1, the star of v, denoted
star(v), consists of all the simplices that contain v. The star-shaped polygon thus formed contains
all the triangles and edges incident to v, but notice that the edges and vertices disjoint from v—but
still part of the triangles incident to v—are not contained in star(v). The set of simplices incident
to the simplices forming star(v), but “left out” by star(v), form the link of v, denoted link(v), which
is the boundary of the star-shaped polygon.

3.2 Storing stars

Blandford et al. (2005) describe a star-based data structure for representing compactly triangula-
tions in two and three dimensions. Their representation uses about a factor 5 less memory than
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v v

star(v) link(v)

Figure 1: The star and the link of a vertex v in a triangulation.
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link(d) = [c, b, a, e, g, i]

link(e) = [d, a, f, g]

link(h) = [u, k, i, g]

Figure 2: A triangulation of a point set S with the links of three vertices shaded (d, e and h) in grey.
Observe that link(h) does not form a cycle (it is on the boundary of conv(S)), but if u,
which represents the “infinity vertex”, is added then a cycle is created.

traditional representations and at the same time can be queried and dynamically modified; most
compressions of triangulation, such as Taubin and Rossignac (1998), are designed for storage on
disk and cannot be manipulated while compressed. To achieve this compression, Blandford et al.
designed a structure without any pointers. Instead, each vertex is assigned a label (an integer) and
they compress based on labels: if possible they store the integers using 4 bits (they use differences
between labels to achieve that) and use different tricks to keep the memory footprint low.

For an implementation in a generic DBMS, applying the compression mechanisms of Blandford
et al. is not feasible. However, the uncompressed version of the star-based data structure is rele-
vant, and is as follows. The link of a vertex v is represented as an ordered list (counter-clockwise
orientation) of labels of the vertices vi forming link(v); for simplicity I refer to that list for a vertex
v in the following as link(v). Figure 2 illustrates the ideas for three vertices part of an 11-vertex
triangulation. The link list is of variable length, its minimum is 3 and its theoretical maximum is
the number of points in Sminus 1. Notice that the length of the list is the degree of v (the number
of incident edges to a). A triangle is formed by v and 2 consecutive vi in the list; the length of the
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list also gives the number of incident triangles to v. In Figure 2, link(d) contains for instance the
triangles dcb and dba, but also dic since the list represents a cycle. The ordered list also permits
us to represent the edges of star(v): v with a vi; and the edges of link(v): 2 consecutive vi. Since
the list of vertices is ordered, the simplices implicitly represented are also ordered (triangles are all
counter-clockwise, edges are directed). In brief, observe that for a vertex v by storing its ordered
list we implicitly represent both star(v) and link(v).

3.3 Convex hull

A triangulation of a point set S subdivides completely conv(S), the convex hull of S. The link of
a vertex v on the boundary of conv(S) does not form a cycle, but simply a path. For example,
in Figure 2, star(h) is formed by 2 triangles: hki and hig. To ensure that every link is a path, I
modify the structure of Blandford et al. (2005) so that the so-called “infinity vertex” is present (Liu
and Snoeyink, 2005). It is used by most implementations because it simplifies the construction of
triangulation and their manipulation (Boissonnat et al., 2002; Shewchuk, 1997). With this extra
vertex, two triangles, huk and hgu, are implicitly added to the triangulation.

3.4 Operations on stars

When all the stars in a triangulation are represented, the overlap between the stars gives us not only
all the simplices of the triangulation, but also their adjacency and incidence relationships. Notice
that a triangle is present in exactly 3 stars (its 3 vertices) and that an edge is present in 2 stars (its 2
vertices). Edges are also present in links: for instance, referring to Figure 2, the edge gi is present
in star(g), star(i), and in link(d) and link(h) The data structure is thus akin to the half-edge or the
DCEL as several topological relationships are explicitly stored.

Incidence query. Given a vertex v we can find an incident edge or triangle in constant time: an
edge is formed by v and the first vertex listed in link(v); a triangle by v and the first two vertices
in link(v). Visiting, in counter-clockwise order, all the edges or triangles incident to v is similarly
trivial. For an edge ab, one incident triangle abc is formed by selecting the vertex c located after b
in link(a). This query is performed is constant time if the degree of a is bounded. We know that
the average expected degree of a vertex in a two-dimensional Delaunay triangulation (DT) where
the points are distributed according to a Poisson distribution is only 6 (Okabe et al., 2000, p. 314),
and the real-world datasets used for the experiments in Section 6 corroborate this.

Adjacency query. Given a triangle abc, finding one adjacent triangle acd involves selecting the
vertex d located after c in the link(a).
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TA

TF

TB

TC
TD

TE
link(c) = [d, a, b, e]

attr tr(c) = [∅, ∅, ∅, TA]

constaints(c) = [False, False, False, False]

link(b) = [a, f, e, c]

attr tr(b) = [∅, TC , TE , ∅]
constaints(b) = [False, False, True, False]

Figure 3: A constrained triangulation of 6 points and 1 constraint, with the link, the attributes at-
tached to each triangle (attrtr), and the constrained edges (constraints) for 2 vertices. Ti
represents the attributes attach to a triangle (e.g. its normal), the bold edge is a constrained
edge, and ∅means that nothing is stored.

3.5 Attributes and constrained triangulations

Attaching attributes to the k-simplices is also possible, although one must be careful since edges
and triangles are present in multiple stars. I exploit the fact that each vertex has a unique label
(which can be ordered) and attach the attributes for edges and triangles to the star of the vertex
having the lowest label. For example, attributes for the triangle abc are stored in star(a), and that
of edge mn in star(m). The attributes can be stored either in the same link list (alternating vertex
labels with attributes), or in another list (having the same length as the list of the star). Figure 3
shows one example, notice that the attributes for the triangle cbe (TE) are not stored with c, but
with b.

In a similar way, we can store explicitly constrained triangulations with a star-based data structure.
For each edge, a list of bits (True or False) can be stored.

4 Implementation in a DBMS/PostgreSQL

I describe in this section my implementation of the star-based data structure in a specific DBMS
(PostgreSQL), but since the data structure is based solely on lists of labels, implementing it in an-
other DBMS should be straightforward. Several engineering decisions had to be taken when im-
plementing the structure in PostgreSQL, and I report here on the main ones.

The implementation, which is currently on-going, uses some built-in types and mechanisms of
PostgreSQL. New types and new functions have been implemented as an extension to the server,
these have been programmed in C.

4.1 An extension to PostgreSQL

As shown in Table 1, implementing this data structure in a DBMS is straightforward: a unique ID
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ID x y z link[] constraints[]
1 3.21 5.23 2.11 [0, 2, 44, 55, 61, 23] [0, 1, 0, 0, 1, 0]
2 5.19 29.01 4.55 [0, 1, 7, 98, 111, 233, 222] [0, 1, 0, 0, 0, 0, 1]
3 22.43 15.99 8.19 [4, 101, 73, 23] [0, 0, 0, 0]
... ... ... ... ... ...

5074 221.19 15.23 37.81 [4909, 4902, 4993, 5111] [0, 0, 0, 0]

Table 1: One example of a (fictious) table storing the star of each point in a constrained triangula-
tion.

must be assigned to each point, and one extra column is needed for the star/link of the vertex it
represents in a triangulation. This is akin to the Simple Feature paradigm (OGC, 2006) as imple-
mented by PostGIS. For the IDs of the points, the type bigint (64-bit integers) is used since 32-bit
integers would limit the dataset to (232)/2 IDs (around 2 billions). For the star/link of each vertex
I use, like most implementations of geometries in a DBMS⁴, a variable-length type since the link
of a vertex can be formed by 2 to an infinity of vertices. The built-in type array is used. The coor-
dinates of each point can be stored for instance with 3 separate columns (x, y, z), or with built-in
types such as PostgreSQL’s point or PostGIS’s POINT.

Triangle type. Since triangles are only represented implicitly, a new type triangle has been im-
plemented in PostgreSQL, it is a triplet of IDs (ordered counter-clockwise). The return value of a
point location query (see next section) is for instance a triangle.

Attributes and constraints. Since PostgreSQL does not allow different types in an array, a new
columnwith an array of a given type must be used for storing attributes for the edges and triangles,
and for storing the constraints. In Table 1, the column “constraints” is an array of booleans for
instance.

Storage space. Let us look at a generic implementation of such a structure, without considering
the size of the required indexes. For a TIN with n points, the implementation of that structure in
a DBMS requires first storing the points: one table with n rows is required, each with 1 ID and
3 coordinates (I use double-precision floats for this implementation). For the triangulation itself,
only 2 IDs per edge are required: each edge is stored twice, one for each direction; this is equal to
storing 3 IDs per triangle (each triangle has 3 edges, which are shared by 2 triangle).

By comparison, consider a simple structure where triangles are formed by triplets of vertex IDs (as
is the case in Oracle Spatial’s SDO_TIN), exactly the same storage space for the points is required.
The triangulation requires another table where each row has 3 IDs and represents a triangle; this
structure is however not topological, and thus does not permit efficient analysis. As stated in Sec-
tion 2, adding adjacency information requires having an ID for each triangle, plus 3 IDs for the

⁴To store polygons, which can have an infinity of points, PostGIS uses the well-known binary (WKB) representation;
Oracle Spatial its own object type.
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neighbouring triangles; the total is thus 7 IDs per triangle. Edge-based data structures require 6
IDs per edge (2 references to the vertices plus 4 to the previous and next edges), which means 9
IDs per triangle.

4.2 Spatial indexing

Perhaps the biggest advantage of a star-based structure is that a spatial index such as an R-tree is
not necessary to access efficiently the points, the edges and the triangles. Instead, the triangulation
itself is used to solved the following two spatial queries:

• Point location: given a triangulation and a query point p, determine which triangle contains
p.

• Range query: determine which points are located inside a query bounding box.

Both queries use the adjacency relationships between the triangles to navigate in the triangulation.
To ensure fast access when the star of a given star is needed, an index on the ID column of each
point is used (a standard B-tree⁵); keep in mind that a B-tree is a simpler tree than an R-tree, and
that its size for a given dataset is two times smaller.

Point location. I have implemented the walking algorithm as described in Mücke et al. (1999).
It is a sub-optimal algorithm that is favoured by practitioners since it does not require auxiliary
data structure and yields fast practical performances (Mücke et al., 1999; Devillers et al., 2002). As
Figure 4 shows, it goes as follows: starting from a triangle σ, we move to one of the neighbours
of σ (we choose one neighbour such that the query point p and σ are on each side of the edge
shared by σ and its neighbour) until there is no such neighbour, then the triangle containing p is
σ. To minimise the number of triangle visited, the starting triangle should be close to p. Mücke
et al. (1999) investigated a “bucketing” approach where a certain number of triangles are randomly
selected, and each walk starts from the closest one (selected by a simple Euclidean distance test); it
is called the jump-and-walkmethod. The result of a query is a triangle; if p is exactly on an edge
or a vertex than one randomly selected triangle is returned.

I have implemented a slightly modified version of that algorithm for stars where the bucketing
is based on a simple regular subdivision of the spatial extent of the dataset. As Figure 4 shows,
each cell of the virtual grid stores the ID of one vertex (randomly chosen) to start the walk. This
information is stored in another table of the DBMS containing the ‘key’ of the cell (row, column)
and the starting ID; a B-tree is used to index the cell ‘key’. As Section 6 shows, this simple bucketing
method gives good results in practice, but more advanced methods (with a quad-tree for instance)
should be investigated.

⁵A hash table is in theory more efficient since no range queries on IDs are performed. However, not all DBMS has an
implementation, and that of PostgreSQL is not recommended.
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p

Figure 4: Walking in a triangulation to obtain the triangle containing the query point p (in red);
only the grey triangles are visited. The grid cells are in blue, each one contains one and
only one starting point for the walk (larger black points).

Range query. Zhu (2000) shows how the triangulation of a point set can be used to solve range
queries. The idea is similar to walking, except thatmarching is used: only the triangles intersected
by a line segment are visited. Figure 5 illustrates the general idea of the algorithm. First a walk is
perform to obtain a (one corner of the query box Q), and then 4 different marches are performed
along the edges ofQ, collecting the vertices insideQ. Notice that only the vertices incident to edges
crossed byQwill be selected (black points in Figure 5b). Second, a depth-first search on the subset
created is performed to identify all the vertices inside Q. This is performed efficiently since the
triangulation is stored and we can navigate in it.

4.3 Insertion and deletion of vertices.

Since the star-based structure is topological, inserting new points in a TIN can be done efficiently.
The incremental insertion algorithm as described in Guibas and Stolfi (1985) has been imple-
mented, and the deletion algorithm of Mostafavi et al. (2003) would be straightforward to im-
plement. Both need a point location function, and then the updates to the TIN are performed
by modifying locally the triangles (which involves modifying the stars or vertices), and by either
adding or removing one row to the table of points (and thus updating the B-tree). In theory, it is
assumed that the updating is done in constant time, since the degree of a vertex is exactly 6 (which
means for one insertion, 6 stars will be modified in most cases). At this moment, only Delaunay
triangulations without constraints are supported, but I plan to add support for constrained edges in
the future. Notice here that insertion and deletion operations do not require a complete rebuilding
of the triangulation, the triangulation is simply locally updated and queries can be performed as
soon as the triangulation is updated (only the B-tree for the points needs to be updated). Other
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Figure 5: (a)The range query abcd performed on a point setA; a triangulation is used as a support-
ing data structure. (b)A subset of A is first obtained (black points) and then a depth-first
search is performed to retrieve the points inside abcd whose star does not intersect the
query box.

approaches, such as that of Oracle Spatial, require a complete rebuild if only one point is added to
the TIN.

4.4 Spatial analysis operations

The topological data structure with the two spatial queries functions permit us to perform several
common spatial analysis operations. The following are examples.

Statistics about the dataset. With all the stars stored as lists of IDs one can calculate easily gen-
eral statistics about the point cloud datasets and its TIN. The degree of vertices, implemented as
function, is obtained in constant time (length of the link list), and thus one can obtain with a SQL
query the average, or maximum, degree for a dataset. For the obtaining the points on the convex
hull, it suffices to verify if the link list contains the ID “0”.

Deriving edges and triangles. While only vertices and stars are stored, it is possible to extract
edges and triangles using the same trick as for attributes: given a vertex v, only extract a simplex
incident to it if the ID v is the lowest. That permits us to show to the user the triangulation and to
export it to another format.

14



Interpolation and slope. Interpolation in the TIN is performed by a walk followed by a linear
interpolation on the triangle obtained. Other interpolation methods, such as weighted-average
methods (Watson, 1992), could also be implemented as the adjacent triangles are readily available.
Calculation of the slope at a location (x, y) is likewise performed.

Generation of profiles. The profile, along a given line, can be extracted from the TIN by first lo-
cating the starting triangle, and then marching as in the case of a range query and calculating the
intersection between the profile line and the edges of the TIN (with the elevation linearly interpo-
lated). If the vertices of the TIN have high spatial coherence, the marching is performed efficiently
since each query (to walk from one star/triangle to the adjacent one) is performed on data that are
closed on disk.

5 Construction of massive Delaunay triangulations with streaming

To compute the Delaunay triangulation of massive point cloud datasets and to populate the star-
based structure in a DBMS I make use of the spatial streaming framework developed by Isen-
burg (Isenburg and Lindstrom, 2005; Isenburg et al., 2006a,b). They developed two modules to
construct triangulations:

• spfinalize introduces finalization tags for point clouds: a tag documents when no more
points will be inside a given region (the input dataset is tessellated into regions based on a
quadtree).

• spdelaunay2d creates a Delaunay streaming mesh, based on the spfinalize input.

Theparticularity is that these twomodules can be used in a pipeline, where the output of onemodule
is the input of another (the disk is not touched). The finalization tags allow the modules to start
producing their output before the whole dataset is read.

I have developed, with the Python scripting language⁶, a small module (smb2star.py, “smb” being
the binary representation of a streaming mesh) that reads as input a streaming mesh and outputs
stars in the format I use for the DBMS (Table 1). Figure 6 shows where the module fits in the spa-
tial streaming framework. It basically contains a dictionary with vertices and their temporary links
(IDs of other vertices); as vertices and triangles are output from spdelaunay2d, they are put in that
dictionary. When a vertex finalization tag is read, it means that all the triangles incident to that
vertex have been read, which permits us to construct the topological cycle of triangles (and con-
struct the link), and then to clear from memory that vertex (and its link) and write it immediately
to the DBMS.

The ID assigned to each vertex is the one obtained from spfinalize and spdelaunay2d (based on
the order in which they come out of the pipeline), which is not exactly the order of input. Indeed,
spfinalize introduces more spatial coherence in datasets by reordering the points in each cell
of the quadtree it creates, and release them all at once, incrementing the ID counter as they are

⁶http://www.python.org
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x, y, z
x, y, z
. . .
x, y, z

input.txt

spfinalize spdelaunay2d

points
+
finalization tags

smb2star.py

points + triangles
+
finalization tags

PostgreSQL

ID, x, y, z, link[]
ID, x, y, z, link[]
. . .
ID, x, y, z, link[]

Figure 6: My streaming pipeline to create the star of each vertex. The point cloud dataset is first
read from disk, then spfinalize and spdelaunay2d create a streaming mesh, which is
then transformed by smb2star.py into a list of stars that are piped directly to PostgreSQL.

released. Also, smb2star.py takes care of vertices on the boundary of the convex hull: when a
vertex is finalized the incident triangles are ordered in a topological cycle, if that fails the link of
the vertex starts with a flag (ID “0”) indicating that the other vertex IDs form a path.

Observe that the more correlation there is between the IDs and the proximity in space of the ver-
tices, the better the DBMS will perform for queries. If vertices closed to each in space have similar
IDs, they will be closed to each other on disk (and perhaps even on the same DBMS page). Queries
indeed usually involves finding the star of close vertices: the closer they are in the index the faster
the DBMS is likely to retrieve them.

Notice that the pipeline shown in Figure 6 will work only if the input dataset has enough spatial
coherence. Isenburg and Lindstrom (2005) define the maximum number of non-finalized points
at any time as the width of a stream, the smaller it is the better the spatial coherence is (the smaller
the memory footprint of the application is too); I report in the next section on the width of the
datasets used for experiments.

6 Experiments

I report in this section on experiments I ran with three real-world datasets:

1. AHN2: a subset of the AHN2⁷ dataset, covering an area of 5kmX5km around the city of
Delft, in the Netherlands. Only the ‘bare-earth’ part of the dataset was used⁸, i.e. samples
representing buildings, cars or otherman-made constructionwere not used. This also creates
a dataset whose spatial distribution is not uniform. Figure 7 shows an example of the spatial
distribution, notice how houses that were removed are visible in the top-left of the figure.

2. serpent: the dataset called ‘Serpent Mound Model LAS Data.las’, freely available at http:
//liblas.org/samples;

3. msh: the dataset called ‘Mount StHelensNov 20 2004.las’ (from http://liblas.org/samples)
copied and translated 41 times (total 42 times), to obtain one that does not fit in memory of

⁷Actueel Hoogtebestand Nederland. www.ahn.nl
⁸The “gefiltered” part, in Dutch.
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degree

points duplicates triangles convexhull avg max

AHN2 281 884 687 214 050 563 768 199 1 173 6.00 63
serpent 3 265 110 17 584 6 494 998 52 6.00 39
msh 283 213 392 0 566 426 669 113 6.00 141

Table 2: Details concerning the datasets used for the experiments; convexhull is the number of
points that are on the boundary of the convex hull of the dataset.

Figure 7: Spatial distribution of the AHN2 dataset. The shades of grey for the points represent the
elevation.

a commodity PC. The original dataset has regular distribution (grid), but this one has been
rotated and the centre of each pixel is a sample that is triangulated.

Table 2 contains the details of the three datasets, and Figures 7, 8 and 9 show the datasets. Since
at this moment spdelaunay2d only supports single-precision floats (32 bits), I have scaled and
truncated the coordinates; that has resulted in a certain number of duplicate points (having the
same (x, y) but different z values), which were removed while triangulating (the first point inserted
had priority).

To compare the solution proposed in this paper with potential alternatives, I have stored the TINs
of the three datasets in two data structures:

1. in the star-based data structure, with a B-tree index;

2. in PostGIS using Simple Features Polygon, with aGiST spatial index (Hellerstein et al., 1995).

The experiments were run on a commodity PC: an Intel Core2 Duo 3.16GHz with 4GB of main
memory, running Linux/Ubuntu and PostgreSQL 8.4.4. Only the Delaunay triangulation (DT) of
the points was created and stored, without any attributes or constrained.
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Figure 8: Left: the serpent dataset. Right: one part of the TIN of serpent.

Figure 9: Six copies of the original datasets. The datasetmsh contains 42 copies.
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star structure (min) triangles SF (min) width

construct index total construct index total avg max

AHN2 178.3 24.7 203.0 285.8 619.0 904.8 34 191 53 003
serpent 1.8 0.3 2.1 2.6 6.1 8.7 3 871 7 054
msh 167.3 31.1 198.4 240.3 673.2 913.5 5 796 7 162

Table 3: For the two datasets: runtimes in minutes for the whole pipeline, the creation of the B-tree
in PostgreSQL of only the triangulation (without the creation of the stars and the loading);
and the maximum width of the stream.

6.1 Populating the database

The construct the stars of the input points, and to populate PostgreSQL, the pipeline shown in Fig-
ure 6 was used. An extramodule smb2sf.pywas developed to construct triangles (Simple Features)
from the output of spdelaunay2d (it replaces smb2star.py in the pipeline).

The runtimes are shown in Table 3, along with the width of the stream created by the pipeline. First
observe that populating the DBMS and indexing the datasets takes a significant larger amount of
time for triangles in Simple Features (a factor 4.5 formsh andAHN2). While building the triangles
took longer than the stars (around 1.4 times longer, since there the number of triangles is around
twice as large as that of points), the main cause is the building of the GiST spatial index of PostGIS,
which took 20 times more time. To illustrate, in the case of msh, after having populated the DBMS
it took only 31min to index the stars, while the building of the spatial index took more than 11h.
This is explained by the fact that the GiST is a more complex tree than a B-tree, but also by the fact
that twice as much elements had to be indexed.

The average andmaximumwidths for the three dataset were very small: for instance out of around
283 millions points the maximum number of points in the dictionary of smb2star.py was only
around 53 000, or 0.02% of the points. From this fact, we can conclude that the spatial coherence
of the input datasets was high.

6.2 Properties of the datasets.

Table 4 shows the size of the tables in PostgreSQL once populated.

The fact that the GiST is a more complex structure than a B-tree is highlighted by the fact that it
takes about 6 times more space on disk (e.g. the spatial indexes for msh and AHN2 each take 29
GB, while their respective B-trees only 4.8 GB). Storing triangles in PostGIS also takes significantly
more space, first because there are more triangles than points, and second because the bounding
box of every triangle must also be explicitly stored for the GiST.
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star structure triangles SF

table index total table index total

AHN2 28 GB 4.8 GB 32.8 GB 64 GB 29 GB 93 GB
serpent 325 MB 56 MB 381 MB 746 MB 329 MB 1075 MB
msh 28 GB 4.8 GB 32.8 GB 64 GB 29 GB 93 GB

Table 4: Size of the tables and the indexes in PostgreSQL for the datasets.

With a star-based data structure, we can use a mix of standard SQL and functions added as an
extension to query the datasets. This is how the details of the datasets in Table 2 were obtained.
Two examples are shown here, the runtime of each query is also shown as an indication.

Convex hull points. Out of 281 670 637 points, 1173 are on the boundary of the convex hull. This
is obtained with the function convexhull(), which returns true if the vertex is on the boundary of
the convex hull.

AHN2=# select count(id) from points where is_convexhull(link) is true;

count

-------

1173

(1 row)

Time: 333050.861 ms

Degree of a vertex. The average and maximum degree of the vertices inmsh are 6 and 141.

msh=# select avg(degree(link)), max(degree(link)) from points;

avg | max

-------------------+-----

5.9999995798221293 | 141

(1 row)

Time: 320112.537 ms

6.3 Point location

Properly benchmarking the point location function is a complex task that is beyond the scope of the
current paper. Indeed, the DBMS performs caching between the queries and several parameters
influence the results (e.g. the disk page size and the number of points in each buckets). Therefore,
I report here on experiments that were ran with one bucket size and with the default page disk size
of PostgreSQL, and I compare with the GiST as implemented in PostGIS.
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The size of the buckets was chosen so that a relatively small amount of points is inside each buckets
(around 400), irrelevant of the size of the dataset. You can see below two examples of the same
query: one made with the stars (with the function pointlocation()) and one with PostGIS with
triangles (Simple Features). With the function pointlocation(), the starting point is retrieved with
one query from the buckets table, and then a small number of triangles (31 in that case) are visited
(one query per triangle in the point table) to find the triangle containing the query point. With
PostGIS, the spatial index is first used to retrieve all the triangles whose bounding box contains the
query point, and then a point-in-polygon test is performed for each candidate.

During my experiments, for all the datasets, most queries were answered within 100ms, which is
of the same order of magnitude as when the GiST is used. Once a query has been performed for
a given location, running another query close in space to the previous speeds up greatly the query
time (because the points are most likely in the same disk page) and query times of 1ms or 2ms are
common. The spatial index of PostGIS has the same behaviour.

msh=# select pointlocation(611, 545);

WARNING: closest pt to start is 64467668

WARNING: start distance is 1.329440

WARNING: # of triangles visited is 31

pl

------------------------------

(64468127,64468111,64468110)

(1 row)

Time: 73.897 ms

msh=# select astext(geom) from trianglesf

where st_intersects(geom, ST_GeomFromText('POINT(611 445)'));

astext

----------------------------------------------------------------

POLYGON((611.09 444.91,611 445.01,610.98 444.91,611.09 444.91))

(1 row)

Time: 67.255 ms

6.4 Linear interpolation and slope.

The performance of several spatial analysis operations on terrains are based on the performance
of pointlocation(): most of them start with it, and then adjacent triangles or points in the vicinity
are retrieved. Interpolation and slope are one example: their runtime is nearly identical to that of
pointlocation().
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6.5 Incremental updating

With the star-based structure, three steps are required to insert a point p: (1) pointlocation(p); (2)
inserting p in the point table (and updating the B-tree); (3) updating the stars of vertices in the
vinicity of p. Step 2 relies on the implementation of PostgreSQL, which during the experiments
performed very quickly (often < 50ms). Step 3 is also efficient since it involves modifying to points
(adding the ID of p). Below is one example of a query where a new point (with elevation 100) was
added tomsh; the ID of the new vertex is returned.

msh=# select insertpt (611, 545, 100);

WARNING: closest pt to start is 64467668

WARNING: start distance is 1.329440

WARNING: # of triangles visited is 31

insertpt

-----------

283213393

(1 row)

Time: 94.472 ms

With the Simple Feature structure, inserting a new point p is more complex since triangles need
to be deleted and then replaced by new ones, and, as a consequence, the spatial index needs to
be updated. Indeed, simply inserting a new point p (without updating for the Delaunay criterion)
means deleting the triangle that contains it, and then adding three new triangles (four changes to
the spatial index, including one deletion). The current implementation of the GiST in PostgreSQL
is rather slow when one element is deleted: for the dataset serpent it took around 10s, while for
msh it took around 10min. The insertions of new geometries were however performed quickly
(200-300ms);

6.6 Profile

Perhaps the biggest advantages of having a topological data structure is highlightedwhen onewants
to make a profile in the terrain/TIN. When triangles are stored as Simple Features and a spatial
index is used the operation is very costly since all the triangles whose bounding box intersect that
of the query line are retrieved, then intersection tests are made and finally these intersections must
be sorted (see Figure 10). The query time is therefore heavily dependent on the length of the profile
line.

With a star-based data structure, the profile is also dependent on the number of triangle edges
crossed by the profile line, but performsmuch faster because the topological relationships between
the triangles are stored (bounding boxes are not used). Below is one example of a query where
simply the triangles crossed by a profile line are retrieved. With the star-based structure, first a
pointlocation() is performed (same example as above), and then the marching starts and returns
how many edges were crossed. Observe here that if we subtract 100ms for the point location,
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Figure 10: When a spatial index is used to identify the triangles crossed by a profile line (the red
line), all the triangles whose bounding box overlap that of the profile line (the grey ones)
are retrieve as candidate for the intersection test.

1196 queries in the point table were made in around 500ms, which shows again that the spatial
coherence is high. With the explicit triangles, the same query takes significantly more time, and
the intersections are not sorted yet along the profile line. The longer the profile line is, the bigger
the difference between the two method is.

msh=# select profile_count_intersections(611, 545, 651, 595);

WARNING: closest pt to start is 64467668

WARNING: start distance is 1.329440

WARNING: # of triangles visited is 31

profile_count_intersections

----------------------------

1196

(1 row)

Time: 586.215 ms

msh=# select count(geom) from trianglesf where

st_crosses(geom, ST_GeomFromText('LINESTRING(611 545, 651 595)'));

count

-------

1196

(1 row)

Time: 17796.630 ms
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7 Conclusions

Handling and analysing massive point clouds can be tackled by several different ways. I have in-
vestigated in this paper one the them: storing the TIN in a DBMS and relying on the DBMS for
memorymanagement. The star-based data structure I have proposed is significantly different from
alternatives and has in my opinion several advantages over existing structures.

First, it is compact. If we consider only the space for the points and triangles, it uses no more
space than a simple structure in which triangles are formed by triplets of vertex labels, and yet the
stars permit us to have access to adjacency and incidence relationships between the triangles. I
have shown that, based on a PostgreSQL/PostGIS implementation, if the walking method is used
instead of a spatial index, then the structure with its B-tree index is around the same size as simply
the spatial index for the triangles in Simple Features.

Second, it is very simple to implement in a DBMS as only lists/arrays of labels are needed. One
only needs to add an extra column to a point table to store a TIN—this is inline with the popular
Simple Feature paradigm popular for handling geographical objects in DBMSs.

Third, because it is topological, the TIN can be used as the supporting structure for spatial indexing
the triangles (with the walking method). The walking method is only efficient if the points have
good spatial coherence, so that successive queries in the B-tree can benefit from the caching mech-
anisms of the DBMS. I have shown that for real-world datasets, the spatial coherence is very good
and operations such as extracting the profile from a TIN are very efficient, an order of magnitude
faster than using a spatial index with bounding boxes.

Fourth, it is flexible: we can easily combine the star concept with other ideas and use another spatial
index (since the star of a vertex can be “moved” with it, it becomes a simple attribute). As future
work, I plan to investigate the use of the star-based structure with Oracle Spatial SDO_PC.

Fifth, although I have not yet implemented tools to construct them, constrained triangulations
can also be stored with a star-based structure; attaching attributes to any simplex of a TIN is also
possible.

Finally, it should noticed that the star-based structure can be used to store in a DBMS the triangu-
lation of a closed volume (e.g. of a sphere), but that the walking unfortunately cannot be used as a
spatial index since it works on the projection of the triangulation on the x − y plane. Also, the star
concept extends to three dimension (the stars of an edge is formed by the union of all its incident
tetrahedra). As a consequence, the idea of storing stars of edges in 3D would permit us to store
efficiently tetrahedralizations, and would offer an alternative to the structure of Penninga (2008)
for representing 3D city models.
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