
Storing a 3D citymodel, its levels of detail and
the correspondences between objects as a 4D

combinatorialmap
Ken Arroyo Ohori Hugo Ledoux Jantien Stoter

This is an author’s version of the paper. The authoritative version is:

Storing a 3D city model, its levels of detail and the correspondences between ob-
jects as a 4D combinatorial map. Ken Arroyo Ohori, Hugo Ledoux and Jantien Stoter.
Proceedings of the ISPRS WG II/2 Workshop, October 2015.

Related source code is available at
https://github.com/kenohori/lcc-tools

3D city models of the same region at multiple LODs are encumbered by the lack of links
between corresponding objects across LODs. In practice, this causes inconsistency during
updates and maintenance problems. A radical solution to this problem is to model the LOD
of a model as a dimension in the geometric sense, such that a set of connected polyhedra at
a series of LODs is modelled as a single polychoron—the 4D analogue of a polyhedron. This
approach is generally used only conceptually and then discarded at the implementation stage,
losing many of its potential advantages in the process. This paper therefore shows that this
approach can be instead directly realised using 4D combinatorial maps, making it possible to
store all topological relationships between objects.

1

https://github.com/kenohori/lcc-tools


1 Introduction

3D city models of the same region are often cre-
ated at multiple levels of detail (LODs). This al-
lows a user to choose the most appropriate LOD
for a given application, balancing the better re-
sults that are obtainable usingmore detailedmod-
els with the higher computational requirements
that are necessary to obtain them [Biljecki et al.,
2014].

However, the creation of these models is a com-
plex task that needs to be performed continu-
ously, as 3D city models need to be kept up to
date [Zlatanova and Holweg, 2004, Kolbe et al.,
2005]. Given the large size and complexity of cur-
rent 3D city models, it can be very beneficial to
have incremental updates to the model which af-
fect only a building and its immediate surround-
ing area [Döllner et al., 2006]. These can take
place as buildings and other city objects are built,
modified and destroyed.

In order to apply such incremental update pro-
cesses to 3D city models at multiple LODs, links
between related objects are crucial. Given an ob-
ject at a certain LOD, links usually point to its in-
cident and adjacent objects at the same LOD (i.e.
the topological relationships that are most com-
mon in GIS), as well as to its corresponding objects
at other LODs, even when these objects are of dif-
ferent dimension (e.g. when a thin polyhedron in
a higher LOD is collapsed to a polygon in a lower
LOD). These links can then be used to propagate
changes to other LODs [van Oosterom and Stoter,
2010] or to apply consistency checks to new or
newly altered objects [Gröger and Plümer, 2011],
among other operations that are part of a robust
update process.

However, in most of the data models used in GIS,
these latter links across LODs are either non-
existent or limited to the use of common IDs at the
2D or 3D object level. These simple schemes are
sufficient in the cases where themissing links can
be deduced geometrically, such as when there are
identical geometries across LODs, but as shown in
Figure 1, it is possible that there are no common
geometries across LODs. Using only common IDs
alsomeans that it is difficult to store complex cor-
respondence relationships, such as an aggregation
of multiple objects into one, or those connect-
ing the points, line segments and polygons on the
boundary of corresponding 2D or 3D objects.

Partly in response to these shortcomings, various
authors have proposed to model the LODs of a 3D
model as another fully independent dimension
in the geometric sense [van Oosterom and Stoter,

Figure 1: Two LODs of a building footprint. Note
that there are no vertices, edges or faces
with the same geometry in both LODs,
and that many primitives in the higher
LOD are equivalent to a single one in the
lower LOD.

2010, Paul et al., 2011, Stoter et al., 2012], result-
ing in a set of 0D–4D objects that can bemodelled
mathematically as a 4D cell complex embedded in
4D space. This makes it possible to store all corre-
spondences between the objects across all LODs,
even in arbitrarily complex situations, such as
continuous LODs1 [Döllner and Buchholz, 2005,
van Oosterom and Meijers, 2014] or objects that
move and change shape. A 3D building that is
normally modelled as different polyhedra across
a series of LODs is then modelled as a single poly-
choron, the 4D analogue of a polyhedron, which is
embedded in 4D space.

However, this integrated approach, which is pre-
sented in Section 2, is normally only used concep-
tually and is then discarded at the implementa-
tion stage. Most ‘4DGIS’ therefore store themodel
as a series of minimally linked 2D/3D representa-
tions, just as is done when a non-integrated ap-
proach is used [Raper, 2000, van Oosterom and
Meijers, 2014]. Many of the advantages of the in-
tegrated approach are thus unfortunately lost in
practice.

As an alternative, we argue that it is possible to
preserve all correspondences between the objects
of every dimension directly as a 4D cell com-
plex [Arroyo Ohori et al., 2015a]. In this paper
we show how this can be done in practice us-
ing 𝑛D combinatorial maps [Damiand and Lien-
hardt, 2014]. This dimension-independent data
structure, introduced briefly in Section 3, is likely
the best option for an integrated 4D GIS model
1As opposed to a set number of discrete LODs.

2



at the present time due to its compactness and
the availability of efficient libraries implementing
them [Arroyo Ohori et al., 2015b], such as CGAL2
and CGoGN3 [Kraemer et al., 2014].

Based on CGAL Combinatorial Maps, we show in
Section 4 how a 4D GIS using real multidimen-
sional 0D–4Dobjects can be implemented in prac-
tice, describing the main aspects of such a system,
including how real-world 4D objects can be cre-
ated andmanipulated. Wefinishwith adiscussion
of the current and future possibilities of a 4D GIS
in practice in Section 5.

2 Modelling the LODs of a 3D
model as a 4D cell complex

In the general sense, it is possible to model any
number of parametrisable characteristics as di-
mensions in the geometric sense. When the stan-
dard (two or three) spatial dimensions are com-
bined with other non-spatial ones modelled in
this manner, real-world 0D–3D entities are then
modelled as higher-dimensional objects embed-
ded in higher-dimensional space. These can then
be directly stored using higher-dimensional data
structures, such as 𝑛D combinatorial maps. Al-
though the approach can be applied with any type
of characteristics, it is usually used with charac-
teristics that are closely linked to space, such as
time [Raper, 2000] and scale [van Oosterom and
Stoter, 2010].

This higher-dimensional spatial modelling approach
is well grounded in long-standing mathemati-
cal theories and offers interesting possibilities
in practice. Descartes [1637] already laid the
foundation for 𝑛D geometry by putting coordi-
nates to space, allowing the numerical descrip-
tion of geometric primitives and the use of al-
gebraic methods on them, theories of 𝑛D geom-
etry were developed by Riemann [1868] among
others, and Poincaré [1895] developed algebraic
topologywith a dimension-independent formula-
tion, stating that even if 𝑛D objects could not be
[then] represented, theydohave aprecise topolog-
ical definition, and consequently properties that
can be studied. From an application point of view,
4D topological relationships between 4D objects
provide insights that 3D topological relationships
cannot [Arroyo Ohori et al., 2013], weather and
groundwater phenomena cannot be adequately
studied in less than four dimensions [McKenzie
et al., 2001], and van Oosterom and Stoter [2010]
argue that the integration of space, time and scale
2http://doc.cgal.org/latest/Combinatorial_map
3http://cgogn.unistra.fr

into a 5D model for GIS can be used to ease data
maintenance and improve consistency, as algo-
rithms could detect if the 5D representation of
an object is consistent and does not conflict with
other objects.

Within this paper, we focus solely on modelling
the LOD of a 3D city model as an extra geometric
dimension—in so far as it can be used to store all
topological relationships between related objects
across LODs. A set of connected 2D polygons at
multiple LODs are then stored as a single 3D poly-
hedron4, as is shown in Figure 2, and a set of con-
nected 3D polyhedra at multiple LODs as a sin-
gle 4D polychoron. Notably, the correspondences

Figure 2: Two LODs of a building footprint are
stored as a single polyhedron. Note that
the correspondences between vertices,
edges and faces between the LODs are
clearly indicated by the vertical edges
and faces.

between equivalent objects across LODs are mod-
elled as geometric primitives, making it possible
to perform geometric operations with them (e.g.
extracting an intermediate LOD for visualisation
purposes) or to attach attributes to them, just as is
done to other geometric primitives.

In order to understand how the polychora in a 4D
(3D+LOD) setting look like, it is easier to first con-
sider a 3D setting that consists of two spatial di-
mensions and the LOD of the model as a third di-
mension. In this setting, a polygon that is mod-
elled at precisely one LOD (i.e. a point on the LOD
axis) is still a polygon, but one that is embedded
in 3D space. The simplest volumetric example oc-
curs when a polygon ismodelled identically along
a range of LODs, as is shown in Figure 3. In this
4Separate polygons might become connected in different sit-
uations, such as by being joined into a single one at one or
more LODs.

3

http://doc.cgal.org/latest/Combinatorial_map
http://cgogn.unistra.fr


Figure 3: An unchanged building footprint at two
LODs forms a prism-shaped polyhedron.

case, the resulting polyhedron is a prism that con-
sists of base and top faces with the same geome-
try as the original polygon, which are orthogonal
to the LOD axis and represent the end points of
the range. These faces are joined by lateral quadri-
lateral faces, which are aligned with the LOD axis
and connect corresponding edges of the top and
bottom face.

When polygons aremodelled differently at differ-
ent LODs, the resulting polyhedra can be arbitrar-
ily more complex. However, it is worth noting
that applying many fundamental operations to a
polygon in the same 2D+LOD setting also result
in similarly easily-definable volumes. This is the
case for all basic transformation operations or col-
lapses of objects of any dimension, as is shown in
Figure 4 and Figure 5.

Moreover, all these volumetric cases (unchanged,
transformed and collapsed polygons) can be gen-
erated algorithmically in a simple manner by us-
ing extrusion as a first step. A polygon that ismod-
elled identically along an LOD range can be cre-
ated by simply extruding the polygon along the
range—a common operation in geometric mod-
elling for which there are various available al-
gorithms [Ledoux and Meijers, 2011]. As a sec-
ond step, the transformations simply require ap-
plying the transformation to the extruded ver-
tices5, while the collapses require moving the un-
extruded vertices of the collapsed cell to a certain
location (e.g. the centroid of the edge or face). De-
generate edges and faces can then be easily de-
tected and removed, as all their vertices are in the
same location.

These cases are illustrative because they work in
the samemanner in the 4D setting6, being easy to
define and to generate algorithmically. A prismatic
5If the bottom face of the extruded polygon represents it be-
fore the transformation, this wouldmean transforming the
vertices in its top face.

6In fact, they work in the same manner in any dimension.

polychoron—the 4D analogue of a prism—can be
constructed by extruding a polyhedron along a
range, which can be done using the algorithm de-
scribed in Arroyo Ohori et al. [2015c]. Figure 6
shows the result of extruding the polyhedron in
Figure 3, which is equivalent to a polyhedron re-
maining unchanged along the LOD axis.

In a similar manner as the 3D cases, a prismatic
polychoron can also be easily modified to reflect a
transformation or a collapse that occurs along the
LOD axis. Transforming a polyhedron means ap-
plying the transformation to the unextruded ver-
tices of the polychoron. Collapsing an edge, face
or volume means moving all of its vertices to the
same location. Degenerate edges, faces or volumes
can be identified by checking whether all their
vertices are in the same location, and can there-
fore be easily removed.

3 nD combinatorialmaps

Combinatorial maps is a data structure originally
proposed by Edmonds [1960] to describe the 2D
surfaces of 3D objects. Their extension to arbi-
trary dimensions is described by Lienhardt [1994]
for objects without boundaries (e.g. ℝ𝑛 or the
‘wrap-around’ surfaces around objects) and ex-
tended to objects with boundaries by Poudret et al.
[2007]. They are able to describe subdivisions
of orientable quasi-manifolds—a specific combi-
natorial interpretation of the topological concept
of a manifold. However, it is worth noting that
non-manifold objects can still be stored in a com-
binatorial map by the use of non-manifold do-
mains [Arroyo Ohori et al., 2015b].

In order to give amore precise description of how
we model 4D objects, it is useful to start from the
concept of a cell complex. Intuitively, a cell com-
plex is a structure made of connected cells, where
an 𝑖-dimensional cell (𝑖-cell) is a topological ob-
ject homeomorphic to an 𝑖-ball (i.e. point, arc,
disk, ball, etc.)7. Vertices are thus 0-cells, edges
are 1-cells, faces are 2-cells, volumes are 3-cells,
and so on. An 𝑖-cell can be used to model an 𝑖-
dimensional object, so considering only linear ge-
ometries, 1-cells are representations of line seg-
ments, 2-cells of polygons, 3-cells of polyhedra,
and 4-cells of polychora. A 𝑗-dimensional face (𝑗-
face) of an 𝑖-cell is a 𝑗-cell, 𝑗 ≤ 𝑖, that lies on the
boundary of the 𝑖-cell. Two 𝑖-cells are said to be ad-
jacent if they have a common (𝑖 − 1)-face, and an
𝑖-cell and a 𝑗-cell, 𝑖 ≠ 𝑗, are said to be incident if
either is a face of the other.
7See Hatcher [2002] for a more rigorous definition.

4



(a) (b) (c)

Figure 4: Applying various transformations to a building footprint along the LOD axis: (a) translation,
(b) rotation and (c) scale.

(a) (b)

Figure 5: Collapsing (parts of) a building footprint along the LOD axis: (a) an edge, (b) a face.

(a) (b) (c)

Figure 6: The polyhedron in Figure 3 can be extruded to 4D using the algorithm in Arroyo Ohori et al.
[2015c]. The result is a single polychoron, whose faces are shown here in parts for clarity:
(a) the faces in the two end volumes, (b) the lateral faces connecting corresponding verti-
cal edges, and (c) the top and bottom faces connecting corresponding horizontal edges. Not
shown here are the 16 polyhedra that are formed from these faces.

5



Combinatorial maps are thus data structures that
can be used to represent cell complexes of any
dimension and are composed of combinatorial
primitives called darts, which are equivalent to
the simplices in a simplicial decomposition8 of the
input cell complex. If we consider all the cells
of the complex of dimension two or higher as
symbolic vertices, the simplicial decomposition is
computedby creating simplices formedby joining
combinations of cells of every dimension higher
than zero, all of which are incident to each other.
Since every dart thus joins two of the original
vertices—in addition to vertices representing cells
of every dimension from two upwards—, an ori-
entation is given to a dart by specifying an order
among the two original vertices.

As shown in Figure 7, darts in a 2D combinatorial
map are thus equivalent to combinatorial triangles
defined by an incident edge-face pair, which are
then given an orientation. In 2D, darts are also
equivalent to the oriented half-edges in a typical
half-edge data structure, e.g. the DCEL [de Berg
et al., 2008].

Higher-dimensional combinatorial maps are eas-
iest to picture from the point of view of the simpli-
cial decompositions that are similar to the 2D one
in Figure 7a. As shown in Figure 8, in a 3D com-
binatorial map, darts are equivalent to tetrahedra
defined by an incident edge-face-volume triplet.
Although 4D objects are hard to picture, by anal-
ogy it is easy to see that a dart in a 4D combina-
torial map is a 4-simplex, which is defined by an
incident edge-face-volume-4-cell 4-tuple.

The darts in a combinatorial map are connected
by ordered relations between them, which in an
𝑛-dimensional combinatorial map are denoted by
𝛽􏷠 to 𝛽𝑛. These relations represent the adjacency
relations between the simplices in the simplicial
complex, such that the 𝛽𝑖 relation of a dart 𝑑 con-
nects it to the adjacent simplex that represents all
the same cells except for the 𝑖-dimensional one—
equivalent to switching in a simplex the vertex
representing the 𝑖-cell for the 𝑖-cell of a neigh-
bouring simplex. Since 1-cells are only implic-
itly represented through two edge-connected ver-
tices, 𝛽􏷠 connects a dart to the next dart within the
face according to the predefined order between
the vertices. The other relations of a dart (i.e. 𝛽􏷡
and higher), which by definition share both of the
original vertices, 𝛽𝑖 always connects a dart to an
oppositely-oriented dart. For example, 𝛽􏷡 connects
a dart that represents the same vertices and edge,
but that represents the adjacent face (which in the
DCEL is commonly known as the twin).

8i.e. the vertices, edges, triangles, tetrahedra, etc. in an 𝑛-
dimensional combinatorial triangulation

4 Storing a 3D+LODmodel as a
4D combinatorialmap

As a dart in an 𝑛-dimensional combinatorial map
is connected to 𝑛 other darts using the ordered re-
lations ranging from 𝛽􏷠 to 𝛽𝑛, it is possible to nav-
igate through all these links by storing them as a
𝑛-tuple per dart. However, it is very inefficient to
rotate through all the darts of a face in order to get
the previous dart of the face. Because of this, stor-
ing the inverse of 𝛽􏷠, i.e. 𝛽−􏷠􏷠 , is desirable as well.
In this manner, both 𝛽􏷠 and 𝛽−􏷠􏷠 can be used to cy-
cle through a face in the clockwise and counter-
clockwise directions. In our particular case of a
4D combinatorial map, given a dart 𝑑, we there-
fore store a tuple of relations:

􏿴𝛽−􏷠􏷠 (𝑑), 𝛽􏷠(𝑑), 𝛽􏷡(𝑑), 𝛽􏷢(𝑑), 𝛽􏷣(𝑑)􏿷 .

A dart in an 𝑛-dimensional combinatorial map is
a representation of two 0-cells and one cell of ev-
ery dimension higher than zero. Because of this,
a dart also can be used to store the attributes of all
of its cells in the form of another ordered tuple, or
to keep links to external structures storing them if
they are better stored separately—which depends
on the space needed to store said attributes com-
pared to the space needed to store the links. In
order to reduce the amount of storage that is re-
quired, it is possible to omit the attributes for one
of the two 0-cells of the dart in an ordered man-
ner, omitting either always the first or always the
second 0-cell according to the predefined orienta-
tion of the combinatorial map. These can be ob-
tained from any of their 𝛽-linked neighbours as
the first 0-cell of a dart is always the second 0-cell
of a 𝛽-linked neighbour due to the consistent ori-
entation that is set in a combinatorial map. Con-
sidering for a given dart 𝑑, 𝑎𝑖(𝑑) links it to the at-
tribute(s) of its 𝑖-cell, we can therefore similarly
store a tuple of attributes:

(𝑎􏷟(𝑑), 𝑎􏷠(𝑑), 𝑎􏷡(𝑑), 𝑎􏷢(𝑑), 𝑎􏷣(𝑑)) .

Among all the attributes of the cells of all dimen-
sions, those of the 0-cells are particularly impor-
tant. By embedding every vertex at a location in
space defined by a tuple of coordinates, it is pos-
sible to embed an abstract cell complex in space.
In the case of a 4D cell complex, every vertex
should have a location defined by a point in 4D
space, which is represented by tuple of coordi-
nates (𝑥, 𝑦, 𝑧, 𝑙), where 𝑥, 𝑦 and 𝑧 are the coordinates
of the point in 3D space, and 𝑙 is a point on the
LOD axis. However, it is important that the ver-
tices of the cell complex are embedded in a geo-

6



(a) (b) (c)

Figure 7: A 2D combinatorial map representing three polygons. (a) The underlying simplicial com-
plex, where every triangle consists of two vertices (marked as 0) at either end of an edge and
a symbolic vertex for every face (marked as 2). (b) The combinatorial map that is generated
by choosing a counterclockwise orientation for the polygons. (c) Same for the clockwise ori-
entation. Darts are represented by triangles in (a) and arrows in (b) and (c).

(a) (b) (c)

Figure 8: A 3D combinatorial map representation of a (a) cube consists of (b) 24 darts. (c) Each of these
darts is defined by an incident edge-face-volume triplet. In this case, they are the lower front
edge (between the 0s), front face (2) and the only volume of the cube (3). Note that there are
also two possible orientations for such a map, which are not shown here.

metrically correct manner. The faces of the com-
plex should be coplanar and the volumes of the
complex should lie on a flat region of 3D space.
That is, the points where their vertices are embed-
ded should lie on the subsets of space defined by a
linear combination of respectively two and three
vectors.

In CGAL Combinatorial Maps, darts are already
implemented as individual primitives that store
their relationships to other darts, while the em-
beddings of the vertices as points in 4D space
can be handled through the Linear Cell Com-
plex package. In order to store other relevant at-
tributes for the darts, as well as for cells of every
dimension, it is possible to do so by defining cus-
tom Dart and Linear_cell_complex classes. Fig-

ure 9 shows a fully dimension-independent exam-
ple using simple integer IDs.

Based on such a custom Linear_cell_complex
class, a 3D city model can be loaded into a 3D
cell complex incrementally [Arroyo Ohori et al.,
2014]. In our case, we use the OGR Simple Feature
Library9 to read standard GIS data formats. Based
on the Simple Features specification [OGC, 2011],
we read a dataset face by face, creating a new dart
per vertex of the face, embedding it into its 3D co-
ordinates using CGAL’s Point_d 𝑛D data type and
assigning it a sequential ID. Every dart within the
face is then linked to and from the previously cre-
ated one respectively by their 𝛽−􏷠􏷠 and 𝛽􏷠 relation-
ships, then the last dart of the face is connected to
9http://www.gdal.org

7

http://www.gdal.org


template <int d, class Refs>
struct Dart_with_id : public CGAL::Dart<d, Refs> {
public:

typedef CGAL::Dart<d, Refs> Dart;
typedef typename Refs::size_type size_type;
static const size_type NB_MARKS = Refs::NB_MARKS;
int id;

Dart_with_id() : Dart() {
id = -1;

}

Dart_with_id(int id) : Dart() {
this->id = id;

}

Dart_with_id(const Dart& adart) : Dart(adart) {
id = -1;

}
};

template <unsigned int d>
struct Linear_cell_complex_items_with_id {

template <class LCC>
struct Dart_wrapper {

typedef CGAL::Cell_attribute_with_point<LCC, int> Point_attribute_with_id;
typedef CGAL::Cell_attribute<LCC, int> Attribute_with_id;

template <unsigned int attributes_to_add, class Result = CGAL::cpp11::tuple<> >
struct Linear_cell_complex_items_with_id_attributes;

template <class ... Result>
struct Linear_cell_complex_items_with_id_attributes<0, CGAL::cpp11::tuple<Result ...> > {

typedef CGAL::cpp11::tuple<Point_attribute_with_id, Result ...> tuple;
};

template <unsigned int attributes_to_add, class ... Result>
struct Linear_cell_complex_items_with_id_attributes<attributes_to_add, CGAL::cpp11::tuple<Result ...> > {

typedef typename Linear_cell_complex_items_with_id_attributes<attributes_to_add-1,
CGAL::cpp11::tuple<Attribute_with_id, Result ...> >::tuple tuple;

};

typedef Dart_with_id<d, LCC> Dart;
typedef typename Linear_cell_complex_items_with_id_attributes<d>::tuple Attributes;

};
};

template <unsigned int d>
struct Linear_cell_complex_with_ids {
public:

typedef CGAL::Linear_cell_complex<d, d, CGAL::Linear_cell_complex_traits<d>,
Linear_cell_complex_items_with_id<d> > type;

};

Figure 9: Custom Dart_with_id and Linear_cell_complex_with_id classes. Dart_with_id stores an in-
teger id per dart, while Linear_cell_complex_with_id stores an integer ID for every cell of
every dimension. The latter is templated with the dimension 𝑑 of the cell complex, where-
after it is used to add integer attributes for every cell of dimension higher than zero. This
example uses variadic templates to show how it is possible to do this in a fully dimension-
independent manner.

8



the first one in the same manner. The face is then
assigned an ID based on its feature ID obtained
through OGR.

The separate faces representing a single volume
are then linked together using the incremental
construction method described in Arroyo Ohori
et al. [2014]. Once the faces have been linked, it
is possible to assign sequential IDs to every edge
(as doing so earlier creates gaps in the numbering
due to disconnected edges). Finally, it is possible
to assign an ID to the volume.

By associating every volume in the 3D cell com-
plex with a scale range along which it is a valid rep-
resentation, the entire 3D cell complex can be ex-
truded to 4D. Note that the attributes of the cells
are preserved—an 𝑖-cell is always extruded into
two 𝑖-cells and an (𝑖+1)-cell that lies between them,
all of which can inherit the attributes of the unex-
truded cell. The 4-cells at this stage represent the
prismatic polychora discussed in Section 2 and
can be used for further operations.

5 Conclusions

Modelling non-spatial characteristics as addi-
tional dimensions in the geometric sense is a pow-
erful technique. Applied to the level of detail of a
3D city model, it enables the storage of arbitrarily
complex relationships between objects by keeping
track of all possible topological relationships. As
this approach is generic, the overarchingmethods
presented in the paper is not only applicable to the
LOD of a model. It can be applied to to any char-
acteristic that is parametrisable, such as time [van
Oosterom and Stoter, 2010].

Combinatorial maps are likely the best option
for an integrated 4D GIS model at the present
time due to their compactness and the availabil-
ity of efficient libraries implementing them [Ar-
royo Ohori et al., 2015b] In terms of space, a given
cell complex stored as a combinatorial map gen-
erally requires only half the combinatorial prim-
itives compared to a generalised map [Lienhardt,
1994] or cell-tuple structure [Brisson, 1993]. The
libraries implementing combinatorial maps sig-
nificantly decrease the effort that is needed to
create and manipulate general 4D cell complexes
efficiently—something that only becomes more
important due to the so-called ‘curse of dimen-
sionality’ [Bellman, 1957], where the number of
combinatorial elements on a higher-dimensional
representation can increase in size exponentially
on the dimension.

References
Ken Arroyo Ohori, Pawel Boguslawski, and Hugo
Ledoux. Representing the dual of objects in a
four-dimensional GIS. In A. Abdul Rahman,
P. Boguslawski, C. Gold, and M.N. Said, ed-
itors, Developments in Multidimensional Spatial
Data Models, Lecture Notes in Geoinformation
and Cartography, pages 17–31. Springer Berlin
Heidelberg, Johor Bahru, Malaysia, May 2013.

Ken Arroyo Ohori, Guillaume Damiand, and
Hugo Ledoux. Constructing an n-dimensional
cell complex from a soup of (n-1)-dimensional
faces. In Prosenjit Gupta and Christos Zaro-
liagis, editors, Applied Algorithms. First Interna-
tional Conference, ICAA 2014, Kolkata, India, Jan-
uary 13-15, 2014. Proceedings, volume 8321 of
Lecture Notes in Computer Science, pages 37–48.
Springer International Publishing Switzerland,
Kolkata, India, January 2014.

Ken Arroyo Ohori, Hugo Ledoux, Filip Biljecki,
and Jantien Stoter. Modelling a 3D city model
and its levels of detail as a true 4D model. IS-
PRS International Journal of Geo-Information, (3):
1055–1075, jul 2015a.

Ken Arroyo Ohori, Hugo Ledoux, and Jantien
Stoter. An evaluation and classification of nD
topological data structures for the representa-
tion of objects in a higher-dimensional GIS.
International Journal of Geographical Information
Science, 29(5):825–849, feb 2015b.

Ken Arroyo Ohori, Hugo Ledoux, and Jantien
Stoter. A dimension-independent extrusion al-
gorithm using generalised maps. International
Journal of Geographical Information Science, 2015c.

Richard Ernest Bellman. Dynamic programming.
Princeton University Press, 1957.

Filip Biljecki, Hugo Ledoux, Jantien Stoter, and
Junqiao Zhao. Formalisation of the level of de-
tail in 3d citymodelling. Computers, Environment
and Urban Systems, 48:1–15, 2014.

Erik Brisson. Representing geometric structures
in d dimensions: topology and order. Discrete &
Computational Geometry, 9:387–426, 1993.

Guillaume Damiand and Pascal Lienhardt. Com-
binatorial Maps: Efficient Data Structures for Com-
puter Graphics and Image Processing. CRC Press,
2014.

Mark de Berg, Marc van Kreveld, Mark Overmars,
andOtfried Schwarzkopf. Computational Geome-
try: Algorithms and Applications. Springer-Verlag,
3 edition, 2008.

9



René Descartes. Discours de la méthode. Jan Maire,
Leyde, 1637.

JürgenDöllner andHenrikBuchholz. Continuous
level-of-detail modeling of buildings in 3d city
models. In GIS’05, pages 173–181. ACM, 2005.

Jürgen Döllner, Thomas H. Kolbe, Falko Liecke,
Takis Sgouros, and Karin Teichmann. The vir-
tual 3d city model of berlin — managing, inte-
grating and communicating complex urban in-
formation. In UDMS 2006, 2006.

J. Edmonds. A combinatorial representation of
polyhedral surfaces. Notices of the American
Mathematical Society, 7, 1960.

Gerhard Gröger and Lutz Plümer. How to achieve
consistency for 3d city models. Geoinformatica,
15:137–165, 2011.

AllenHatcher. Algebraic Topology. CambridgeUni-
versity Press, 2002.

Thomas H. Kolbe, Gerhard Gröger, and Lutz
Plümer. Citygml: Interoperable access to 3d
city models. In Peter van Oosterom, Siyka Zla-
tanova, and Elfriede M. Fendel, editors, Geo-
information for Disaster Management, pages 883–
899. Springer Berlin Heidelberg, 2005.

Pierre Kraemer, Lionel Untereiner, Thomas Jund,
Sylvain Thery, and David Cazier. CGoGN: n-
dimensional meshes with combinatorial maps.
In J. Sarrate and M. Staten, editors, Proceed-
ings of the 22nd International Meshing Roundtable,
pages 485–503. Springer International Publish-
ing Switzerland, 2014.

Hugo Ledoux and Martijn Meijers. Topologically
consistent 3D city models obtained by extru-
sion. International Journal of Geographical Infor-
mation Science, 25(4):557–574, 2011.

Pascal Lienhardt. N-dimensional general-
ized combinatorial maps and cellular quasi-
manifolds. International Journal of Computational
Geometry and Applications, 4(3):275–324, 1994.

John W. McKenzie, Ian P. Williamson, and N.W.J.
Hazelton. 4-D adaptive GIS: Justification and
methodologies. Technical report, Department
of Geomatics, The University of Melbourne,
2001.

OGC. OpenGIS Implementation Specification for Ge-
ographic Information - Simple Feature Access - Part

1: Common Architecture. Open Geospatial Con-
sortium, 1.2.1 edition, May 2011.

Norbert Paul, Patrick Erik Bradley, and Martin
Breunig. Integrating space, time, version and
scale using alexandrov topologies. Available
at http://arxiv.org/abs/1303.2595, March
2011.

M.H. Poincaré. Analysis situs. Journal de l’École
polytechnique, 2(1):1–123, 1895.

M. Poudret, A. Arnould, Y. Bertrand, and P. Lien-
hardt. Cartes combinatoires ouvertes. Technical
Report 2007-01, Laboratoire SIC, UFR SFA, Uni-
versité de Poitiers, October 2007.

Jonathan Raper. Multidimensional geographic infor-
mation science. Taylor & Francis, 2000.

B. Riemann. Ueber die Hypothesen, welche der Ge-
ometrie zu Grunde liegen. PhD thesis, Abhand-
lungen der Königlichen Gesellschaft der Wis-
senschaften zu Göttingen, 1868.

Jantien Stoter, Hugo Ledoux, Martijn Meijers,
and Ken Arroyo Ohori. Integrating scale and
space in 3D city models. In Jacynthe Pouliot,
Sylvie Daniel, Frédéric Hubert, and Alborz Za-
myadi, editors, Proceedings of the 7th Interna-
tional 3D GeoInfo Conference, volume XXXVIII-
4/C26 of International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sci-
ences, pages 7–10, Québec City, Canada, May
2012. ISPRS.

Peter van Oosterom and Martijn Meijers. Vario-
scale data structures supporting smooth zoom
and progressive transfer of 2D and 3D data.
International Journal of Geographical Information
Science, 28:455–478, 2014.

Peter van Oosterom and Jantien Stoter. 5D data
modelling: Full integration of 2D/3D space,
time and scale dimensions. In Proceedings of the
6th International Conference GIScience 2010, pages
311–324. Springer Berlin / Heidelberg, 2010.

Siyka Zlatanova and Daniel Holweg. 3d geo-
information in emergency response: A frame-
work. In Proceedings of the 4th International Sym-
posium on Mobile Mapping Technology, 2004.

10

http://arxiv.org/abs/1303.2595

	Introduction
	Modelling the LODs of a 3D model as a 4D cell complex
	nD combinatorial maps
	Storing a 3D+LOD model as a 4D combinatorial map
	Conclusions

