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One solution to the integration of additional characteristics, e.g. time and scale,
into GIS datasets is to model them as extra geometric dimensions perpendicular
to the spatial ones, creating a higher-dimensional model. While this approach
has been previously described and advocated, it is scarcely used in practice be-
cause of a lack of high-level construction algorithms and accompanying imple-
mentations. We present in this paper a dimension-independent extrusion algo-
rithm permitting us to construct from any (𝑛 − 1)-dimensional linear cell com-
plex represented as a generalisedmap, an 𝑛-dimensional one by assigning to each
(𝑛−1)-cell one ormore intervalswhere it exists along the𝑛-th dimension. Wehave
implemented the algorithm in C++11 using CGAL,made the source code publicly
available, and tested it in experiments using real-world 2D GIS datasets which
were extruded to construct up to 5D models.
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1 Introduction

The integration into a GIS of additional
parametrisable characteristics such as a
third spatial dimension, time, and scale
has been so far achieved mostly by extend-
ing and keeping several copies of exist-
ing 2D data structures rather than build-
ing new higher-dimensional ones. For in-
stance, 3D systems often mimic the third
dimension by using a so-called 2.5D struc-
ture, essentially treating the third dimen-
sion as an attribute; or they represent 3D
objects only implicitly by their 2D bound-
ary using a 2D data structure with no ex-
plicit 3D (volume to volume) topological re-
lationships. Meanwhile, implementations
of spatio-temporal GISs usually keep ei-
ther multiple representations [Armstrong,
1988] or a list of changes per object [Wor-
boys, 1992; Peuquet, 1994] using 2D struc-
tures.

It is known that incorporating these char-
acteristics as extra geometric dimensions,
orthogonal to the spatial ones, is an alter-
native that is theoretically sound and can
bring practical advantages. Descartes [1637]
already laid the foundations for 𝑛D geom-
etry by putting coordinates to space, allow-
ing the numerical description of geometric
primitives and the use of algebraic meth-
ods on them, theories of 𝑛D geometry were
developed by Riemann [1868] among oth-
ers, and Poincaré [1895] developed alge-
braic topology directly with a dimension-
independent formulation, stating that even
if 𝑛D objects could not be [then] repre-
sented, they do have a precise topologi-
cal definition, and consequently properties
that can be studied. From an application
point of view, Pigot and Hazelton [1992]
argue that spatio-temporal processes can
be analysed using the topological relation-
ships between 4D objects, and van Oost-
erom and Stoter [2010] argue that the inte-
gration of space, time and scale into a 5D
model forGIS canbeused to ease datamain-
tenance and improve consistency, as algo-
rithms could detect if the 5D representation
of an object is consistent and does not con-
flict with that of other objects.

However, higher-dimensional models at

this moment are only described in the-
ory, and implementations and practical
uses of them are scarce. We believe that
the main obstacle to their use is a lack of
high-level algorithms to construct and ma-
nipulate higher-dimensional objects rather
than a lack of appropriate data structures
since various structures, e.g. generalised
and combinatorial maps [Lienhardt, 1994],
have been implemented in different pro-
grams and libraries.

We therefore investigate in this paper one
construction technique for creating higher-
dimensional datasets: extrusion. It is a
commonly used technique in GIS to con-
struct simple 3D city models [Ledoux and
Meijers, 2011] that, as shown in Figure 1,
‘lifts’ a set of 2D building footprints, pos-
sibly first decomposed into parts, into a
set of 3D polyhedra by assigning each one
an interval along which it exists (from the
ground to the height of the building, which
is easily obtained with techniques like air-
borne laser technologies or photogramme-
try). While not every possible 3D shape
can be generated using extrusion—the ‘top’
and ‘bottom’ faces will always be horizon-
tal, and the side faces connectingwill always
be vertical—, many shapes can still be con-
structed with this method and, compared
to the construction of arbitrary objects, it is
conceptually simpler to use and to ensure
that its output is valid.

In this paper we present: 1. a generalisation
of this technique to higher dimensions: any
(𝑛−1)-dimensional space partition is trans-
formed into a set of 𝑛-dimensional pris-
matic polytopes, the higher-dimensional
analogue of a set of prisms, and 2. an al-
gorithm that computes it based on a gener-
alised map representation of the input. It is
an extension of Arroyo Ohori and Ledoux
[2013] in which all objects were extruded
along the same interval (e.g. a set of build-
ings extruded to the same height).

Our algorithm permits us to construct, for
instance, a set of 5D objects—and the topo-
logical relationships between them— from
a 2D planar partition representing build-
ings for a given area having as attributes:
the height, the construction/destruction
date, and an interval of scales at which this
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Figure 1: (a) A set of footprints with their heights, is extruded in (b) to generate a simple
3D city model. Note how the vertex 𝑣 in (b), generated because of the extrusion
of the back left polygon in (a), is used in the representation of the all 4 edges, 5
faces and 3 volumes that are incident to it, not only in those that are part of the
back left polyhedron. This ensures that the cells in (b) are pairwise disjoint and
have the expected correct topology.

representation is appropriate for a partic-
ular application. Section 2 covers the def-
inition of a cell complex—a concept from
topology that allows us to describe extru-
sion in a dimension-independent manner
and from a high-level perspective—, and
how to represent such a cell complex as a
generalised map, which is the data struc-
ture used in our algorithm and implemen-
tation. The details of our algorithmare then
described in Section 3 based on these con-
cepts.

In the related literature, there are two algo-
rithms that can be used for a similar pur-
pose. TheCartesianproduct, amore general
operation defined for generalised maps in
Lienhardt et al. [2004], would permit us to
generate a combinatorial structure equiva-
lent to the extrusion of all the objects along
a single interval by computing the Carte-
sian product of the original (unextruded)
cell complex with an edge. However, since
such an operation is limited to a single in-

terval (and thus the same for all the in-
put objects), the output cannot be directly
applied for modelling real-world datasets.
A related possibility, presented by Ferrucci
[1993], is to first pre-process all the inter-
vals (for all cells), splitting them into frag-
ments at the other intervals’ endpoints so
that each fragment intersects another one
if and only if they have the same endpoints,
and then computing the output purely com-
binatorially for each possible combination
of fragment and for each input cell. While
this allows us to model real-world objects,
the process of splitting the input intervals
might greatly increase the number of out-
put cells since two intersecting intervals are
split even if their corresponding cells are
not incident or adjacent to each other. In
this paper we follow a similar approach, but
instead process the input intervals for each
input cell separately based on its incidence
relationships with other cells, thus generat-
ing a smaller number of cells and a consid-
erably smaller combinatorial structure.
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We have implemented and tested our algo-
rithm inC++11 based on theComputational
Geometry Algorithms Library [CGAL,
2014], as described in Section 4, and
have made our implementation publicly
available under the open source MIT li-
cense [Open Source Initiative, 2014]. We
have also made experiments generating
consistent objects in up to 6D by combin-
ing publicly available GIS datasets having
different attributes, as shown in Section 5.
We finish with our conclusions and future
work in Section 6.

2 𝑛D cell complexes and their
representation as a
generalisedmap

A cell complex, related to the concept of a
CW complex in topology [Hatcher, 2002],
is a decomposition of topological space into
cells so that an 𝑖-dimensional cell (𝑖-cell) is
an object homeomorphic to an open 𝑖-ball
(e.g. point, open arc, open disk, etc.). A 0-
dimensional cell complex is composed of
isolated vertices. For any integer 𝑖 > 0, we
can build an 𝑖-cell from an (𝑖 − 1)-cell 𝑐 by
attaching 𝑖-dimensional faces to the (𝑖 − 1)-
dimensional faces of 𝑐. That is, an edge is
built by linking the vertices on its boundary,
a facet by linking the edges on its boundary,
a volume by linking the facets on its bound-
ary, and so on. Cell complexes are usually
represented in a computer as a collection
of cells and the boundary relationships that
exist between them.

Many topological relationships can already
be defined based on this non-geometric def-
inition. Two 𝑖-cells are adjacent if they share
at least one (𝑖 − 1)-cell on their boundary. A
cell 𝑐􏷠 and a cell 𝑐􏷡 are incident if 𝑐􏷠 is on
the boundary of 𝑐􏷡 or 𝑐􏷡 is on the boundary
of 𝑐􏷠.
When a cell complex is embedded into
Euclidean space and the cells are con-
strained to be pairwise disjoint geometri-
cally (i.e. they do not intersect), this be-
comes a natural representation of the space
partitions common in GIS data, with a set
of non-overlapping 𝑖-dimensional objects

being represented as an 𝑖-dimensional cell
complex. Since GIS data generally con-
sists of only linear geometries (i.e. points,
straight line segments, polygons, polyhe-
dra, etc.), it is sufficient to embed 0-cells as
points by linking them to a tuple of coor-
dinates. Higher-dimensional cells can have
then implicit geometries based on interpo-
lating the coordinates of the 0-cells on their
boundary. A cell complex with these char-
acteristics is known more formally as a lin-
ear cell complex, and together with its com-
plement (i.e. the ‘universe’), it forms a par-
tition of 𝑛-dimensional space.
There are various data structures capable of
storing a cell complex. In our approach
we use a structure which is known as gen-
eralised maps. However, it is worth not-
ing that our approach also works with other
data structures that describe 𝑛-dimensional
cell complexes (cf. Arroyo Ohori et al.
[2015]). For instance, an implementation
of a data structure based on an incidence
graph [Rossignac and O’Connor, 1989; Ma-
suda, 1993] would simply need to follow the
first two parts of our algorithm, which gen-
erate all the required topological relations
contained in them.

2.1 Generalisedmaps

Generalised maps, also known as g-maps,
were first described by Lienhardt [1994]
and extended to objects with boundaries
(i.e. allowing for the existence of the uni-
verse without modelling it explicitly) by
Poudret et al. [2007]. Implementations
of generalised maps are part of several
software packages and libraries, including
MOKA [Damiand, 2014], and Gocad [GO-
CAD Project, 2011], which gives them a
practical advantage over other data struc-
tures.

A generalised map is a structure that rep-
resents a purely combinatorial simplicial de-
composition (i.e. a combinatorial triangu-
lation) of a cell complex. As shown in Fig-
ures 2 and 3, it is akin to a barycentric trian-
gulation of the cell complex, built by creat-
ing a structure that has a node at each cell
(of every dimension), and forming abstract
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Figure 2: (a)A set of three adjacent facets represented as a cell complexof 0- (dots), 1- (lines)
and 2-cells (filled areas). (b) The same facets represented as a generalised map.
The numbers show the dimension of the cell at each node of a simplex. Themore
compact visual representation of the map, which is used elsewhere in this paper
and where simplices are only represented as edges with rounded endpoints, is
also shown here.

(a) (b)

Figure 3: (a) A cube is represented as a cell complex of 0- (dots), 1- (lines), 2-cells (filled
areas) and a 3-cell (implicit). (b) The same cube is represented as a generalised
map. Notice that each node of every simplex still represents a cell of a different
dimension.
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simplices that have each node at a cell of
different dimension, all of which are inci-
dent to each other. If the input is in the
form of an incidence graph containing all
the cells (of every dimension) as nodes, and
the incidence relationships from each 𝑖-cell
to the (𝑖−1)-cells on its boundary as directed
edges, each possible path from the highest-
dimensional cells in the graph to the 0-cells
yields one such simplex.

A generalisedmap is based on storing these
abstract simplices, which are known as
darts, together with the adjacency relation-
ships between, which are known as invo-
lutions and denoted as 𝛼. Since a sim-
plex is necessarily convex, a dart in an 𝑛-
dimensional generalised map can be repre-
sented as an (𝑛+1)-tuple (𝑐􏷟, 𝑐􏷠, … , 𝑐𝑛)where
𝑐𝑖 is a node that represents an 𝑖-dimensional
cell. As an 𝑛-simplex in an 𝑛-dimensional
simplicial complex has up to 𝑛 + 1 adjacent
𝑛-simplices, a dart can also be linked to 𝑛+1
neighbouring darts through a tuple of in-
volutions (𝛼􏷟, 𝛼􏷠, … , 𝛼𝑛). The involution 𝛼𝑖
connects twodarts that represent almost the
same 𝑛-tuple of cells; the only difference be-
tween these tuples is their 𝑖-element, which
corresponds to a different 𝑖-cell.
Note that the node locations correspond-
ing to the 0-cells can use the location of the
vertices (i.e. the 0-th element in the tuple),
but those of the cells of dimension one and
higher are only a combinatorial construct
and are not embedded into any specific lo-
cation in space. This is a notion that lies be-
tweenanabstract simplicial complex, where
none of the nodes have an embedding, and
a geometric simplicial complex, where all
nodes have a specific embedding as points
in space. In Figures 2 and 3 they have been
drawn at the centroid of the cells they repre-
sent, but such a simple graphical represen-
tation is not always possible—in some (con-
cave) polytopes it could lead to some sim-
plices being drawn (partially) outside the
cell. However, note also that unlike in a ge-
ometric 𝑛D triangulation [Shewchuk, 1998,
2000], in a generalised map constraints are
not needed tomake the decomposition con-
form to the shape of the object. In other
words, generalised maps bring the strong
algebraic properties of a geometric simpli-
cial complex without the need to perform

any geometric operations to triangulate the
cells. While not all operations can be per-
formed on the simplicial complex implicit
in a generalised map, many can still be per-
formed, includingmost constructionmeth-
ods and the computation of areas and vol-
umes.

The darts and involutions represent the
combinatorial structure of a generalised
map. However, in order to represent the
geometry and other characteristics of the
model, additional embedding structures are
needed. Each of these structures stores the
information of one cell of a certain dimen-
sion, so that an 𝑖-embedding contains the
necessary information of an 𝑖-cell. Since
only linear geometries are required, only
the 0- (point) embeddings are strictly nec-
essary, which store the coordinates of a ver-
tex. Nonetheless, it is practical to allow
for higher-dimensional embedding struc-
tures, since these can be used to store the
attributes of a specific higher-dimensional
cell—as would be expected in a GIS applica-
tion.

3 Extruding an
(𝑛 − 1)-dimensional space
partition to an
𝑛-dimensional cell complex

We consider here the extension of extru-
sion as used in GIS—from a planar parti-
tion of 2D polygons to a set of 3D prisms—
to higher dimensions. This operation thus
‘lifts’ an (𝑛 − 1)-dimensional space parti-
tion, to an 𝑛-dimensional cell complex by
assigning one or more intervals to each
(𝑛 − 1)-cell, i.e. a subset of 1D Euclidean
space1, along which this cell is defined. For
instance, a building footprint can be ex-
truded by an interval (0, ℎ𝑒𝑖𝑔ℎ𝑡), or a build-
ing can be extruded along the time intervals
(1700, 1950) ∪ (2010,∞). Note that this con-
trasts with the use of the term ‘extrusion’
in other fields. For instance, in geometric
1This is equivalent to an edge in Lienhardt et al.
[2004] or a 1-dimensional polyhedron in Ferrucci
[1993].
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modelling, extrusion is a well-known oper-
ation inwhich all of the objects in themodel
are ‘dragged’ along a predefined path given
by a curve, more akin to an actual (physical)
extrusion process, but whose output topol-
ogy can be computed without any geomet-
ric computations.

Our dimension-independent extrusion al-
gorithm requires two input arguments:
an (𝑛 − 1)-dimensional space partition of
(𝑛 − 1)-polytopes embedded into (𝑛 − 1)-
dimensional space, stored as an (𝑛 − 1)-
dimensional generalisedmap𝑀; and amap
of extrusion intervals 𝜌 that links each (𝑛 −
1)-cell 𝑐 in𝑀 to a set 𝑅 of 1-dimensional in-
tervals, where every interval 𝑟 in 𝑅 is repre-
sented as a pair of values (𝑟􏸌􏸈􏸍, 𝑟􏸌􏸀􏸗) where
𝑐 is extruded along the 𝑛-th dimension. The
intervals in 𝜌 for the cells of lower dimen-
sion do not need to be given, since they
can be computed by the algorithm based on
their incidence relationships to the (𝑛 − 1)-
cells. Note that, as Figure 4 shows, multi-
ple intervals for the same cell are possible.
There are two cases in which this can hap-
pen. For an (𝑛 − 1)-dimensional cell, mul-
tiple intervals may be explicitly provided
in the input (e.g. if the input complex rep-
resents a set of buildings, and the build-
ings should be extruded along the time di-
mension, there could be a building that ex-
isted in two separate periods of time). For
a lower-dimensional cell, multiple extru-
sion intervals may be passed to this cell
from several adjacent higher-dimensional
cells. This is a continuation of our pre-
vious work, which only considered a sin-
gle interval for all objects. Its result is an
𝑛-dimensional generalised map 𝑀′ repre-
senting a 𝑛-dimensional cell complex con-
taining a set of prismatic 𝑛-polytopes, the
𝑛-dimensional analogue of a set of prisms,
which also do not intersect geometrically.
The output map 𝑀′ creates entirely new
structures, i.e. it does not reuse the darts or
embeddings of𝑀, since the (𝑛−1)-simplices
in𝑀 are similar but not identical to the 𝑛-
simplices in the base of𝑀′.

As Figures 5 and 6 show, the cells in the
new 𝑛-dimensional cell complex in𝑀′ have
a direct relation to and can be expressed in
terms of the (𝑛 − 1)-cells in𝑀 and their ex-
trusion intervals in 𝜌. This property is used

in order to define the cells of the output cell
complex, which are equivalent to the em-
beddings in𝑀′. These consist of:

• ‘Base’ and ‘top’ (𝑛 − 1)-cells (i.e. faces),
which are constructed from every (𝑛 −
1)-cell 𝑐 in 𝑀 at the 𝑟􏸌􏸈􏸍 and 𝑟􏸌􏸀􏸗 end
points of every interval in 𝜌(𝑐).

• A series of prismatic faces linking cor-
responding (𝑛 − 2)-cells (i.e. ridges) 𝑐 of
the abovementioned 𝑟􏸌􏸈􏸍 and 𝑟􏸌􏸀􏸗 faces
for every interval, such that every one
of these faces corresponds to the extru-
sion of the ridge along an interval in
𝜌(𝑐).

For the combinatorial structure, our algo-
rithm takes advantage of the fact that the
darts in the generalised map 𝑀 can be
extruded largely independently based on
querying the combinatorial structure of 𝑀
and simple 1D geometric queries along the
𝑛-th dimension. Intuitively, the extrusion
of a single (𝑛 − 1)-simplex in𝑀 consists of
layers of 𝑛-simplices that are ‘stacked’2 so as
to form one part of the prism-shaped out-
put. Each new layer corresponds to a new 𝑛-
simplex that shares all but one of the nodes
with the 𝑛-simplex below it.
The extrusion algorithm is thus divided
into three parts that are performed sequen-
tially and explained in detail in the follow-
ing sections: (1) propagating the input in-
tervals to all the cells in the input cell com-
plex, (2) generating the new embeddings
(i.e. the attributes and geometry) for each
input cell, and (3) generating the combina-
torial structure (i.e. the darts and involu-
tions) and linking each dart to its correct
embeddings for every dimension.

3.1 Propagating the extrusion
intervals to all cells

While the extrusion intervals are defined
only for the (𝑛 − 1)-cells, the cells of every
dimension need to be extruded, and there-
fore the extrusion intervals need to be prop-
agated from the (𝑛 − 1)-cells to the cells
2Not in the sense of a stack as a data structure, but as a
pile of simplices arranged vertically along the 𝑛-th
dimension.
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Figure 4: All the cells are given extrusion intervals based on the intervals for the (𝑛 − 1)-
cells. Note how it is possible to havemultiple intervals per cell both in the input,
e.g. the right square is extruded along two intervals, and in the output, e.g. the
two edges 𝑣(􏷟,􏷠), 𝑣(􏷠.􏷤,􏷡) and 𝑣(􏷡,􏷢) are the result of the extrusion of a single vertex 𝑣
whose extrusion interval was not given as input.
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Figure 5: Extruding the embeddings of an 𝑖-cell 𝑐 along a single interval 𝑟 = (𝑎, 𝑏) such that
𝑎, 𝑏 ∈ ℝ, 𝑎 < 𝑏, generates the embeddings of three cells: two 𝑖-cells 𝑐𝑎 and 𝑐𝑏, and
an (𝑖 + 1)-cell 𝑐𝑟 = 𝑐(𝑎,𝑏) lying between them.
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Figure 6: Extruding a 2D cell complex using an interval that is defined per 2-cell. The facet
𝑓􏷟 is to be extruded along the interval 𝑟􏷟 = (𝑎, 𝑐) and 𝑓􏷠 along 𝑟􏷠 = (𝑎, 𝑏). Note
how the vertices and edges incident to multiple facets in the input are extruded
along the intervals of these facets, generating a series of cells connecting the end
points of their intervals.

of lower dimension. This is done recur-
sively in decreasing dimension, using the
incidence relationships between every 𝑖-cell
and the (𝑖 − 1)-cells on its boundary to pass
the intervals of the former to the latter, us-
ing the same map of extrusion intervals 𝜌.
Because incidence is a transitive relation,
an interval attached to a particular lower di-
mensional cell thus indicates that it is inci-
dent to an (𝑛 − 1)-cell that will be extruded
along that interval.

As (𝑖 − 1)-cells can be on the boundary of
multiple 𝑖-cells, several intersecting inter-
vals can be passed to the map of extru-
sion intervals of a lower dimensional cell.
Since we want to generate non-intersecting
cells, these need to be split into a set of
non-intersecting intervals as shown in Fig-
ure 7, each of which will represent the inci-
dence of this cell to an equal set of higher-
dimensional cells along the entirety of the
interval. A sketch of a simple process to
do this is shown in Algorithm 1, which as-
sumes that the sets of intervals are kept
sorted. Note that this is essentially a one
dimensional analogue to other operations
used in GIS, e.g. time-composites in spatio-
temporal modelling [Langran and Chris-
man, 1988].

Considering what happens when a single

a b c d
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3

{a, b, d}
{a, b}
{b, c}
{b, c, d}

0

1

2

3

Figure 7: The extrusion intervals from the
cells incident to the middle vertex
of Figure 4 in (a), are passed on to
it, resulting in a new set of non-
intersecting intervals in (b).

new interval is passed to a cell in the incre-
mental process shown in Algorithm 1, the
total number of intervals of that cell can in-
crease from 𝑘 to 2𝑘 + 1 in the worst case,
which happenswhen the new interval starts
before and ends after all other intervals and
these are all not contiguous (i.e. they are
all separated by empty intervals). However,
when taking into account 𝑟 intervals passed
to a cell, the number of intervals can only
increase to 2𝑟 − 1. As each extrusion inter-
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Algorithm 1: PropagateRanges

Input : generalised map M of the input cell complex,

map ⇢ with the extrusion intervals of the (n� 1)-cells in M

Output: map ⇢ with the extrusion intervals of all the cells in M

1 for i n� 1 to 0 do
2 foreach i-cell c in M do
3 foreach (i� 1)-cell b on the boundary of c do
4 foreach extrusion interval r = (r

min

, r

max

) 2 ⇢(c) do
5 Find the intervals R

0 ✓ ⇢(b) whose interiors intersect with r

6 if r

min

is in the interior of an interval r

0
= (r

0
min

, r

0
max

) 2 R

0 then
7 Remove r

0
from ⇢(b)

8 Add (r

0
min

, r

min

) to ⇢(b)

9 Add (r

min

, r

0
max

) to ⇢(b)

10 if r

min

is outside all intervals in R

0 then
11 Add a new interval in R

0
from r

min

to the minimum of the lowest

interval in R

0

12 if r

max

is in the interior of an interval r

0
= (r

0
min

, r

0
max

) 2 R

0 then
13 Remove r

0
from ⇢(b)

14 Add (r

0
min

, r

max

) to ⇢(b)

15 Add (r

max

, r

0
max

) to ⇢(b)

16 if r

max

is outside all intervals in R

0 then
17 Add a new interval in R

0
from the maximum of the highest interval

in R

0
to r

max

18 foreach empty interval (r

0
min

, r

0
max

) between consecutive intervals in R

0

do
19 Add (r

0
min

, r

0
max

) to ⇢(b)

1

val is bounded by two values, 𝑟 intervals lead
to at most 2𝑟 boundary values and thus the
number of intervals cannot be higher than
2𝑟 − 1.
If a new interval can be added to a cell in
𝑂(log 𝑟) time (e.g. by maintaining an aug-
mented red-black tree which stores the end-
points of the intervals), then the total time
to construct the ordered set of all inter-
vals for a cell 𝑐 is 𝑂(𝑟 log 𝑟), where 𝑟 is the
number of intervals that are passed onto
𝑐. The overall computational complexity of
this step depends on the incidence relation-
ships between the cells in the complex.

3.2 Generating the new
embeddings

When a single 𝑖-cell is extruded along a
single interval 𝑟 = (𝑟􏸌􏸈􏸍, 𝑟􏸌􏸀􏸗), three new
cells are generated: two 𝑖-cells that corre-
spond to the end points of the interval 𝑟􏸌􏸈􏸍

and 𝑟􏸌􏸀􏸗, and a prismatic (𝑖 + 1)-cell lying
between them. Therefore, extruding an 𝑖-
dimensional embedding (𝑖-embedding) re-
sults in two 𝑖-embeddings and one (𝑖 + 1)-
embedding. In the case of linear geome-
tries, this means that in order to generate
the geometry of a model, extruding a point
entails the creationof twoadditional points,
one with an appended 𝑟􏸌􏸈􏸍 coordinate, and
one with an 𝑟􏸌􏸀􏸗 one.
With multiple intervals, this same proce-
dure can then be used by applying it per em-
bedding and per interval. Notice that since
some embeddings are shared by multiple
intervals (when the minimum of an inter-
val is equal to the maximum of another),
the generation of some of these can be omit-
ted.

The extrusion algorithm for the embed-
dings receives the set of input embed-
dings 𝐸 and the map of extruded intervals
𝜌 which, being the output of Propagat-
eRanges (Algorithm 1), now contains a set

10



of non-intersecting intervals for the cells of
every dimension, and it returns an entirely
new set of extruded embeddings 𝐸′, as well
a function 𝑒𝑥(𝑒, 𝑣) → 𝐸′ linking an input
embedding 𝑒 ∈ 𝐸 and an interval or end
point of an interval 𝑣 to an extruded (out-
put) embedding 𝑒′ ∈ 𝐸′. For instance, given
an interval 𝑟 = (𝑟􏸌􏸈􏸍, 𝑟􏸌􏸀􏸗) ∈ 𝜌(𝑒), 𝑣 can
be 𝑟, 𝑟􏸌􏸈􏸍 or 𝑟􏸌􏸀􏸗, reflecting the fact that
extruding an 𝑖-embedding results in two 𝑖-
embeddings (respectively for 𝑟􏸌􏸈􏸍 and 𝑟􏸌􏸀􏸗)
and one (𝑖 + 1)-embedding (for 𝑟).
The general procedure to generate the new
embeddings and their relation to the old
embeddings and the intervals is shown in
Algorithm 2. Note that a practical imple-
mentation of this algorithmhas to deal with
the desired attributes for each of the ex-
truded cells rather than simply making a
copy of the input ones (lines 4, 7 and 10)
and appending one more coordinate to the
0-embeddings (lines 6 and 12).

Since this part of the algorithm iterates
through all the cells in the input cell com-
plex, and it generates at most three new em-
beddings per interval for each cell, the com-
putational complexity can be𝑂(𝑟𝑛) per cell,
as long as themap 𝑒𝑥 can be queried and the
new embeddings can be created in time that
is linear on the dimension (which in prac-
tice is a relatively small constant).

3.3 Generating the new
combinatorial structure and
linking it to its correct
embeddings

The extrusion of a single dart in the
input map 𝑀 along a single inter-
val 𝑟 = (𝑟􏸌􏸈􏸍, 𝑟􏸌􏸀􏸗) generates a se-
ries of connected darts in 𝑀′ con-
nected by a sequence of involutions
𝛼𝑛−􏷠, 𝛼𝑛−􏷡, … , 𝛼􏷠, 𝛼􏷟, 𝛼􏷠, … , 𝛼𝑛−􏷡, 𝛼𝑛−􏷠, as
shown in Figure 8 for the cell complex from
Figure 5. Intuitively, these are equivalent
to stacked 𝑛-simplices that together form a
prism3. Since two darts connected by an 𝛼𝑖
involution share all but the 𝑖-th node, and
3This is always true combinatorially, but it might not
be true geometrically if the (𝑛 − 􏷠)-simplex is not
embedded so as to lie in the interior of the cell.

(a) (b)

Figure 8: The darts in the cell complexes in
Figure 5. Note that one can ob-
tain a dart’s representation as a
simplex by considering additional
nodes at its corresponding facet
and one in the interior of the
volume.

the 𝑖-th node in a generalised map means
that a dart belongs to a certain 𝑖-cell, this
series of darts represents a succession of
simplices that progressively change from
the cells at the ‘base’ (𝑟􏸌􏸈􏸍) to those at
the ‘side’ ((𝑟􏸌􏸈􏸍, 𝑟􏸌􏸀􏸗)) to those at the ‘top’
(𝑟􏸌􏸀􏸗). As the pattern that is followed in
each stack of darts in 𝑀′ is the same for
all the darts in 𝑀, assuming that their
extrusion intervals are the same, they can
also be expressed in terms of the dart in𝑀
being extruded and their position in the
stack. We will therefore refer to the darts
at a certain level in the stack as a layer, and
use various functions that map an input
dart in𝑀 and a layer to the equivalent dart
at a specific layer in𝑀′.

An intuitive justification for this is that if
we consider the darts in the base and top
cells in the extrusion of a cell 𝑓 along a sin-
gle interval 𝑟 = (𝑟􏸌􏸈􏸍, 𝑟􏸌􏸀􏸗), these belong
to different cells of every dimension except
for their 𝑛-cell (which is 𝑒𝑥(𝑓, 𝑟)). For ev-
ery dimension 𝑖 < 𝑛 the base darts belong
to the extruded 𝑒𝑥(𝑒𝑖, 𝑟􏸌􏸈􏸍) cells, while the
top darts belong to the extruded 𝑒𝑥(𝑒𝑖, 𝑟􏸌􏸀􏸗)
cells. The darts of the faces on the sides,
which connect corresponding ridges of the
base and top, belong instead to a mixture
of cells in 𝑒𝑥(𝑒𝑖, 𝑟􏸌􏸈􏸍), 𝑒𝑥(𝑒𝑖, 𝑟􏸌􏸀􏸗) and 𝑒𝑥(𝑒𝑖, 𝑟).
The darts closer to the base face belong to
cells in 𝑒𝑥(𝑒𝑖, 𝑟􏸌􏸈􏸍) and 𝑒𝑥(𝑒𝑖, 𝑟), while those
closer to the top belong to cells in 𝑒𝑥(𝑒𝑖, 𝑟􏸌􏸀􏸗)
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Algorithm 2: EmbeddingsExtrusion

Input : set E of the embeddings in the input cell complex,

map ⇢ of the extrusion intervals for all the cells of the input cell complex

Output: set E

0
of the embeddings for the output cell complex,

map ex that links an input embedding to its extruded output embeddings

1 foreach e 2 E do
2 foreach r = (r

min

, r

max

) 2 ⇢(e) do
3 if ex(e, r

min

) = ; then
4 ex(e, r

min

) e

5 if e.dimension = 0 then
6 Append r

min

to the coordinates of ex(e, r

min

)

7 ex(e, r) e

8 ex(e, r).dimension ex(e, r).dimension + 1

9 if ex(e, r

max

) = ; then
10 ex(e, r

max

) e

11 if e.dimension = 0 then
12 Append r

max

to the coordinates of ex(e, r

max

)

13 Put ex(e, r

min

), ex(e, r) and ex(e, r

max

) in E

0

Algorithm 3: GMapExtrusion

Input : generalised map M of the input cell complex,

set E of the embeddings in the input cell complex,

set E

0
of the embeddings for the output cell complex,

map ⇢ of the extrusion intervals for all the cells of the input cell complex,

map ex that links an input embedding to its extruded output embeddings

Output: generalised map M

0
of the output cell complex

1 Compute an ordered set of non-intersecting intervals rall using all the intervals for all cells

in ⇢

2 Consider a sweep plane that passes through all the intervals rall in increasing order along

dimension n

3 if the sweep plane passes by the beginning of an interval r = (r

min

, r

max

) 2 rall then
4 for i n to 0 do
5 GMapLayerBegin(M,M

0
, i, last, E,E

0
, ⇢, r, ex)

6 if the sweep plane passes by the end of an interval r = (r

min

, r

max

) 2 rall then
7 for i 0 to n do
8 GMapLayerEnd(M,M

0
, i, last, E,E

0
, ⇢, r, ex)

2

and 𝑒𝑥(𝑒𝑖, 𝑟). This is natural when we con-
sider that 𝛼𝑖-linked darts differ only in one
of their cells (i.e. the 𝑖-cells), all other cells
being the same for both darts. This means
that there must be a natural progression of
layers of darts: starting from the base, they
change their cells onebyone from 𝑒𝑥(𝑒, 𝑟􏸌􏸈􏸍)
to 𝑒𝑥(𝑒, 𝑟) from the highest dimension down,
and then change their cells one by one from
𝑒𝑥(𝑒, 𝑟) to 𝑒𝑥(𝑒, 𝑟􏸌􏸀􏸗) from the lowest dimen-
sion up until reaching the top.

The algorithm to generate the extruded
combinatorial structure therefore works by
generating layers of darts patterned on
those in the input cell complex, starting
from those for the base face, moving on to
the 2𝑛 − 2 layers for the side faces, and fin-
ishing with the top face. The output darts
and the involutions between them are ex-
pressed in terms of the input generalised
map 𝑀. For this, we use a function 𝑐𝑢𝑟 ∶
𝑀 → 𝑀′ that maps the darts of 𝑀 to the
current layer of the output map 𝑀′. Note
that this means that we only need to keep
track of (and maintain in memory) two lay-
ers of darts at a time, one in𝑀 and one in
𝑀′, each of which has at most the number
of darts in the input map. This bounds the
memory usage of this part of the algorithm,
which is therefore on the order of𝑂(𝑑), with
𝑑 thenumber of darts in the input space par-
tition.

As shown by Ferrucci [1993], when mul-
tiple intervals are involved this procedure
can simply be repeated for all intervals, as-
suming that these have all been subdivided
so as not to intersect one another. However,
it is possible to greatly reduce thenumber of
darts generated by skipping the creation of
some of the darts. This is possible because
we have propagated the extrusion intervals
to each cell of every dimension indepen-
dently. Based on our algorithm, the lower-
dimensional cells in the complex have re-
ceived all the intervals from their incident
higher-dimensional cells so that the inter-
vals in the lower-dimensional cells contain
all the endpoints of the intervals of their
incidences. However, the same is not true
in the opposite direction: the intervals for
the higher-dimensional cells have not been
subdivided so as to exactly match the ones
of their incident lower-dimensional cells.
Nevertheless, as Figure 9 shows, even when
an extrusion interval that would be used by
the pattern described above is not in a cell,
it is possible to map it to a bigger interval
that contains it. If we consider the darts that
would be generated using the above men-
tioned approach for all thenon-intersecting
intervals in the cell complex, but mapping
the extrusion intervals to bigger contain-
ing ones when the smaller ones do not ex-
ist, this can result in many darts that are
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(a)

b

a

c

(b)

Figure 9: The darts in the cell complexes in Figure 6. Note that the darts of the right cube
in (b), when viewed as individual stacks, are similar to the ones in Figure 8. The
darts of the left box are however different: those on the left all involve an extru-
sion along the interval (𝑎, 𝑐) due to the fact that there is no vertex, edge or facet
extruded to 𝑏. On the other hand, those in the right do have a vertex and an edge
at 𝑏, but not a facet and still belong to the same volume.

equivalent (i.e. they have nodes at the same
cells), and thus can be skipped during the
process.

Therefore, in order to generate the darts for
all intervals of all cells, we repeat this proce-
dure for all the intervals in 𝜌, after making
them non-intersecting using the same pro-
cedure delineated in Section 3.1, and skip-
ping all the darts that would be equivalent
to those that have already been created. This
is done using a sweep-plane-like algorithm
that generates up to 𝑛 layers of darts at the
events at the beginning or end of an in-
terval, creating darts only when the sweep-
plane4 passes by the beginning or end of
their extrusion intervals (i.e. not while it is
in their interior). The darts are linked to
their appropriate embedding according to
the same pattern. The complete procedure
to generate the combinatorial structure is
presented in Algorithm 3, which uses the
Algorithm 4 when the sweep plane passes
by the beginning of an interval and Algo-
rithm 5 by the end of one. If we denote
an input dart as 𝑑, we will denote its cor-
responding dart in the current layer of the
output as 𝑐𝑢𝑟(𝑑), the dart linked to 𝑑 by an 𝑖-
4More precisely, the sweeping shape used in extrud-
ing a (𝑛 − 􏷠)-dimensional space partition is a shape
that is unbounded along 𝑛 − 􏷠 dimensions in 𝑛D
space, e.g. a line inℝ􏷫 or a plane inℝ􏷬.

involution as 𝛼𝑖(𝑑), and the 𝑖-embedding of
𝑑 as 𝑒𝑖(𝑑).

For the latter two algorithms, lines 1–8 show
the generation of a new layer of darts and
its linking to the previous one, lines 12–
17 show how the darts within the layer are
linked based on the pattern of the input
map, and lines 18–21 show how the darts
within the layer are related to their correct
embeddings, which are also patterned after
the embeddings in the input.

Notice that we are generating layers of darts
in a grid-like fashion, each layer contain-
ing at most the number of darts in the
input map, and calling GMapLayerBegin
and GMapLayerEnd to create at most 2𝑛
layers per non-intersecting interval. The
time complexity of computing the set of
non-intersecting intervals in Algorithm 1
is 𝑂(𝑟 log 𝑟) as before, while the number
of darts in the output map is bounded by
𝑂(𝑛𝑑𝑟), where 𝑛 is the extrusion dimension,
𝑑 is the total number of darts in the input
map and 𝑟 is the total number of intervals
in the input.
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Algorithm 2: EmbeddingsExtrusion

Input : set E of the embeddings in the input cell complex,

map ⇢ of the extrusion intervals for all the cells of the input cell complex

Output: set E

0
of the embeddings for the output cell complex,

map ex that links an input embedding to its extruded output embeddings

1 foreach e 2 E do
2 foreach r = (r

min

, r

max

) 2 ⇢(e) do
3 if ex(e, r

min

) = ; then
4 ex(e, r

min

) e

5 if e.dimension = 0 then
6 Append r

min

to the coordinates of ex(e, r

min

)

7 ex(e, r) e

8 ex(e, r).dimension ex(e, r).dimension + 1

9 if ex(e, r

max

) = ; then
10 ex(e, r

max

) e

11 if e.dimension = 0 then
12 Append r

max

to the coordinates of ex(e, r

max

)

13 Put ex(e, r

min

), ex(e, r) and ex(e, r

max

) in E

0

Algorithm 3: GMapExtrusion

Input : generalised map M of the input cell complex,

set E of the embeddings in the input cell complex,

set E

0
of the embeddings for the output cell complex,

map ⇢ of the extrusion intervals for all the cells of the input cell complex,

map ex that links an input embedding to its extruded output embeddings

Output: generalised map M

0
of the output cell complex

1 Compute an ordered set of non-intersecting intervals rall using all the intervals for all cells

in ⇢

2 Consider a sweep plane that passes through all the intervals rall in increasing order along

dimension n

3 if the sweep plane passes by the beginning of an interval r = (r

min

, r

max

) 2 rall then
4 for i n to 0 do
5 GMapLayerBegin(M,M

0
, i, E,E

0
, ⇢, r, ex)

6 if the sweep plane passes by the end of an interval r = (r

min

, r

max

) 2 rall then
7 for i 0 to n do
8 GMapLayerEnd(M,M

0
, i, E,E

0
, ⇢, r, ex)

2

Algorithm 4: GMapLayerBegin

Input : generalised map M of the input cell complex,

generalised map M

0
of the output cell complex,

dimension i of the current layer,

set E of the embeddings in the input cell complex,

set E

0
of the embeddings of the output cell complex,

map ⇢ of the extrusion intervals of all the cells of the input cell complex,

current interval r,

map ex that links an input embedding to its extruded output embeddings

Output: generalised map M

0
of the output cell complex

1 foreach dart d 2M do
2 if 9r0 2 ⇢(en�1

(d)) | r ✓ r

0 then
3 if 9r00 2 ⇢(ei(d)) | r00

min

= r

min

then
4 last cur(d)

5 cur(d) new dart

6 Put cur(d) in M

0

7 ↵i+1

(cur(d)) last

8 ↵i+1

(last) cur(d)

9 foreach dart d 2M do
10 if 9r0 2 ⇢(en�1

(d)) | r ✓ r

0 then
11 if 9r00 2 ⇢(ei(d)) | r00

min

= r

min

then
12 for inv  0 to i� 1 do
13 ↵

0
inv(cur(d)) cur(↵inv(d))

14 ↵

0
inv(cur(↵inv(d))) cur(d)

15 for inv  i + 2 to n do
16 ↵

0
inv(cur(d)) cur(↵inv�1

(d))

17 ↵

0
inv(cur(↵inv�1

(d))) cur(d)

18 for emb 0 to i do
19 e

0
emb(cur(d)) ex(eemb(d), rmin

)

20 for emb i + 1 to n do
21 e

0
emb(cur(d)) ex(eemb�1

(d), r)

3
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Algorithm 5: GMapLayerEnd

Input : generalised map M of the input cell complex,

generalised map M

0
of the output cell complex,

dimension i of the current layer,

set E of the embeddings in the input cell complex,

set E

0
of the embeddings of the output cell complex,

map ⇢ of the extrusion intervals of all the cells of the input cell complex,

current interval r,

map ex that links an input embedding to its extruded output embeddings

Output: generalised map M

0
of the output cell complex

1 foreach dart d 2M do
2 if 9r0 2 ⇢(en�1

(d)) | r ✓ r

0 then
3 if 9r00 2 ⇢(ei(d)) | r00

max

= r

max

then
4 last cur(d)

5 cur(d) new dart

6 Put cur(d) in M

0

7 ↵i(cur(d)) last

8 ↵i(last) cur(d)

9 foreach dart d 2M do
10 if 9r0 2 ⇢(en�1

(d)) | r ✓ r

0 then
11 if 9r00 2 ⇢(ei(d)) | r00

max

= r

max

then
12 for inv  0 to i� 1 do
13 ↵

0
inv(cur(d)) cur(↵inv(d))

14 ↵

0
inv(cur(↵inv(d))) cur(d)

15 for inv  i + 2 to n do
16 ↵

0
inv(cur(d)) cur(↵inv�1

(d))

17 ↵

0
inv(cur(↵inv�1

(d))) cur(d)

18 for emb 0 to i do
19 e

0
emb(cur(d)) ex(eemb(d), rmax

)

20 for emb i + 1 to n do
21 e

0
emb(cur(d)) ex(eemb�1

(d), r)

4

4 Implementation

We have implemented our extrusion algo-
rithm in C++11 and made it available un-
der the open source MIT license at https:
//github.com/kenohori/lcc-tools. It re-
quires and builds upon the CGAL packages
Combinatorial Maps and Linear Cell Com-
plex, among others. The first package pro-
vides data structures and algorithms to store
and to efficiently iterate over the darts of
a combinatorial map, and the second links
the 0-embeddings to other CGAL types in
order to store the geometry of a model. A
combinatorial map is a structure very sim-
ilar to a generalised map, but a combina-
torial map dart is equivalent to two gener-
alised map darts. The reader is referred to
Damiand and Lienhardt [2014] for the de-

tails of the differences between the two.

Both these packages and our implemen-
tation make heavy use of the traits pro-
gramming technique [Myers, 1995] and re-
cursive templates (TMP or template meta-
programming) in order to produce efficient
code. The dimensions of the map and the
embedding space, the presence and types
of attributes for each dimension and most
other arguments are passed as template pa-
rameters. This entails that the actual struc-
tures and the algorithms used are gener-
ated at compilation time, and thus are di-
mension independent (the dimension is a
template parameter), efficient (no variable-
length structures are used) and fast (many
iterations can be done in constant time).
Since the recursive code is unrolled during
compilation, its execution is also not lim-
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// Abstracts a map of cell->ranges for a particular dimension
template <class LCC, unsigned int dimension>
struct Extrusion_ranges_map_of_dimension {
public:

typedef std::map<typename LCC::template Attribute_const_handle<dimension>::type,
Extrusion_ranges<LCC> > type;

type ranges_map;
};

// Abstracts a tuple of maps of cell->ranges, each element containing the map of a particular dimension
template <class LCC, unsigned int dimension = LCC::dimension, class Result = CGAL::cpp11::tuple<> >
struct Extrusion_ranges_tuple_per_dimension_up_to;

template <class LCC, class ... Result>
struct Extrusion_ranges_tuple_per_dimension_up_to<LCC, 0, CGAL::cpp11::tuple<Result ...> > {

typedef CGAL::cpp11::tuple<Extrusion_ranges_map_of_dimension<LCC, 0>, Result ...> type;
};

template <class LCC, unsigned int dimension, class ... Result>
struct Extrusion_ranges_tuple_per_dimension_up_to<LCC, dimension, CGAL::cpp11::tuple<Result ...> > {

typedef typename Extrusion_ranges_tuple_per_dimension_up_to<LCC,dimension - 1,
CGAL::cpp11::tuple<Extrusion_ranges_map_of_dimension<LCC, dimension>, Result ...> >::type type;

};

// Abstracts a tuple of maps of cell->ranges, each element containing the map of a particular dimension
template <class LCC_>
struct Extrusion_ranges_tuple_per_dimension {
public:

typedef LCC_ LCC;
typedef typename Extrusion_ranges_tuple_per_dimension_up_to<LCC>::type type;
type ranges;

};

Figure 10: Recursive templates canbeused to generate dimension independent code. Note
that std::map is used for simplicity, but this information could also be encoded
in the embeddings of the linear cell complex directly.

ited by the size of the stack. A small ex-
cerpt of this type of code, used to store the
map of extrusion intervals 𝜌, is shown in
Figure 10.

One shortcoming of our current prototype
implementation is that it uses the C++ type
std::map in order to link cells to their ex-
trusion intervals, which offers only loga-
rithmic time access rather than the con-
stant time that would be possible by inte-
grating this into the templated structures.
This would involve storing the set of extru-
sion intervals of a cell directly in the data
structure that is used for its attributes.

In order to input and output data, as well as
to visualise our results, we use theOGRSim-
ple Feature Library [GDAL, 2014] to read
standard GIS data formats, and we wrote a
small Wavefront OBJ [Reddy, 1994] writer
that is capable of outputting the faces or
darts (as triangles) in 2D and 3D linear cell
complexes.

5 Experiments with
real-world datasets

We have tested our algorithms by extrud-
ing various 2D datasets to higher dimen-
sions. For this, we have made a few tests
using several free and open datasets in the
area of Delft, the Netherlands, matching
the geometries in some with the attributes
present in others so as to obtain new at-
tributes and appropriate extrusion inter-
vals for each geometry. The tests were per-
formed on a Mac OS X computer with a
2.7 GHz Intel Core 2 Duo processor and 12
GB of RAM. The main characteristics of the
datasets tested are shown in Table 1.

Note however that since we use an std::map
to access the extrusion intervals of each
cell, the running time of our code is dom-
inated by the many times this query is
performed (which is several times per in-
terval and per cell). The times provided
in Table 1 are therefore not indicative of
the theoretical complexity of our algorithm,
which is instead dominated by the genera-
tion and linking of the darts in the extruded
dataset (Section 3.3). The generation of the
non-intersecting intervals for all cells (Sec-
tion 3.1) and the generation of the extruded
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Table 1: Characteristics of the tested datasets. The cell counts represent the total number
of cells for all dimensions.

Input Output

Test darts cells darts cells time

One GBKN building to 5D 14 29 80 640 783 3s
370 buildings to 4D 3 268 6 065 123 184 42 552 12s
TOP10NL to 3D 30 098 48 562 181 640 148 102 2m39s

embeddings (Section 3.2) always ran in un-
der a second, even for very large datasets.

One test involved, the Aula Congress Cen-
tre in Delft, a building represented by a sin-
gle polygon with 14 vertices extracted from
the GBKN dataset [GBKN, 2014], as shown
in Figure 11. It was extruded from 2D up to
5D using some manually added attributes:
its height, construction date and a specified
level of detail for the model. The end result
was a generalisedmapwith80640darts, 112
vertices, 280 edges, 260 facets, 110 volumes,
20 4-cells and 1 5-cell. It was generated in 3
seconds using 15 MB of RAM.

Another test, shown in 2D and 3D in Fig-
ure 12, involved a previously generated
dataset of the Delft University of Technol-
ogy (TU Delft) campus (see [Ledoux and
Meijers, 2011]), consisting of 2 749 vertices,
2 946 edges, and 370 facets. This dataset,
covering 2.3 km􏷡 with 370 buildings, was
originally built from the GBKN dataset
by manually forming footprint polygons
from the lines in the dataset. Build-
ing heights for each polygon were ob-
tained from the AHN [Het Waterschap-
shuis, 2014] dataset (airborne laser altime-
try), while building dates were obtained
from the BAG [Kadaster, 2014a] dataset.
This dataset, including the added attributes,
is available together with the source code
of the program. It was therefore extruded
from its original 2D representation to 4D
using building heights for the third dimen-
sion and dates for the fourth dimension.
The result was a generalised map with 123
184 darts, 8 613 vertices, 17 919 edges, 12
471 facets, 3 310 volumes and 239 4-cells. It
was generated in 12 seconds using 46MB of
RAM.

Onemore test used 1 836 buildings from the

TOP10NL dataset [Kadaster, 2014b], which
was extruded to 3D using intervals from
building dates also obtained from the BAG
dataset. The result was a generalised map
with 181 640 darts, 46 464 vertices, 71 826
edges, 27 975 facets and 1 837 volumes.

An algorithm was used to verify that the
constructed datasets conform to the defi-
nition of a generalised map5. Additional
tests were made to ensure that all the darts
of an 𝑖-cell correctly point to it in their 𝑖-
embeddings, and to verify that all the darts
of an 𝑛-cell are linked to point embeddings
within the extrusion interval given for the
𝑛-cell, among other tests. The extruded
datasets were also inspected visually in 2D
and 3D by exporting 2-cells as polygons and
verifying that they form a valid cell com-
plex, i.e. that 2-cells intersect only at their
common boundaries, forming 1-cells that
are also in the complex. In 2D and 3D, in-
dividual darts were also exported as trian-
gles to visually verify that they form a valid
generalised map (as shown in Figures 11(b)
and 12(c)).

6 Conclusions and future
work

Extrusion, in the GIS sense, has a natural
extension to arbitrary dimensions, and we
believe that the conceptual simplicity of us-
ing this operationmakes it very suitable for
the generation of certain types of higher-
dimensional data. Our method supports
5i.e. checking that the links between darts correctly
form involutions, and all the darts in the orbit of
an 𝑖-cell are linked to its correct 𝑖-attribute and vice
versa. See Lienhardt [1994] for the exact definition
of what this means.
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(a) (b)

Figure 11: Extruding a dataset of the footprint of the Aula Congress Centre in Delft to 3D.

(a) (b)

(c)

Figure 12: Extruding a dataset of TU Delft to 3D.
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multiple intervals per input object and it is
memory efficient—only three layers of darts
need to be kept in main memory at a time.
It is also relatively fast, with a worst case
complexity of𝑂(𝑛𝑑𝑟) in themain algorithm,
where 𝑛 is the extrusion dimension, 𝑑 is the
total number of darts in the inputmap and 𝑟
is the total number of intervals in the input,
but offers better complexity in practice.

We have implemented it and made our
source code publicly available under a per-
missive license and tested it with publicly
available datasets commonly used in GIS.
Among other applications, it can be used
in order to load existing 2D/3D datasets
into higher dimensionalmodels for𝑛DGIS,
both directly and used as a base for other
operations that modify the extruded out-
put. For instance, an object moving in
time can be modelled by first extruding it
and then shifting the coordinates of one
of its end faces to match their new posi-
tions. Moreover, since this technique can
be applied cell by cell, it can also be com-
bined with other operations, such as build-
ing 𝑛D cell complexes incrementally [Ar-
royo Ohori et al., 2014], where more com-
plex models are required for a subset of the
objects in a model.

While our implementation performs well
enough for typical GIS datasets, it could be
improved upon by integrating the extru-
sion intervals into the embeddings of the
cells. Thiswouldmake it possible to support
much larger datasets andmatch the theoret-
ical complexity of our algorithm. Another
possibility would be implementing our al-
gorithm in a more compact representation
of a simplicial complex, e.g. Boissonnat and
Maria [2012].
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