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Abstract

While error propagation in GIS is a topic that has received a lot of attention, it has not been re-
searched with 3D GIS data. We extend error propagation to 3D city models by using a Monte
Carlo simulation on a use case of annual solar irradiation estimation of building rooftops for as-
sessing the efficiency of installing solar panels. Besides investigating the extension of the theory of
error propagation in GIS from 2D to 3D, this paper presents the following contributions. We (1)
introduce varying XY/Z accuracy levels of the geometry to reflect actual acquisition outcomes;
(2) run experiments on multiple accuracy classes (121 in total); (3) implement an uncertainty
engine for simulating acquisition positional errors to procedurally modelled (synthetic) build-
ings; (4) perform the uncertainty propagation analysis on multiple levels of detail (LODs); and
(5) implement Solar3Dcity—a CityGML compliant software for estimating the solar irradiation
of roofs, which we use in our experiments. The results show that in the case of the city of Delft
in the Netherlands, a 0.3/0.6 m positional uncertainty yields an error of 68 kWh/m2/year (10%)
in solar irradiation estimation. Further, the results indicate that the planar and vertical uncer-
tainty have a different influence on the estimations, and that the results are comparable between
LODs. In the experiments we use procedural models, which implies that analyses are done in
a controlled environment where results can be validated. Our uncertainty propagation method
and the framework are applicable to other 3D GIS operations and/or use cases. We released So-
lar3Dcity as open-source software to support related research efforts in the future.

Keywords: Error propagation; uncertainty; CityGML; 3D GIS; photovoltaic potential

1 Introduction

The acquisition and utilisation of geographic information go together with errors. Error prop-
agation in GIS refers both to the unavoidable erroneous nature of processing and utilising GIS
datasets, and to a field of research that investigates the propagation of errors in the input to a GIS
operation to the errors in its output (Heuvelink, 2005; Lemmens, 2011).

Two common methods to determine the propagation of errors through GIS operations are the
Taylor series method and the Monte Carlo method (Xue et al., 2015). The former is analytical
and establishes mathematical functions that portray the uncertainty propagation, while the latter
is a numerical simulation method. Many GIS analyses are too complex to be solved analytically,
hence the Monte Carlo method is frequently used (Yeh and Li, 2006).

While error propagation is a mature and much studied subject in geoinformation science, re-
search has essentially been limited to 2D situations. The only exception that we know of being a
recent introductory work by Biljecki et al. (2014a). Further, recent work is focused towards raster
data and attribute uncertainty, and research on vector data and positional uncertainty are less
common. Extending the error propagation problem from 2D to 3D is more complex than one
may expect, which motivated us to research this topic in 3D.
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The foundations of error propagation are valid for any dimension, however, in the context of 3D
city models there are several factors to take into account:

(1) Combination of multiple acquisition techniques and accuracy levels. In contrast to 2D data,
a significant number of 3D city models is produced with a combination of multiple acqui-
sition techniques, such as photogrammetry (Suveg and Vosselman, 2004), LiDAR (Vossel-
man and Dijkman, 2001; Tomljenovic et al., 2015), extrusion from 2D data (Ledoux and
Meijers, 2011), and as a generalised conversion from Building Information Models (BIM)
(Isikdag and Zlatanova, 2009; Donkers et al., 2015). Since a model may be constructed
using multiple techniques that each have different accuracy levels, this results in different
positional accuracy for the x, y coordinates on the one hand, and the z coordinate on the
other hand.

(2) Geometry and measurements. The construction of 3D city models generally involves many
more measurements than the 2D acquisition of the same real-world feature (e.g. height of
the eaves of a roof, and position of a window on a wall).

(3) Level of detail. The models may be derived in multiple forms distinguished by levels of
detail (LODs), different degrees of the abstraction from the real-world and the complexity
of the spatio-semantic representation (Biljecki et al., 2014c). The LODconcept usually does
not cover the spatial accuracy, and when it does impose requirements, this is in practice
frequently overlooked (Biljecki et al., 2013). An arising research question is whether the
LODs have an influence on the propagation of errors, and what is the magnitude.

(4) Applications. 3D city models are nowadays used for applications not possible with 2D data,
such as the estimation of the energy demand of buildings (Strzalka et al., 2011; Kaden and
Kolbe, 2014), shadow estimation (Herbert and Chen, 2014), and visibility analyses (Bartie
et al., 2010). Further, they are used in applications that are considerably more complex
than when used with 2D data, such as estimating noise pollution (Stoter et al., 2008) and
taxation (Boeters et al., 2015).

The objective of this paper is to generalise the error propagation analysis to 3D GIS operations,
and to investigate how the Monte Carlo method can be used to obtain insight into error prop-
agation in one use case in 3D city modelling: the estimation of the solar irradiation on roofs of
buildings, for the aim of assessing the suitability of the installation of photovoltaic (PV) modules
for producing electric energy. This application is a widely used example of the use of 3D city
models and it requires 3D GIS operations. For this study, we conducted an analysis for the city of
Delft in the Netherlands with a software prototype that we have implemented ourselves, but the
software is sufficiently generic to be applicable to other locations in the world.

We focus on the uncertainties of the geometry of the model, and investigate how positional accu-
racy influences the quality of a 3D spatial analysis. Positional accuracy is a prominent spatial data
quality element, and a principal descriptor in the metadata of a geo-dataset. In most analyses the
error in the position affects the outcome of a GIS operation.

The paper is organised as follows. Section 2 describes the related work and the research oppor-
tunities that we attempt to tackle. In Section 3 we detail the use case of the estimation of solar
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irradiation of buildings with 3D city models, and explain the methodology and implementation
of our software prototype. By giving a detailed description we aim for a better understanding of
the process. Here we also bridge the literature gap because, despite its popularity, this 3D appli-
cation has not been much described methodologically.

In Section 4 we describe the error propagation methodology and the implementation of an error
engine that simulates acquisition errors to a procedural modelling engine. We run the extensive
experiments on a procedurally generated dataset, and describe the results in Section 5. We finally
present conclusions in Section 6.

2 Related work and research opportunities

The subject of error propagation is researched in several disciplines, such as physics (Taylor,
1997), medical imaging (Behrens et al., 2003) and chemistry (MacLeod et al., 2002), and it has
a solid mathematical and experimental foundation that can be applied to other disciplines. It is
related to GIS: geographical observations describe phenomena with spatial, temporal, and the-
matic components that are all acquired with uncertainty (Veregin, 2005). Besides measurement
errors, uncertainty may be caused by processing, generalisation and several other factors (Fisher,
2005). Hence, understanding the propagation of errors in GIS is important. For instance, it is
important to set expectations when obtaining and utilising datasets for a specific purpose. One
may define a maximum acceptable uncertainty of the result of an operation, and by performing
the analysis of the propagation of uncertainty within the operation may reversely determine the
maximum allowed uncertainty in the input data. An example is the usage of 3D city models in
estimating the visibility between two points in space. This technique is used by radio engineers
and telecom companies to estimate the radio signal coverage (Wagen and Rizk, 2003), and for se-
curity purposes as in determining the optimal surveillance camera placement (Ying et al., 2002;
Yaagoubi et al., 2015). While the first may be successfully accomplished with a rough and not
overly accurate 3D city model, the latter relies on street-scale data where a comparatively small
error may result in significant errors in the output.

The topic of error propagation has been researched and documented in numerous publications
that go back several decades. Heuvelink et al. (1989) performed a quantitative analysis of grid-
ded 2D data in a raster geographical information systems with two use cases, Arbia et al. (1998)
modelled the error propagation of overlay operations in raster GIS, and Van Oort et al. (2005)
researched the propagation of positional uncertainty of vertices in polygons to the computation
of its area. Shi et al. (2005) researched the propagation of the error of the interpolation in digital
elevation model (DEM), De Bruin et al. (2008) investigated the uncertainty of the input geo-
graphic data to planning costs in agriculture, and Shi et al. (2003) describes the propagation of
buffer-related errors and completeness. Further, Heuvelink and Burrough (1993) investigated er-
ror propagation in cartographicmodelling using Boolean logic and continuous classification. The
documented analyses include the propagation of spatial errors and attribute errors, with the latter
being more frequently represented. For instance, Veregin (1995) investigated the propagation of
thematic errors.
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To the best of our knowledge, there is no work published in the international scientific literature
on uncertainty propagation in 3D spatial analysis. Shi (1998) presented a generic approach for
modelling positional uncertainty in multi-dimensional objects, but did not address the propaga-
tion of uncertainty.

Propagated errors are defined as the discrepancies between performing identical operations on
the true and on the observed, error-contaminated data layers. Error propagation modelling is
the formal process of representing the transformations in data quality that occur through GIS
operations on data layers (Arbia et al., 1998). The error propagation problem can be formulated
mathematically as follows (Heuvelink, 2005). Let U(.) be the output of a GIS operation g(.) on
m inputs Ai(.):

U(.) = g(A1(.), . . . ,Am(.)) (1)

The operation g(.)may represent virtually anyGIS operation, such as stream network calculation
from a DEM or electromagnetic field modelling from mobile phone base stations (Hengl et al.,
2010; Beekhuizen et al., 2014). The objective of the error propagation analysis is to determine the
error in the output U(.), given the operation g(.) and the errors in the inputsA(.). The error or
uncertainty is usually expressed with the variance of U(.).

The Taylor series method, one of the twomethods to assess the error propagation in GIS, requires
themathematical derivative of the operation g(.). However, thismethod is not suited for complex
operations since the derivative may not exist or be difficult to compute analytically. In contrast,
the Monte Carlo method is made to work by running the assessment model repeatedly with ran-
dom disturbances introduced into the uncertain inputs, where the degree of disturbance is in
accordance with its uncertainty. When used in error propagation, it identifies the relationship
between the input error distribution and that of the model outputs. Thus, it allows to determine
whether the input error is amplified or is suppressed (Emmi and Horton, 1995). Following the
previously introduced notation, the reasoning of the Monte Carlo method is to compute the re-
sult of g(A1, . . . ,Am) repeatedly, with input values Ai, i = 1, . . . ,m that are randomly sampled
from their joint distribution (Heuvelink, 2005). The spread in the sample of m model outputs
obtained in this way captures the uncertainty in the output.

Examples of the Monte Carlo method employed in the analysis of error propagation in GIS in-
clude an application in flood management (Qi et al., 2013), a GIS-based assessment of seismic
risk (Emmi and Horton, 1995), potential slope failures (Zhou et al., 2003), natural resource anal-
ysis (Davis and Keller, 1997), interpolation of DEMs (Fan et al., 2014), analysis of highway main-
tenance (Hong and Vonderohe, 2014), evaluation of the accuracy of agricultural land valuation
using land use and soil information (Fisher, 1991), and the computation of building volumes (Bil-
jecki et al., 2014a).
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3 Use case: annual solar irradiation with Solar3Dcity

The estimation of the solar irradiation at a location is one of the most prominent use cases in
3D GIS (see the recent literature review of Freitas et al. (2015)). The aim of this use case is to
quantify “how sunny” a location is. This is done primarily for terrain (Kumar et al., 1997; Zhang
et al., 2015) and for building roofs, mainly to assess the suitability and economic return of the
installation of solar panels (Strzalka et al., 2012; Li et al., 2015). The latter application is gaining
significant interest in the 3D city modelling research community and industry.

It is useful to introduce some terminology. Solar irradiance describes the instantaneous rate of
energy that is being delivered to a surface (power per unit area), usually expressed in W/m2.
It varies depending on the location of the surface, time and date, atmospheric conditions, and
other factors. The solar irradiation is the total amount of solar energy that has been collected on
a surface area within a given time, i.e. solar irradiance integrated over time. It is also known as
insolation, and it is typically expressed in kWh/m2/year.

In case of determining the suitability of a photovoltaic installation on a surface, such as a building
roof, the normalised solar irradiation value may be coupled with the area of the surface resulting
in the solar irradiation of a surface in kWh/year. Contemporary solar panels are able to utilise
only a fraction of this energy, but the exact amount also depends on additional factors, such as the
ambient temperature. When estimating the amount of energy that can potentially be captured, we
refer to the solar or photovoltaic potential (Wiginton et al., 2010). Because solar potential depends
on specific technical panel settings, and because the technology is continuously improving, in this
research we focus on the perennial magnitude of the solar irradiation.

The use of GIS data and 3D city models in this use case is crucial. First, solar irradiation differs at
different locations on Earth, i.e. due to different day lengths and the position of the Sun. Second,
solar irradiance may significantly differ between building roofs in the same area, depending on
the orientation of the roof: amore favourable angle of a surface to the sunmeans a better exposure
andmore solar energy. Two roof surfaces of the same size at the same location but of different ori-
entations and inclinations (azimuth and tilt), may drastically differ in their solar potential (Yang
and Lu, 2007; Santos et al., 2014). This will also become evident from our experiments. Third,
the larger the surface of a roof, the more solar energy is available, hence the information about
the surface area of the roof is important as well.

3.1 General overview of the 3D use case

The solutions significantly vary from small to large-scale applications, each yielding a different
spatial resolution of results. For instance, from a neighbourhood level with a value for each
building (Wittmann et al., 1997), to a national analysis for an average value for each munici-
pality (Mainzer et al., 2014) and global analyses as rasters of pixels of large size (Šúri et al., 2005,
2007; Huld et al., 2012). Perpendicularly, the complexity of the solutions vary from relatively
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simple (clear-sky models) to complex solutions accounting for meteorological conditions, vege-
tation, and shadowing (Hofierka and Kaňuk, 2009; Tooke et al., 2011; Nguyen and Pearce, 2012;
Alam et al., 2013; Liang et al., 2015).

This paper deals with large-scale analysis (i.e. on buildings), whichmay be performed on different
sets of data, e.g. voxels (Hofierka and Zlocha, 2012), LiDAR point clouds (Gooding et al., 2015;
Carneiro andGolay, 2009; Jochem et al., 2009; Yu et al., 2009), and the oneswith building data, e.g.
derived with a combination of LiDAR and GIS data (Jakubiec and Reinhart, 2013). While most
of the work dealing with the solar potential of buildings is focused on rooftops, some extend the
solar potential to vertical façades (e.g. Catita et al. (2014), Redweik et al. (2013), and Fath et al.
(2015)).

In addition, supplementary information about buildings, such as the building type and number
of inhabitants, may be used in order to relate the potential gain to the actual energy usage of the
household (Baumanns and Löwner, 2009; Nouvel et al., 2014). That is a reason why semantic
3D city models, such as CityGML data (Open Geospatial Consortium, 2012; Gröger and Plümer,
2012), are being increasingly used for this use case (Strzalka et al., 2012; Ben Fekih Fradj and
Löwner, 2012; Nouvel et al., 2013). Performing the analysis with semantic 3D city models has
further advantages over the aforementioned forms, e.g. the roof surfaces can be easily extracted
for the analysis.

3.2 Methodology for the estimation of the solar irradiation with 3D city models

Solar radiation can be decomposed into three components (Šúri and Hofierka, 2004; Liang et al.,
2014), and these are analysed separately in the estimations. The radiation that is not reflected or
scattered in the atmosphere and reaches the surface directly is known as direct radiation. The ra-
diation scattered from atmospheric particles and clouds is called diffuse radiation. The part of the
radiation that is reflected from the ground onto an inclined (roof) surface is denoted as reflected
radiation. The three components of radiation together form the global radiation. Accounting for
all three components is important, because in certain settings eachmay significantly differ (Gulin
et al., 2013b).

The estimation of the direct and reflected irradiation and their adjustment for the tilted and ori-
ented surface are straightforward (Masters, 2013). The estimation of the diffuse solar irradiance is
more complex, but there are several empirical models that can do this, and their comparison has
been the subject of several research papers (David et al., 2013; Demain et al., 2013; Gulin et al.,
2013a).

That said, the solar irradiation I is estimated by integrating the solar irradiance E over a period
of time: I = ∑end

i=startEi ⋅∆ti, where ∆ti is the duration of the ith time interval. Since the solar
irradiance depends on the geographic location, from a GIS point of view, the solar irradiation I
of a surface at a location [φ,λ, h], with tilt τ , azimuth α, and areaAmay be seen as a function:

I = f([φ,λ, h], τ, α,A, [w]) (2)
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where φ, λ, and h indicate the latitude, longitude, and elevation of the surface, and [w] denotes a
series of other components such as meteorological conditions. Since the model f is complex, the
propagation of errors can best be solved numerically with the Monte Carlo method, involving a
large number of building models and disturbances of simulated input errors.

Considering the large number of simulations, in our work we do not take into account shading
effects since these entail computationally expensive algorithms.

3.3 Design and implementation of Solar3Dcity

Because there is a lack of open-source software package for the use case, we designed and imple-
mented our own software prototype “Solar3Dcity”. The software supports data stored according
to theOGC standard CityGML, and can handle large datasets, which is a requirement for aMonte
Carlo simulation. Another motivation for building our own software is that it enables creating a
custom format for the exchange of the results in the way that is suitable for our workflow.

Figure 1 shows the general workflow of the software which consists of deriving four geographic
parameters for each building, these are essential for the solar potential analysis: area of the roof,
tilt, azimuth, and the geographic location of the surface. The latter value is important in order
to compute the solar ephemeris for a location on Earth and to retrieve the historical irradiance
data, but note that it will not vary between buildings on a local basis, as the values do not change
within the spatial extent of a typical city. Likewise, it is important to emphasise that this value
is not affected by positional errors, unless they are caused by gross errors, for instance, wrong
coordinate reference system, which is beyond the scope of this paper.

Solar3Dcity GIS operations Solar operations

Sun ephemeris

Meteorological data

Empirical models

Area [m2]

Tilt [�]

Azimuth [�]

Roof surface

solar irradiation

[kWh/year]

Location [',�, h]

Extraction of

RoofSurface

CityGML
buildings

Decomposition

of surfaces

Enriched
CityGML

Solar irradiation

[kWh/m

2
/year]

Figure 1: Software architecture of Solar3Dcity. The implementation reads semantic 3D city mod-
els in the CityGML format, extracts the surfaces that represent the roof, and enriches
them with the value of the annual solar irradiation and with the total value for all roof
surfaces of a building.
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Because a roof can consist of more than one planar surface, the annual solar irradiation is calcu-
lated separately for each surface, and their values are summed up to obtain a single value of the
total solar irradiation in kWh/year for a building under the assumption that all roof surfaces are
suitable for the installation of the photovoltaic panels. However, it is not economically feasible to
install solar panels in all cases (Lukač et al., 2013; Eicker et al., 2014), e.g. on a small roof area that
does not get much sunlight, hence we define the filtered total building solar irradiation, which is
the total irradiation excluding roof surfaces that are smaller than 2 m2 and have a solar irradi-
ation smaller than 850 kWh/m2/year. Note that introducing this filter is also interesting in the
analysis of the propagation of errors, because the determination of whether a surface passes this
filter is prone to input errors, and it can potentially result in Type I (false positives) and Type II
(false negatives) errors (i.e. rejecting a surface that is in reality suitable, and vice-versa).

Before the computations, each surface is geometrically validated (e.g. non-planar surfaces and
self-intersecting boundaries), ruling out invalid cases occurring in real-world data and making
this implementation robust. The solar ephemeris are from PyEphem/XEphem* (Meeus, 1998;
Bretagnon and Francou, 1988), which have been proven suitable for solar radiation studies (Reda
and Andreas, 2004). The computations use the empirical anisotropic model developed by Perez
et al. (1990), which was implemented in the Solpy library†. The historical solar irradiance data,
which are important to reflect the actual climatic conditions and to approximate a typical me-
teorological year (Kalogirou, 2003), are taken from the nearest meteorological station (in our
case from the IWEC dataset—International Weather For Energy Calculations; Thevenard and
Brunger (2002)). The annual global solar irradiation is then calculated for each roof by integrat-
ing the hourly irradiance values of the entire year (similar to the approach of Mardaljevic and
Rylatt (2003)).

To remove redundancy and to speed up computations, we precomputed the normalised func-
tion ir = f([φ,λ, h], τ, α) for the location of the study area (i.e. the city of Delft in this study).
Once the orientation of a surface is estimated from the 3D city model, the software samples the
irradiation value from the function, rather than doing the computations all over again. Figure 2
shows the values of such function, i.e. the solar irradiation in kWh/m2/year for every azimuth/tilt
combination. This function, also known as tilt-orientation-factors (TOF), is also a product itself
since it helps finding the optimal tilt and orientation for a location, which is the main aim of
several location-based studies (Šúri et al., 2005; Christensen and Barker, 2001; Rowlands et al.,
2011). The last component, i.e. the area of the surface, is thence multiplied with this normalised
irradiation value to obtain the irradiation of the roof surface.

After the irradiation is computed, the value of the estimated annual solar irradiation per building
and its roof surfaces are stored in the CityGML file. An example of the visualisation of such
enriched CityGML file is shown in Figure 3.

*https://pypi.python.org/pypi/pyephem/ and http://www.clearskyinstitute.com/xephem/
†http://github.com/nrcharles/solpy
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Figure 2: The annual global solar irradiation for Delft as a function of tilt and azimuth, as esti-
mated by Solar3Dcity. The centre of the plot is facing south, and it is bounded by west
and east facing surfaces, meaning that this is only half of the complete function. Values
for surfaces facing north are further decreasing. The plot shows significant variation of
the solar irradiation between differently tilted and oriented surfaces, showing the im-
portance of 3D city models and GIS operations in this application.

4 Methodology and implementation

4.1 Overview

The uncertainty propagation method involves four main steps (Figure 4):

1. Generate a set of buildings in a parametric and spatio-semantic form (3D citymodels) with
procedural modelling (Biljecki et al., 2015a). We use procedural models mainly because it
is easier to disturb these with simulated acquisition errors, because they provide a free and
unlimited source of diverse settings, and because the ground truth is known. Synthetic data
have been used for similar purposes, for instance analysing bathymetric models (Li et al.,
2000), uncertainty in land cover maps (Burnicki et al., 2007), and assessing classification
performance (Gosselin and Cord, 2006).

2. Perturb the simulated base dataset generated in the first step repeatedly with random dis-
turbances sampled from the probability distribution representing the geometrical errors.
For this we implemented an error engine that builds on top of the procedural modelling
engine by injecting errors in the process.
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Figure 3: The roofs in this example CityGML dataset are coloured based on how much solar en-
ergy they receive in one year per square metre (normalised annual insolation). The ori-
entation of the north is shown in the bottom left part of the figure. To put these values
in perspective for the experiments: a rooftop of a building with an optimally inclined
shed roof of an area of 100 m2 and without roof windows receives around 117 MWh of
solar energy per year.

3. Analyse both the ground truth and erroneousmodels with Solar3Dcity to estimate the solar
irradiation of roofs.

4. Compute the errors in the solar estimations, and calculate common uncertainty measures
such as the Mean Error (ME) and Root Mean Square Error (RMSE).

4.2 Considered levels of detail

3D city models may be derived in multiple LODs, i.e. degrees of spatio-semantic complexity that
reflect the intended use case and the spatial resolution of the models (Biljecki et al., 2014c). Be-
cause the LODs represent different degrees of abstraction of reality, it is interesting to investigate
how acquisition errors propagate depending on the LOD.

The most common LOD categorisation is the one of the CityGML standard (Open Geospatial
Consortium, 2012; Gröger and Plümer, 2012; Kolbe, 2009), which defines five LODs: LOD0–4.
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Random3Dcity

Error engine

Solar3Dcity
(use case)

Analysis

3D city models
(CityGML)

Erroneous 
(disturbed)

3D city models

3D city models 
with insolation 

attributes

Computing the 
resulting errors 
and uncertainty

Acquisition uncertainty
(simulated with repeated perturbations)

Reality
(error-free procedural datasets)

Utilisation of the 3D data
(estimation of the solar irradiation)

Uncertainty analysis

Figure 4: Workflowof the uncertainty propagation analysis. Each part is a separate softwaremod-
ule, and data flows from one to the other. The third module is detailed in Figure 1.

Because LOD0 is a 2.5D representation, and LOD4 is a model that contains the building interior,
we restrict our analysis to the three intermediate LODs.

LOD1 is a block model with flat roofs that is usually derived as an extrusion from 2D footprints
with point cloud data (Ledoux and Meijers, 2011; Arroyo Ohori et al., 2015b). This is a coarse
model in which regardless of the roof shape, the top surfaces have the same orientation and tilt
(they are flat). Hence their value in this use case is questionable. While they provide a good ap-
proximation of a building with a flat roof, in reality, when solar panels are installed on flat roofs
they are not laid flat (Bayod-Rújula et al., 2011), as they are optimally oriented according to mod-
els similar to the one shown in Figure 2 (Eicker et al., 2015). This is a different practice from that
used in case of non-flat roofs, where the solar panels are laid on the roof, essentially retaining the
same orientation as the underlying roof surface. Nevertheless, in our analysis we include LOD1
models, to investigate whether the uncertainty propagation differs between different LODs.

LOD2 is a model with simple roof shapes, and is most commonly used in solar potential analy-
ses worldwide. Conceptually, LOD2 models provide the exact tilt and azimuth of the roof, and
they are relatively straightforward to acquire (e.g. see Haala and Kada (2010) and Musialski et al.
(2013)). However, LOD2 models usually do not include dormers and roof windows, hence they
tend to have a systematically larger roof area than in reality. Further, the LOD2 standard is flex-
ible, meaning that LOD2 models may include dormers and similarly sized roof superstructures.
For this reason we follow the specification of Biljecki et al. (2015a) who define two variants of
LOD2: LOD2.1 which has “clean” roof structures, and LOD2.2, which includes dormers and
similar roof superstructures.

11



LODs 1 and 2 may come in two geometric references for the footprint: with the walls at their
actual position and as projections from the roof edge (Biljecki et al., 2014b; INSPIRE Thematic
WorkingGroup Buildings, 2013). The latter variant accounts for roof overhangs bringing the roof
to its more accurate representation, hence this variant is used here.

LOD3 is a detailed architectural model which contains dormers, roof windows and other smaller
roof features (see the models in Figure 3). For LOD3 models, Monte Carlo simulations have not
been performed with values of σ greater than 0.3 m, because acquisition techniques should be
more accurate in the case of LOD3 than in the case of LODs 1 and 2.

4.3 Procedural models and their perturbation

Procedural modelling is a process of constructing 3D city models from scratch or based on an ex-
isting GIS dataset by using a set of rules (Goetz, 2013; Tsiliakou et al., 2014). There have been
several initiatives to develop procedural engines for modelling urban features, such as build-
ings (Wonka et al., 2003;Müller et al., 2006; Kelly andWonka, 2011; Besuievsky and Patow, 2013),
roads (Beneš et al., 2014), and land parcels (Vanegas et al., 2012).

While they have many potentials as it will become evident from our research, procedural models
have not been used before in uncertainty propagation. For this purpose we use Random3Dcity,
an open-source CityGML procedural modelling engine developed by Biljecki et al. (2015a). The
engine first generates a real-world feature (e.g. a building) Fi by deriving a set of n parameters pi
that unambiguously define it:

Fi = {p1i , p2i , . . . pni } (3)

The generation of buildings is done according to a customisable shape grammar and set of rules
that generate realistic buildings. We adapt the procedures to generate buildings that are repre-
sentative for our study area, where smaller residential buildings with sloped roofs dominate.

These parameters correspond to those used in photogrammetry (e.g. cf. Brenner (2005); Zhang
et al. (2014)), such as the width of a building, size of the ridges, eaves, and roof height. They are
stored in a parametric form (e.g. the height from the lowest point to the eaves of the building
Fi: phi = 6.54 m), from which the second part of the engine then generates a 3D city model in
multiple LODs stored in CityGML.

However, in reality, we do not know the true parameter values because these are subject to obser-
vation error. Hence, we represent the true parameter value by a random variable that is modelled
as the sum of the parameter estimate and a zero-mean, normally distributed stochastic error ϵ,
resulting in the uncertain parameter p̃j = pj + ϵj .

Therefore, between the first (parametric) and the second (3D citymodel realisation) stepwe insert
a stochastic engine that degrades the parameters by sampling values from a normal probability
distribution function with standard deviation σ:
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p̃ji = N (p
j
i , σ

2) (4)

Simulating acquisition errors with an uncertainty engine is in line with other error propagation
analysis methods (e.g. see Brown and Heuvelink (2007); Heuvelink et al. (2007); Ben-Haim et al.
(2014)). In the engine we use the normal distribution because it is commonly used in geomatics
(Goodchild, 1991; Caspary and Scheuring, 1993), and because it has a theoretical underpinning
through the Central Limit Theorem from statistics.

The above results in an erroneous version of the building F̃i = {p̃1i , p̃2i , . . . p̃ni }, e.g. for the afore-
mentioned height example we might get p̃hi = 6.71 m when using σ = 0.2 m. The engine can
generate an infinity of erroneous versions of the building by repeating the perturbation method,
each time sampling a new from the probability distribution of the parameter error.

Disturbing the parameters rather than the coordinates of the geometry of the generated 3D city
model has several advantages: it is more straightforward, it diminishes the chances of creating
degenerate geometries (e.g. non-planar surfaces and invalid solids), and it conforms to the real-
world practices of acquisition of 3D city models. Most software packages nowadays facilitate
modelling of buildings by measuring the distances of buildings’ lengths at right angles (Loch-
Dehbi and Plümer, 2011), especially in automatic workflows (Fischer et al., 1998). Further, as
the noise is added to the parameters, which represent the lengths of the edges, the right angles in
the geometry are then preserved. Finally, there is also a data specification justification. Consider
that a project requires the acquisition of buildings as LOD1 block models with a flat top surface,
which regardless of the acquisition errors are then always block models. If in our approach the
coordinates of the geometry were disturbed, the noise in the geometry would result in non-flat
top surfaces breaking the specification, which is different from the reality.

4.4 Varying uncertainty in 2D/3D and multiple accuracy classes

In 3D GIS, the accuracy σx,y of lateral coordinates (X, Y) and the accuracy σz of vertical coor-
dinates (Z) in the geometry are often different. This is due to two reasons. First, 3D city models
are often constructed by combining multiple acquisition techniques. For instance, LOD1 block
models are derived by extrusion with the combination of cadastral footprints, while heights are
obtained from aerial laser scanners (LiDAR) (Ledoux and Meijers, 2011). This is often the case
for LOD2 as well. Second, within the same acquisition technique, the accuracy levels may vary.
For instance, the specification of the LiDAR system ALS70-CM from Leica (2008) states “The
system produces data after post processing with a lateral placement accuracy of 5–38 cm and
vertical placement accuracy of 7–16 cm (one standard deviation) [...]”. Hence, varying uncer-
tainty levels are one of the important characteristics of 3D modelling to consider for uncertainty
propagation.

Therefore, for σx,y and σz we define a series of 11 accuracy classes (ranging from 0.0 to 1.0mwith
0.1 m increments), and permute them resulting in 121 combinations, e.g. σx,y = 0.3 m / σz = 0.6
m. We choose these ranges to describe the current capabilities of acquisition techniques, and these
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are in accordance to the ranges determined by research efforts that investigate the accuracy of 3D
city models (Kaartinen et al., 2005; Gruber et al., 2008; Oude Elberink and Vosselman, 2011;
Rottensteiner et al., 2014; Harwin and Lucieer, 2012). The 0th accuracy class (σx,y = σz = 0)
has been considered as well in order to ensure that there are no errors in our implementation of
simulating uncertainty.

Monte Carlo simulation requires that the model is run repeatedly with different perturbations
(cf. Emmi and Horton (1995)), commonly in a large numberm (in our experiments we usedm =
2000). Hence, in the workflow each building in each perturbation d is disturbed in 121 different
ways, resulting in an erroneous building F̃i

j,k
, j = 1, . . . ,121;k = 1, . . . ,m.

Finally, after the perturbations of the parameters, all simulated 3D citymodels are input in the so-
lar irradiation analysis (see Figure 5 for an example). Variability between solar irradiation result-
ing from the perturbation characterises how uncertainty about a building’s geometry propagates
to its solar irradiation.

Figure 5: Composite of the geometry of two LOD2.1 models of the buildings shown in Figure 3:
the green model is the ground truth, while the red model has been disturbed with er-
rors using σx,y = σz = 0.4 m. Note that this is only one of the considered 121 accuracy
classes, showing the outcome of only one of the 2000 iterations in one LOD, mean-
ing that in our experiments there are 758 000 datasets in total (242k for each of LOD1,
LOD2.1, LOD2.2, and 32k for LOD3 due to the reduced accuracy classes).
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4.5 Errors and measures of uncertainty

We computed the following error measures for each accuracy class and each LOD:

• RMSE of the estimated tilt, azimuth, and area of the roof surfaces.

• RMSE of the annual irradiation in kWh/m2/year of roof surfaces.

• RMSE of the building rooftop annual irradiation in kWh/year.

• RMSE of the filtered building rooftop annual irradiation in kWh/year, i.e. those surfaces
that fulfil the minimum thresholds of the normalised annual irradiation and area (Sec-
tion 3.3).

• The share of false positives and false negatives in determining the feasibility of installing
a solar panel (in %). This analysis is Boolean (a surface is feasible or not), hence we are
computing the share of errors in the total number of estimations.

To put these values in perspective, for each RMSE, also the relative RMSE in percentage has been
computed. As ground truth we take the undisturbed model (σ = 0) of the building in that LOD.
Further, for all cases the distribution of errors is examined.

5 Experiments, results, and discussion

We conducted the experiments with 100 procedurally generated buildings located in Delft in
four LODs in 121 accuracy classes in repeated perturbations of 2000 Monte Carlo iterations. We
chose this number of iterations because it produced sufficiently stable results without requiring
too much computing resources.

This results in about 75.8 million 3D building models that have to be analysed. The performance
of disturbing the models, generating the CityGML files and computing their annual solar irra-
diation is on average 80 models per second, which resulted in about two weeks of computation
(the speed of solely computation of the solar estimations amounts to 1000 buildings per second
thanks to the precomputed function; see Figure 2).

Due to the large number of results, we focus on the most important results only. Figure 6 shows
the propagation of positional error to the error in the estimation of the total building irradiation
and to the filtered (feasible) value. Because of limited space we show this for 11 classes where
σx,y = σz . The plot shows that the relation between the uncertainty in the input and uncertainty
in the output is linear, and that the results for each LOD are practically equal, with the exception
of LOD1. The smaller error of the LOD1 can be explained by the absence of errors in the tilt and
azimuth (the top surface is always flat, as imposed by the model specification), hence only the
uncertainty in the area has an influence.

Because the uncertainty propagation in LOD2.1, LOD2.2 and LOD3 is equivalent, from here
we will present the results of one of these LODs. Figure 7 shows the propagation of positional
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Figure 6: Propagation of positional error in case σx,y = σz to the total building irradiation (sum
of the insolation of all roof surfaces), and to the filtered value, indicated by (f), where
only feasible surfaces are taken into account. Note that the values for LOD2.1, LOD2.2,
and LOD3 are equal.

uncertainty to the uncertainty of the three components required for computing the solar irra-
diation: azimuth, tilt, and area. The figure also shows the RMSE of the normalised irradiation
[kWh/m2/year] for each uncertainty class. Note that in computing the value of the normalised
solar irradiation, the area has not been used (which was used for the total building irradiation
[kWh/year], shown later).

Since the values of the uncertainty in the solar irradiation may be of interest to practitioners, we
provide them in Table 1. The plots show a different degree of the influence of the planar and
vertical positional uncertainty. For instance, the estimation of the orientation of the roof is not
affected by the vertical uncertainty. Obviously, the exact results depend on the analysed setting
(i.e. location, empirical model, etc.), but we believe that the general conclusions presented here
are consistent for most, if not all scenarios.

Figure 8 and Table 2 provide the uncertainty in the estimation of the total solar irradiation of roof
surfaces of buildings for all accuracy classes. The results show that at smaller planar uncertainties,
the vertical positional uncertainty influences the total irradiation uncertainty, while for greater
planar uncertainties its influence is negligible.

Figure 9 shows the Type I and Type II errors for the estimation of the feasibility of installing a
solar panel. Finally, Figure 10 shows the distribution of errors for various settings (LODs and
uncertainties). It appears that regardless of the setting, the errors are distributed according to
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(a) Uncertainty in the azimuth (σα).
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(b) Uncertainty in the tilt (στ ).
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(c) Uncertainty in the area (σA).
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(d) Uncertainty in the normalised irradiation (σir).

Figure 7: Results of the error propagation experiments on the uncertainty of
the three components of the estimation of the irradiation (azimuth,
tilt, area), and the normalised irradiation.
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Table 1: Standard deviation of the estimation of the normalised irradiation of roof surfaces of
buildings [kWh/m2/year], estimated for the 121 accuracy classes. The bracketed values
indicate the relative RMSE in percents.

σx,y [m]
σz [m] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0 (0) 10 (1) 28 (4) 42 (6) 53 (8) 60 (9) 67 (10) 74 (11) 80 (12) 84 (13) 90 (13)

0.1 4 (1) 11 (1) 28 (4) 42 (6) 53 (8) 60 (9) 67 (10) 73 (11) 80 (12) 85 (13) 90 (13)

0.2 8 (1) 13 (2) 29 (4) 42 (6) 52 (8) 61 (9) 68 (10) 74 (11) 79 (12) 84 (13) 89 (13)

0.3 12 (2) 15 (2) 31 (5) 43 (7) 54 (8) 62 (9) 68 (10) 74 (11) 80 (12) 85 (13) 90 (14)

0.4 16 (2) 18 (3) 33 (5) 45 (7) 55 (8) 62 (9) 69 (10) 76 (11) 80 (12) 87 (13) 90 (14)

0.5 19 (3) 22 (3) 34 (5) 47 (7) 55 (8) 64 (10) 69 (11) 75 (11) 82 (12) 87 (13) 91 (14)

0.6 23 (3) 25 (4) 36 (5) 47 (7) 57 (9) 64 (10) 70 (11) 77 (12) 82 (12) 87 (13) 91 (14)

0.7 26 (4) 28 (4) 39 (6) 49 (7) 58 (9) 66 (10) 72 (11) 77 (12) 83 (13) 88 (13) 93 (14)

0.8 29 (4) 31 (5) 40 (6) 51 (8) 59 (9) 66 (10) 73 (11) 79 (12) 84 (13) 88 (13) 93 (14)

0.9 32 (5) 33 (5) 42 (6) 53 (8) 60 (9) 67 (10) 74 (11) 79 (12) 84 (13) 89 (14) 94 (14)

1.0 34 (5) 36 (5) 44 (7) 54 (8) 62 (9) 68 (10) 74 (11) 80 (12) 85 (13) 90 (14) 94 (14)
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Figure 8: Uncertainty in the estimation of the total irradiation of a building (σI).

18



Table 2: Standard deviation of the estimation of the total global solar irradiation of roof surfaces of
buildings [MWh/year], estimated for 121 accuracy classes. The bracketed values indicate
the relative RMSE in percents.

σx,y [m]
σz [m] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.0 (0) 2.8 (5) 5.6 (10) 8.3 (15) 11.0 (21) 13.4 (25) 15.8 (30) 18.1 (34) 20.2 (37) 22.3 (41) 24.2 (44)

0.1 0.5 (1) 2.9 (5) 5.6 (11) 8.3 (16) 10.9 (20) 13.4 (25) 15.8 (30) 18.0 (34) 20.3 (38) 22.2 (41) 24.2 (44)

0.2 1.0 (2) 3.1 (6) 5.7 (11) 8.4 (16) 11.0 (21) 13.5 (25) 15.9 (30) 18.1 (34) 20.2 (38) 22.4 (41) 24.2 (44)

0.3 1.6 (3) 3.3 (6) 5.9 (11) 8.5 (16) 11.0 (21) 13.5 (25) 15.9 (30) 18.1 (34) 20.4 (38) 22.5 (41) 24.2 (44)

0.4 2.1 (3) 3.5 (6) 6.0 (11) 8.7 (16) 11.2 (21) 13.6 (25) 16.0 (30) 18.2 (34) 20.4 (38) 22.5 (41) 24.4 (44)

0.5 2.6 (4) 3.9 (7) 6.2 (11) 8.8 (16) 11.3 (21) 13.8 (26) 16.1 (30) 18.4 (34) 20.5 (38) 22.5 (41) 24.4 (45)

0.6 3.1 (5) 4.2 (7) 6.5 (12) 8.9 (16) 11.5 (21) 13.9 (26) 16.2 (30) 18.4 (34) 20.5 (38) 22.5 (41) 24.5 (44)

0.7 3.5 (6) 4.6 (8) 6.7 (12) 9.1 (17) 11.6 (22) 14.0 (26) 16.3 (30) 18.6 (34) 20.6 (38) 22.7 (41) 24.5 (45)

0.8 4.0 (6) 5.0 (8) 7.0 (12) 9.4 (17) 11.8 (22) 14.2 (26) 16.6 (31) 18.7 (34) 20.8 (38) 22.8 (42) 24.6 (45)

0.9 4.4 (7) 5.3 (9) 7.3 (13) 9.6 (17) 12.0 (22) 14.3 (27) 16.6 (31) 18.8 (35) 21.0 (38) 22.9 (42) 24.8 (45)

1.0 4.9 (8) 5.7 (10) 7.6 (13) 9.9 (18) 12.3 (23) 14.5 (27) 16.8 (31) 18.9 (35) 21.1 (39) 23.1 (42) 24.9 (45)
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Figure 9: The summed false positives (Type I errors) and false negatives (Type II errors) in the
determination of the feasibility of a photovoltaic installation on a roof surface.
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a symmetric probability density function. However, none of the distributions is normally dis-
tributed. This was tested with a normality test of D’Agostino (1971) that combines skew and
kurtosis to produce an omnibus test of normality, and by attempting to fit a function (also shown
in the Figure 10).
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Figure 10: Distribution of errors in the estimation of the annual solar irradiation for a building,
for three configurations (LOD and uncertainty class σx,y/σz), and the attempted fit of
the normal distribution for each (dashed in the corresponding colour).

From the results, the following conclusions can be drawn:

• The propagation of errors is similar for LOD2 and LOD3. For LOD1 it is smaller, but the
usability of these results is doubtful because LOD1 imposes flat roofs and involves a large
model error which is not taken into account in the error propagation analysis.

• LOD3 models are equally prone to errors as LOD2 models. Hence, it does not make sense
to acquire a high LOD if the acquisition method is not very accurate. For solar irradiation
calculations, in most cases there is no substantial added value in replacing LOD2 models
with LOD3 models.

• The planar and vertical accuracy have a different influence on the output uncertainty, hence
it is important to consider these separately.

• The mean error deviates from zero in most cases which suggests a systematic error in so-
lar irradiation. This can be explained from the non-linear relationship between uncertain
parameters and solar irradiation.
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• The errors in the estimation of the feasibility of installing a solar panel on a roof surfacemay
reach approximately 10% at σ = 1.0m (i.e. 10% of roof surfaces are deemed feasible for the
installation of solar panels while in reality they are not, and vice-versa), which indicates
that in many occasions 3D models acquired in this and coarser range of uncertainty, may
not be suitable for this use case.

• Relatively, the propagation of error in the estimation of the normalised solar irradiation is
smaller than in the estimation of the total building rooftop solar irradiation (normalised
irradiation multiplied with the roof surface area), because the calculation of area is more
sensitive to the uncertainty in the input data.

6 Conclusions and future work

In this paper we have performed a 3D GIS error propagation analysis involving 3D city models
and their application for estimating the solar irradiation of roofs. The analysis involved the use
of procedurally generated 3D city models, and it took into account multiple LODs in multiple
accuracy classes with varying dimensional accuracy, all of which are novelties in the research field.
Theuncertainty propagation analysis enabled us to calculate the uncertainty in the estimated solar
irradiation based on the specified uncertainty in the input data, and it gave us detailed insights.

For example, the uncertainty analysis showed that on average a 0.4/0.3 m positional error causes
an uncertainty of about 8700 kWh/year in the estimation of the total annual insolation of the
roof of a building, which is approximately a relative deviation of 16%. Another important insight
is that the GIS components required for estimating the solar irradiation of a roof surface of a
building (azimuth, tilt, area), show a different sensitivity to the input uncertainty, and that the
planar and vertical uncertainty have a different influence on the estimations.

The obtained results are of importance to practitioners that rely on 3D city models for the estima-
tion of the solar irradiation of buildings. They need this type of information to be able to decide
whether installing solar panels is economically attractive. The uncertainty quantification extends
such analysis by allowing us to take the risk of making wrong decisions into account. These ob-
servations may also be important to practitioners dealing with related applications of estimating
the solar irradiation on a building, such as in urban planning (Yasumoto et al., 2012; Vermeulen
et al., 2015), for research into the thermal comfort of buildings (Chwieduk, 2009), indoor illumi-
nance (Saran et al., 2015), crisis management (Aarsen et al., 2015), and in the valuation of real
estate (Helbich et al., 2013).

We used procedurally generated (synthetic) 3D city models, which proved suitable for this pur-
pose. An important advantage of using procedural models is that these present an unlimited
source of diverse data, especially when it comes to obtaining data in multiple LODs, which are
rare in practice (Biljecki et al., 2015b). Our instance takes advantage of the availability of LOD3,
since in the computation of the area, it accounts for roof windows, roof overhangs and dormers
and chimneys, which decrease and increase, respectively, the area and configuration of the roof
that is usable for photovoltaic panel installations. Having the information about roof windows is
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important, but it is frequently not possible due to lack of highly-detailed data and this information
is in practice supplemented manually with surveys on site (Nouvel et al., 2013).

While we have focused on this use case, much of the developed work is applicable to other 3D
use cases, such as noise estimation, energy demand estimation, and estimation of shadow cast by
buildings.

For estimating the solar irradiation of roofs, we have implemented a new software prototype “So-
lar3Dcity”. To make our method generally applicable, we enabled Solar3Dcity to be applicable to
any location on Earth. Further, we have released this tool open-source for free public use.

For future work we plan to extend the work by investigating the propagation of uncertainty on
continuous LODs (ArroyoOhori et al., 2015a), to take into account shadows (Nguyen and Pearce,
2012), and to investigate how the errors in estimated solar irradiation will propagate through an
economical model of return times of investing into solar panels (Fath et al., 2015).
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