Constructing an n-dimensional cell complex from a soup of ($n-1$)-dimensional faces

Ken Arroyo Ohori Guillaume Damiand Hugo Ledoux

January 13, 2014 ICAA 2014

LIRIS TUDelft

Motivation: time

Motivation: scale

Higher dimensional objects

-Mathematically simple but difficult to describe intuitively

Example

Boundary representation

- In 2D: Jordan curve theorem (1887)
- In 3D: b-rep (informally)
- Representing an n-dimensional object by its ($n-1$)-dimensional boundary

Incremental construction

- Build objects based on their boundary in increasing dimension
- OD, (1D), 2D, 3D, 4D, ...
- Connecting adjacent cells
- Equivalent to the generation of topology

Combinatorial maps

Combinatorial maps

```
struct Dart {
    Dart *involutions[n+1];
    Embeddings *embeddings[n+1];
};
struct Embedding {
    Dart *referenceDart;
    Embedding *holes[];
    int dimension;
    float red, green, blue;
};
struct PointEmbedding : Embedding {
    float x, y, z;
};
```


Related work

- 2D combinatorial maps [Edmonds'60]
- nD combinatorial maps [Lienhardt'94]
- Open combinatorial maps [Poudret’07]
- Search using signatures [Gosselin'11]
- Test for isomorphism in quadratic time

How it's done

- Assume unique vertices
- Indices on ($n-1$)- and ($n-2$)-cells
- Lexicographically smallest vertex
- Re-use or copy combinatorial structures (with reversed orientation)

Incremental construction: OD

Incremental construction: 2D

5

Incremental construction: 3D

Implementation

- $\mathrm{C}++11$ with recursive templates
- CGAL Combinatorial Maps and Linear Cell Complex
- std: : map for isomorphism checks

Tests

- 2D, 3D and relatively simple 4D objects
- Compared with objects created with CGAL functions
- Manually by verifying β-links

Conclusions

- Intuitive method to create arbitrary nD cell complexes
- Fully dimension-independent method
- Quadratic time, but much better in practice
- Keep two indices only

Thank you!

ken.mx
g.a.k.arroyoohori@tudelft.nl

L!̣RİS TUDelft

