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There is substantial value in the use of higher-dimensional (>3D) digital objects
in GIS that are built from complex real-world data. This use is however hampered
by the difficulty of constructing such objects. In this paper, we present a dimen-
sion independent algorithm to build an 𝑛-dimensional cellular complex with lin-
ear geometries from its isolated (𝑛 − 1)-dimensional faces represented as combi-
natorial maps. It does so by efficiently finding the common (𝑛 − 2)-cells (ridges)
along which they need to be linked. This process can then be iteratively applied
in increasing dimension to construct objects of any dimension. We briefly de-
scribe combinatorialmaps, present our algorithmusing them as a base, and show
an example using 2D, 3D and 4D objects which was verified to be correct, both
manually and using automated methods.
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1 Introduction

Higher-dimensional digital objects repre-
sent well-defined extents of space in arbi-
trary dimensions. In geographic informa-
tion systems (GIS), these can be generated
when 2D/3D space, time [Peuquet, 2002],
scale [van Oosterom and Meijers, 2011], se-
mantics [Baglatzi and Kuhn, 2013], or oth-
ers are all treated as independent axes of a
coordinate system. An example of such an
object is presented in Figure 1. This form
of representation offers interesting advan-
tages compared to traditional ones where
multiple representations of the same ob-
ject are stored separately and linked in an
ad hoc fashion, such as conceptual simplic-
ity, immediate access to all existing topo-
logical relationships, the possibility to rep-
resent complex events like motion and the
ease of maintaining consistency between
objects [Stoter et al., 2012].

However, creating higher dimensional dig-
ital objects from real-world data is inher-
ently difficult on multiple levels. Since we
are usually only familiarwith up to 3Dphys-
ical space, describing such objects might
be straightforward mathematically, but it
is nonetheless unintuitive. Higher dimen-
sional data models are also complex, and
thus realising even very simple objects re-
quires a large number of operations on ab-
stract elements. Finally, manipulating the
related data structures while ensuring that
all its required references are correctly kept
is alreadynon-trivial in 3D [Mäntylä, 1988],
and increasingly difficult in higher dimen-
sions.

Nonetheless, it is possible to use the con-
cepts behind boundary representation to
significantly reduce the difficulty of the
problem. In boundary representation (b-
rep or BREP), an 𝑛-dimensional closed ob-
ject can be unambiguously described by
the (𝑛 − 1)-dimensional boundary that en-
closes it, as originally defined by Baum-
gart [Baumgart, 1975] and Braid [Braid,
1975] for a (3D) solid with a (2D) sur-
face boundary composed of flat polygonal
patches. This concept is valid in higher di-
mensions as well, and is related to the con-
cept of a cell complex [Hatcher, 2002] in

topology, where an 𝑛-dimensional cell (𝑛-
cell) in the complex has a number of (𝑛−1)-
cells (faces) as its boundary, and these faces
are also part of the complex. An 𝑛-cell is
an abstract object which is considered to be
homeomorphic to an 𝑛-ball (e.g. point, seg-
ment, disk, ball, etc.). In this paper we use
combinatorialmaps to represent a cell com-
plex, which are described in Section 2.

The (𝑛 − 1)-dimensional boundary of an 𝑛-
cell ismuch easier to conceive than the orig-
inal 𝑛-cell, since the (𝑛 − 1)-cells that it is
composed of can be themselves described
individually. However, this requires the ex-
istence of an algorithm that is able to con-
nect these separate (𝑛−1)-cells to form the𝑛-
cell in an efficientmanner, abstracting such
issues as incompatible orientations in the
model, the handling of duplicate cells and
the identification of common boundaries.
This operation, fully dimension indepen-
dent, presented in Section 3 and the focus of
the present paper, can be performed recur-
sively in increasing dimension to generate
arbitrary cell complexes in any dimension,
and thus we refer to it as incremental con-
struction.

Another possible use of incremental con-
struction is to generate the topological in-
formation, i.e. incidence and adjacency, be-
tween a set of existing objects. This is in
fact simply a subset of what the problem in-
cremental construction is meant to solve—
the identification of common boundaries—
, and fits very well within the frame of GIS,
where datamodels tend to contain very lim-
ited topological information but topologi-
cal queries are of great importance [Egen-
hofer and Franzosa, 1991]. Some GIS mod-
els, like the OGC Simple Features Specifica-
tion [OGC, 2011] have no topology in their
structure, even repeating the coordinates
of individual points when these appear in
multiple line segments or polygons. Others,
such as CityGML [Open Geospatial Con-
sortium, 2012], only have implicit topologi-
cal information (e.g. these surfaces should
form a closed shell) which is often unen-
forced in their geometry.

We have implemented our algorithm based
on the CGAL Combinatorial Maps and Lin-
ear Cell Complex packages, which are de-
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(a) 3D model (perspective projection of 0-, 1-
and 2-cells)

(b) 4D model (double perspective projection
of 0- and 1-cells only)

Figure 1: The Aula Congress Centre in the TU Delft campus represented as extruded 3D
and 4Dmodels.

scribed in Section4 togetherwith thedetails
of our implementation, including a discus-
sionof the computational complexity of our
approach. In Section 5, we present an ex-
ample in 4D that shows this approach in
practice, comparing its output with correct
results which have been generated by the
Linear Cell Complex package and verifying
it analytically. We finish with conclusions
and discussion in Section 6.

2 Combinatorialmaps

Combinatorial maps (or simply maps) are
an ordered topological model originally
proposed by Edmonds [Edmonds, 1960] to
describe the 2D surfaces of 3Dobjects. Their
extension to arbitrary dimensions is de-
scribed by Lienhardt [Lienhardt, 1994] for
objects without boundaries and extended
by Poudret et al. [Poudret et al., 2007] to
objects with boundaries. They are able to
describe subdivisions of orientable quasi-
manifolds1.

Intuitively, a combinatorial map is com-
posed of two elements: darts and relations
between them (𝛽). The precise definition
of a dart is related to an underlying simpli-
cial decomposition of the object, each dart
1A specific combinatorial interpretation of the con-
cept of a manifold. See Lienhardt [Lienhardt, 1994]
for details.

being equivalent to a simplex in it. How-
ever, intuitively it can be seen as an oriented
edge on the boundary of a facet, which it-
self is on the boundary of a solid, which it-
self is on the boundary of a 4-cell, and so on.
It is therefore equivalent to the half-edge
data structure in 2D, but extends naturally
to higher dimensions. Meanwhile, the re-
lations are functions connecting darts that
are related along a certain dimension. In
this manner, 𝛽􏷠 joins consecutive oriented
edges within a facet forming a loop, 𝛽􏷡 joins
adjacent facets within a solid, 𝛽􏷢 joins ad-
jacent solids within a 4-cell, and so on. As
inothermodels basedondirected elements,
𝛽𝑖-joined darts for 𝑖 > 1have opposite orien-
tations.

More formally, an 𝑛-dimensional combi-
natorial map (or 𝑛-map) is defined by an
(𝑛 + 1)-tuple 𝑀 = (𝐷, 𝛽􏷠, … , 𝛽𝑛) where 𝐷
is a finite and non-empty set of darts, 𝛽􏷠
is a partial permutation on 𝐷 (a function
𝑓 ∶ 𝐷 ∪ {∅} → 𝐷 ∪ {∅} such that ∀𝑑􏷠 ∈ 𝐷,
∀𝑑􏷡 ≠ 𝑑􏷠 ∈ 𝐷, 𝑓(𝑑􏷠) ≠ ∅ and 𝑓(𝑑􏷡) ≠ ∅ ⇒
𝑓(𝑑􏷠) ≠ 𝑓(𝑑􏷡)), ∀2 ≤ 𝑖 ≤ 𝑛, 𝛽𝑖 is a partial in-
volution (a partial permutation 𝑓 such that
∀𝑑 ∈ 𝐷, 𝑓(𝑑) ≠ ∅ ⇒ 𝑓(𝑓(𝑑)) = 𝑑), and
∀1 ≤ 𝑖 < 𝑖 + 2 ≤ 𝑗 ≤ 𝑛, 𝛽𝑖 ∘ 𝛽𝑗 is also a partial
involution (see an example in Figure 2).

Here, ∅ is a special value used to indicate
that a given dart 𝑑 has no other dart in rela-
tion by a given 𝛽𝑖. In such a case we have
𝛽𝑖(𝑑) = ∅ and that means that 𝑑 belongs
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Figure 2: (Left) A 3D cellular complex composed with two tetrahedra sharing a common
face. There are 2 3-cells, 7 2-cells, 9 1-cells and 5 0-cells. (Right) The correspond-
ing 3D combinatorial map having 48 darts.

to the 𝑖-boundary of the described object (it
belongs to only one 𝑖-cell). A dart 𝑑 is said
to be 𝑖-free when 𝛽𝑖(𝑑) = ∅. Otherwise it
is 𝑖-sewn with a second dart 𝑑′ and we have
𝛽𝑖(𝑑) = 𝑑′ ≠ ∅.

In order to traverse an 𝑛-map, the orbit op-
erator < 𝐴 > (𝑑) =< 𝛽𝑎􏷠, … , 𝛽𝑎𝑘 > (𝑑) ob-
tains all the darts that can be reached from
dart 𝑑 by successive applications of the links
𝛽𝑎􏷠, … , 𝛽𝑎𝑘 ∈ 𝐴. Certain orbits are partic-
ularly interesting: for any 1 ≤ 𝑖 ≤ 𝑛, <
��𝛽𝑖 > (𝑑) =< 𝛽􏷠, … , 𝛽𝑖−􏷠, 𝛽𝑖+􏷠, … , 𝛽𝑛 > (𝑑)
contains all the darts in the 𝑖-cell of 𝑑, while
< {𝛽𝑖 ∘ 𝛽𝑗|∀𝑖, 𝑗 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} > (𝑑) contains all
the darts in the 0-cell (vertex) of 𝑑. As two
darts linked by a 𝛽𝑖 have opposite directions
(for 2 ≤ 𝑖 ≤ 𝑛), they belong to the two ver-
tices of a same edge. Thus by combining two
𝛽, we obtain a dart of the same vertex than
𝑑.

When the relations in an orbit are applied
in a well-defined order, these orbits are gen-
erated in a consistent manner. This makes
it possible to generate a canonical repre-
sentation of (a subset of) the darts in a
map, which combined with labelled darts
can be used to test combinatorial map iso-
morphism in quadratic time, as shown by
Gosselin et al. [Gosselin et al., 2011] and
demonstrated by searching for patterns in
images.

The incremental construction of cells in a
combinatorial map is based on the sewing
operator, which joins two 𝑖-cells along an
(𝑖 − 1)-cell which after the operation lies in
their common boundary. Intuitively, given

two 𝑖-free darts 𝑑􏷠 and 𝑑􏷡, the 𝑖-sew opera-
tion between 𝑑􏷠 and 𝑑􏷡 will pairwise link the
orbits of these two darts by 𝛽𝑖 so that we will
obtain 𝛽𝑖(𝑑􏷠) = 𝑑􏷡.

We can see in Figure 3 an example of the 3-
sew operation. Starting from a 3D combina-
torial map describing two isolated tetrahe-
dra, we identify two faces by using the 3-sew
operations on darts 𝑑 and 𝑑′. This operation
puts in relation all thedarts of the two initial
faces by pairs so that we obtain a valid com-
binatorialmap (i.e. the constraint that 𝛽􏷠∘𝛽􏷢
is a partial involution is still satisfied).

A combinatorial map only describes the
topological part of an object in term of a
cell complex, i.e. the set of cells in all di-
mensions and all the incidence and adja-
cency relations. Applications often require
adding information associatedwith specific
cells (e.g. to associate a colour to each ver-
tex, or a normal to each face). This is pos-
sible thanks to the attribute notion. An 𝑖-
attribute is the information associated with
𝑖-cells. As cells are implicitly represented by
sets of darts in combinatorial maps, links
between 𝑖-attributes and 𝑖-cells are done
through the darts of the 𝑖-cells: all the darts
belonging to a same 𝑖-cell are linked to the
same 𝑖-attribute.

These attributes are veryuseful as they allow
to associate any information to any cell, and
given a dart, we have a direct access to all
of its associated attributes. Moreover, these
attributes can be used to describe the ge-
ometry of the objects. Indeed, we can asso-
ciate to each vertex of a combinatorial map
a point inℝ𝑑􏷡 by using 0-attributes. A com-
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Figure 3: (Left) A 3D combinatorial map describing 2 isolated tetrahedra. (Right) The 3D
combinatorialmap obtained after 3-sewing darts 𝑑 and 𝑑′. All the darts of the two
initial faces are 3-sewed by pairs.

binatorial map with this type of embedding
gives a linear cell complex. Indeed, in this
case, the geometryof each edge is a segment,
the geometry of each face is a planar poly-
gon, and so on. 𝑑2 is the dimension of the
geometry, i.e. the dimension of the ambi-
ent space. Generally we have 𝑑2 ≥ 𝑑 (𝑑 be-
ing the combinatorial dimension). For ex-
ample we can use 𝑑 = 𝑑2 = 2 to describe a
planar graph embedded in a plane or 𝑑 = 2
and 𝑑2 = 3 to describe a polyhedral mesh
embedded inℝ􏷢.

Now given two 𝑖-cells in a linear cell com-
plex, we can test if these two cells are identi-
cal, i.e. if they have both the same topology
and the same embedding information. To
test if they have the same topology, we use
the technique introduced above for com-
binatorial map isomorphism, by consider-
ing only the two 𝑖-cells instead of two whole
combinatorial maps. Testing if the two cells
have the same embedding can be done dur-
ing the isomorphism test, simply by test-
ing if two darts 𝑑 and 𝑑′ considered by the
isomorphism function are linked with two
points with the same coordinates. Note that
we have to consider the two possible ori-
entations of one of the two 𝑖-cells in order
to detect also if the two cells are identical
but with reverse orientations. We make use
of this technique to efficiently test for the
identity of two cells in Section 3.

3 Incremental Construction

Since an 𝑛-cell in a cell complex can be de-
scribed by the (𝑛 − 1)-cells on its boundary,

the same thinking can be applied in reverse:
a yet unbuilt 𝑛-cell can be constructed based
on a set of (𝑛 − 1)-cells which are known to
form its complete (closed) boundary.

The algorithm is applied object by object
in increasing dimension, constructing iso-
lated 0-cells first, and continuing through
2-cells, 3-cells and further. Our explana-
tion follows the construction of single cell of
a certain dimension, starting with unique
isolated vertices in Section 3.1. 1-cells are
skipped since 2-cells can be easily described
as a succession of 0-cells. 2-cells are then
built from an ordered sequence of 0-cells,
as covered in Section 3.2. Finally, for 𝑛-cells
(𝑛 > 2), the method receives an unordered
set (soup) of (𝑛 − 1)-cells, the geometries of
which are used as faces of the finished 𝑛-
cell that is returned, as explained in Sec-
tion 3.3. These individual cell creation algo-
rithms are applied object by object in order
of increasing dimension, so that the lower
dimensional cells generated as the output of
earlier stages can be used as the input of lat-
ter stages.

The incremental construction algorithm as
a whole keeps track of already built cells
by maintaining a reference to one of their
darts, making sure that no identical cells
(with equal geometry and topology) are ever
created. For efficiency reasons, it is con-
venient to use darts which are embedded
into the lexicographically smallest points
of each cell, which combined with smallest
point indices for all existing 𝑛- and (𝑛 − 1)-
cells, and the (𝑛 − 2)-cells on the boundary
of the (𝑛 − 1)-cells to be used, greatly accel-
erates this process.
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3.1 Vertices (0D)

A single point, as defined by a unique tu-
ple of coordinates, can be present in mul-
tiple higher dimensional cells and thus de-
scribed multiple times. However, to ensure
the correct generation of topology and en-
force the orientable quasi-manifold crite-
rion, it should only be created once. When
doing so, a new point embedding at that
location should be created, and a new free
dart representing the 0-cell should be cre-
ated and linked to it. Every new instance of
the same point should then link to this orig-
inal dart.

The output of this step is thus a map from
each input point to a 0-cell (dart embedded
into a point) at that location (see an exam-
ple in Figure 4(a)).

3.2 Facets (2D)

In order to create a 2-cell from a sequence of
0-cells, three general steps are needed:

1. The unique 0-cells, as resulting from
the evaluation of the 0-cells’ point em-
beddings in the map obtained when
processing all 0-cells, are obtained. The
result of this evaluation might be the
same 0-cell as provided, or an already
existing 0-cell at that location. Each
of these 0-cells might be a single 1-free
dart, in which case it can be used di-
rectly (see an example in Figure 4(b)),
or it can be a non 1-free group of darts,
in which case it has already been used
as part of a different 1-cell (and possibly
other higher dimensional cells). These
darts used in 1-cells can be reused only
when they would become part of the 2-
cell that will be built and are not part of
any 2-cell. If the darts cannot be reused,
a copy of them with opposite orientation
has to be created, linking it to the same
embedding as the original (see exam-
ples in Figure 4(c) to (h). In all these
cases, there is at least one dart which is
duplicated). The opposite orientation
ensures that the two (old and new) can
then be 2-sewn when constructing a 3-
cell in a subsequent step.

2. The darts obtained in the previous step
are 1-sewn sequentially, and the last is 1-
sewn to the first, forming a closed loop.

3. Just as in the creation of 0-cells, a 2-
cell can be on the boundary of multi-
ple higher dimensional cells (or simply
described multiple times in the input),
and as such, it is necessary to check if
the 2-cell has already been created. If
any comparison returns that the 2-cell
already exists, the newly created darts
are deleted2 and the existing one is re-
turned, otherwise the new 2-cell is re-
turned.

3.3 3-cells and higher (dimension
independent)

Themethod to create 𝑛-cells from their (𝑛 −
1)-cell boundaries is identical for all 𝑛 >
2, allowing a dimension-independent func-
tion to be created. As with the creation of
2-cells from 0-cells, it consists of three gen-
eral steps:

1. First of all, whether each (𝑛 − 1)-cell
has already been created beforehand is
checked. This is meant so that multiple
identical (𝑛 − 1)-cells are never created
in the final cell complex, even when
they are given as input. If an (𝑛 − 1)-
cell already exists and it is (𝑛 − 1)-free,
it is reused as part of the 𝑛-cell (see an
example in Figure 5(a)). If it exists but
is already part of a different 𝑛-cell, it
is duplicated with reverse orientation
(see an example in Figure 5(b) for face
labeled 𝑑). As in the case of 2-cells, this
is done so that it has the samegeometric
embeddings and attributes, but its op-
posite orientation ensures that the two
(old and new) can be directly 𝑛-sewn to-
gether.

2. The (𝑛 − 1)-cells (faces) are (𝑛 − 1)-
sewn along their common (𝑛 − 2)-
dimensional boundaries (ridges). If
two groups of connected (𝑛 − 1)-cells
with incompatible orientations would

2Since the 2-cell already exists, all the used darts are
copies of existing ones. This deletion thus does not
erase any unique instance of a 0- or 1-cell.

6



(a) 1

2

3

4

5

(b)

a

31

2

5

4
b

(c)

31

2

5

4

(d)

d

31

2

5

4

(e)

c

31

2

5

4

e

(f)

31

2

5

4

(g)

f

31

2

5

4

g

(h)

Figure 4: Illustration of the different steps of the reconstruction of 2-cells. (a) Initial
configuration: one dart per vertex. (b) After 𝑎 = make_2_cell(1, 2, 3). (c) Af-
ter 𝑏 = make_2_cell(2, 4, 3). (d) After 𝑑 = make_2_cell(1, 4, 3). (e) After
𝑐 = make_2_cell(1, 4, 2). (f) After 𝑒 = make_2_cell(1, 3, 5). (g) After 𝑓 =
make_2_cell(5, 3, 4). (h) Final result, after 𝑔 = make_2_cell(4, 5, 1).

be joined by this operation (i.e. the pair
of two corresponding ridges have the
same orientation), the orientation of
one of the groups is reversed before the
link is created. If more than one match
for a ridge is found, the object being
represented is not a quasi-cellularman-
ifold, and thus cannot be represented
using combinatorial maps.

3. The newly constructed 𝑛-cell is finally
compared to other 𝑛-cells to check if it
already exists. If an 𝑛-cell is found to
exist, the algorithm should delete the
darts that are part of the newly created
𝑛-cell and instead return the existing
cell. This ensures that only a single in-
stance of an 𝑛-cell is created.

4 Implementation and
Complexity

Wehave implemented the incremental con-
struction algorithm in C++ using the Com-
binatorial Maps and Linear Cell Complex
packages in CGAL3. In order to improve the
performance of the incremental construc-
tion algorithm, we use some indices that
map the lexicographically smallest point
3The Computational Geometry Algorithms Library:
http://www.cgal.org

embedding of some cells of a given dimen-
sion to a dart embedded at that location.
These indices are implemented asC++ Stan-
dard Library4 maps with point embeddings
as keys and lists of darts as values, using a
custom compare function so that the points
are internally sorted in lexicographical or-
der. Because std::map is normally imple-
mented as a self-balancing binary search
tree,𝑂(log 𝑛) search, insertion and deletion
times and𝑂(𝑛) space can be expected.

Since we create objects dimension by di-
mension, it is not necessary tomaintain in-
dices for all the cells of all dimensions at
the same time. The only ones used are: all
𝑛- and (𝑛 − 1)-cells, and the (𝑛 − 2)-cells on
the boundary of the (𝑛 − 1)-cells for that
step. Most of these can be built incremen-
tally, adding new cells as they are created
in 𝑂(log 𝑐), with 𝑐 the number of cells of
that dimension, assuming that the smallest
vertex and a dart embedded there are kept
during its construction. The complexity of
building any index of cells of any dimen-
sion is thus𝑂(𝑐 log 𝑐) and it uses𝑂(𝑐) space.
Note that this also gives the computational
complexity of creating a map of all unique
0-cells in the cell complex.

Checking whether a given cell already ex-
ists in the cell complex is more complex.

4For instance, the GNU Standard C++ Library: http:
//gcc.gnu.org/libstdc++/
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Figure 5: Illustration of the two steps of the reconstruction of 3-cells. We start from
the combinatorial map given in Figure 4(h) which is the result of the recon-
struction of 2-cells. (a) After make_3_cell(𝑎, 𝑏, 𝑐, 𝑑). (b) Final result, after
make_3_cell(𝑑, 𝑒, 𝑓, 𝑔).

Finding a list of cells that have a certain
smallest vertex is done in 𝑂(log 𝑐). Theo-
retically, all existing cells in the complex
could have the same smallest vertex, leading
to up to 𝑐 quadratic time cell-to-cell com-
parisons just to find whether one cell ex-
ists. However, every dart is only part of a
single cell of any given dimension, so while
every dart could conceivably be a starting
point for the identity comparison, a single
dart cannot be used as a starting point in
more thanone comparison, and thus amax-
imum of 𝑑􏸂􏸎􏸌􏸏􏸋􏸄􏸗 identity comparisons will
be made for all cells, with 𝑑􏸂􏸎􏸌􏸏􏸋􏸄􏸗 the total
number of darts in the cell complex. From
these 𝑑􏸂􏸎􏸌􏸏􏸋􏸄􏸗 darts, two identity compar-
isons are started, one assuming that the two
cells (new and existing) have the same ori-
entation, and one assuming opposite orien-
tations. Each of these involves a number of
dart-to-dart comparisons in the canonical
representations that cannot be higher than
the number of darts in the smallest of the
two cells. The number of darts in the exist-
ing cell is unknown, but starting from the
number of darts in the newly created cell
(𝑑􏸂􏸄􏸋􏸋), it is safe to say that no more than
𝑑􏸂􏸄􏸋􏸋 dart-to-dart comparisons will be made
in each identity test, leading to a worst-case
time complexity of 𝑂(𝑑􏸂􏸎􏸌􏸏􏸋􏸄􏸗𝑑􏸂􏸄􏸋􏸋). Note
that this is similar to an isomorphism test
starting at every dart of the complex.

Finally, creating an 𝑛-cell from a set of (𝑛 −
1)-cells on its boundary is more expensive,
since the (𝑛 − 2)-cell (ridge) index needs to
be computed for every 𝑛-cell. Following the
same reasoning as above, it can be created

in 𝑂(𝑟 log 𝑟) with 𝑟 the number of ridges in
the 𝑛-cell, and uses 𝑂(𝑟) space. Checking
whether a single ridge has a corresponding
match in the index is done in 𝑂(𝑑􏸂􏸄􏸋􏸋𝑑􏸑􏸈􏸃􏸆􏸄),
with 𝑑􏸂􏸄􏸋􏸋 the number of darts in the 𝑛-cell
and 𝑑􏸑􏸈􏸃􏸆􏸄 thenumber of darts in the ridge to
be tested. Since this is done for all the ridges
in an 𝑛-cell, the total complexity of this step,
which dominates the running time of the
algorithm, is

􏾜
􏸑􏸈􏸃􏸆􏸄􏸒

𝑂(𝑑􏸂􏸄􏸋􏸋𝑑􏸑􏸈􏸃􏸆􏸄) = 𝑂(𝑑􏷡􏸂􏸄􏸋􏸋).

The analyses given above give an indication
of the computational and space complex-
ity of the incremental algorithm as a whole.
However, it is worth noting that in realis-
tic cases the algorithm fares far better than
in these worst-case scenarios: the number
of cells that have a certain smallest vertex
is normally far lower than the total num-
ber of cells in the complex, most of their
darts are not embedded at the smallest ver-
tex, and from these dartsmost identity com-
parisons will fail long before reaching the
end of their canonical representation.

Finally, one more nuance can affect the
performance of this approach. We have
discussed that when two groups of darts
with incompatible orientations have to be
joined, the orientation of one of these has
to be reversed. This is easily done by ob-
taining all the connected darts of one of the
groups, preferably the one that is expected
to be smaller, and reversing their orienta-
tion 2-cell by 2-cell. Every dart 𝑑 in a 2-
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cell is then 1-sewn to the previous dart in
the polygonal curve of the 2-cell (𝛽−􏷠􏷠 (𝑑)). A
group of 𝑛 darts can then have its orienta-
tion reversed in 𝑂(𝑛) time. This is not a
problem in practice since GIS datasets gen-
erally store nearby objects close together,
but if a cell complex is incrementally con-
structed in the worst possible way, i.e. creat-
ing as many disconnected groups as possi-
ble, this could have to be repeated for every
cell of every dimension.

5 Example

The CGAL Linear Cell Complex package
provides functions to generate a series of
primitives which are known to be created
with correct geometry and topology, and
can then be sewn together to generate more
complexmodels. We have therefore created
various 2D, 3D and 4D cell complexes using
both these functions and our approach. In
this manner it was possible to test the valid-
ity of ourmodels using the identity compar-
ison described in Section 2, as well as man-
ually verifying all 𝛽-links.
In the following we show an interesting
case, how a tesseract (see Figure 6) can be
generated using our approach. A tesseract
is the 4D analogue of a cube, and is a 4-cell
bounded by 8 cubical 3-cells, each of which
is bounded by 6 square 2-cells. It thus con-
sists of one 4-cell, 8 3-cells, 24 2-cells, 32 1-
cells and 16 0-cells.

Using our approach, an empty 0-cell index
is first created. Then, the 16 vertices of the
tesseract, each vertex 𝑝𝑖 described by a tuple
of coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑤𝑖, can be created
as 𝑝𝑖 = make_0_cell(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑤𝑖), which re-
turns a unique dart embedded at each loca-
tion, and added to the 0-cell index. At this
point, the algorithmwouldhave built anun-
connected cell complex consisting solely of
16 completely free darts.

An empty index of 2-cells is then cre-
ated. Each of its 24 square facets
can be built based on its vertices as
𝑓𝑖 = make_2_cell(𝑝𝑗, 𝑝𝑘, 𝑝𝑙, 𝑝𝑚), which
1-sews (copies of) these darts in a loop and
returns the dart embedded at the smallest

vertex of the facet. These are added to the
index of 2-cells. Since every vertex is used
in 6 different 2-cells, each dart would be
copied 5 times. The cell complex at this
point thus consists of 24 disconnected
groups of 4 darts each.

Next, an empty index of 3-cells is cre-
ated and the index of 0-cells can be
deleted. For each of the 8 cubical
3-cells, a function call of the form
𝑣𝑖 = make_3_cell(𝑓𝑗, 𝑓𝑘, 𝑓𝑙, 𝑓𝑚, 𝑓𝑛, 𝑓𝑜)
is made. At this point, an index of the 1D
ridges of each face is built, which is used to
find the 12 pairs of corresponding ridges
that are then be 2-sewn together. When a
3-cell is created, it is added to the index.
Since every facet bounds two 3-cells, each
dart is duplicated once again, resulting in
a cell complex of 8 disconnected groups of
24 darts each.

Finally, the tesseract is created with the
function 𝑡 = make_4_cell(𝑣􏷠, 𝑣􏷡, … , 𝑣􏷧).
This can use the index of 2-cells to find the
24 corresponding pairs of facets that are
then 3-sewn to generate the final cell com-
plex.

We tested the validity of this object by per-
forming a series of tests on the structure
(complete and symmetric sewing), testing
whether each cube was identical to the ex-
pected outcome, and manually verified the
𝛽-links of its 192 darts.

6 Conclusions and future
work

We have shown that it is possible to apply
the fundamental concept of boundary rep-
resentation, describing an 𝑛-cell by its (𝑛 −
1)-dimensional faces, to incrementally con-
struct cell complexes of any dimension. To
the best of our knowledge, this technique
is the only one that has been described
and/or implemented for 4D cell complexes
or higher. Using a variety of indices is ef-
ficient, generating an 𝑛-cell in 𝑂(𝑑􏷡) in the
worst case, with 𝑑 the total number of darts
in the cell, and our algorithm should fare
markedly better in realistic datasets.
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Figure 6: (Left) A tesseract (edges only). (Right) A combinatorial maps representation of a
tesseract, 𝛽􏷢 and the “external” cube are omitted for clarity.

We intend to use this approach, supple-
mented with techniques under develop-
ment that generate the required (𝑛 − 1)-
dimensional faces, to generate objects for
higher dimensional geographic informa-
tion systems, as well as other applications.
This will allow us to take real-world 3D city
models and incorporate additional dimen-
sions to them, such as time and scale, to cre-
ate 4D/5D objects to which higher dimen-
sional analyses can be performed.
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