
A triangulation-based approach to
automatically repair GIS polygons
Hugo Ledoux

h.ledoux@tudelft.nl
Ken Arroyo Ohori

g.a.k.arroyoohori@tudelft.nl

Martijn Meijers
b.m.meijers@tudelft.nl

This is the author’s version of the work. It is posted here only for personal use, not
for redistribution and not for commercial use. The definitive version is published
as:

H. Ledoux, K. Arroyo Ohori, and M. Meijers (2014). A triangulation-based
approach to automatically repair GIS polygons. Computers & Geosciences, 66:121–
131.
doi: http://dx.doi.org/10.1016/j.cageo.2014.01.009

The code of the project is available at
https://github.com/tudelft3d/prepair

Although the validation of a single GIS polygon can be considered as a solved issue,
the repair of an invalid polygon has not received much attention and is still in prac-
tice a semi-manual and time-consuming task. We investigate in this paper algorithms
to automatically repair a single polygon. Automated repair algorithms can be consid-
ered as interpreting ambiguous or ill-defined polygons and returning a coherent and
clearly defined output (the definition of the international standards in our case). We
present a novel approach, based on the use of a constrained triangulation, to auto-
matically repair invalid polygons. Our approach is conceptually simple and easy to
implement as it is mostly based on labelling triangles. It is also flexible: it permits us
to implement different repair paradigms (we describe two in the paper). We have im-
plemented our algorithms, and we report on experiments made with large real-world
polygons that are often used by practitioners in different disciplines. We show that
our approach is faster and more scalable than alternative tools.

1 Introduction
While there aredifferent definitions for apolygon,most geographical information systems (GISs)
use that of theOpenGeospatial Consortium (OGC) and the InternationalOrganization for Stan-
dardization (ISO)1 [OGC, 2011; ISO, TC211], and provide validation functions to ensure that a
given polygon conforms to the definition. There are small variations between different imple-
mentations [vanOosterom et al., 2004], but we can consider the validation of a two-dimensional
polygon a solved problem. Having one definition together with validation tools ensures that

1These are almost identical, see Section 2.

1

h.ledoux@tudelft.nl
g.a.k.arroyoohori@tudelft.nl
b.m.meijers@tudelft.nl
http://dx.doi.org/10.1016/j.cageo.2014.01.009
https://github.com/tudelft3d/prepair

Figure 1: The JavaTopology Suite (JTS) interface that helps users locate errors in invalid polygons.

(a) (b)

Figure 2: Different interpretations of the polygon 𝑝􏷢, as shown in Figure 3. (a) ArcGIS considers
the overlapping region as a hole, but the non-overlapping part of the hole as a new
polygon (QGIS and FME do this as well). (b) GRASS removes the overlapping part from
the polygon, becoming a new polygon with a different shape.

practitioners can exchange datasets and use spatial analysis operations in their downstream ap-
plications. Validity is indeed a prerequisite for many GIS operations—invalid polygons will ei-
ther yield wrong results or, even worse, could make the software crash.
When a polygon is invalid—that is, it does not respect a given definition—then one has to

repair it. While most validation tools give users a list of errors and locations (see for instance
Figure 1), they usually still have tomanually fix them. This can become in practice a very tedious
and time-consuming task for large polygons.
We investigate in this paper automatic methods for repairing GIS polygons. Surprisingly, it

is a topic that so far has received little attention. As we discuss in Section 3, most GIS packages
perform some form of implicit cleaning/repairing (egdeleting “unwanted parts” for display pur-
poses) when reading invalid input, but how this is done is (often) not documented and the user
has little control over it. An example of this cleaning, and of how the interpretation of the input
can differ, is shown in Figure 2 for two well-known packages. To our knowledge, the only fully
automatic repair tool available is the one in PostGIS (the ST_MakeValid function). In our context,
a repair tool explicitly takes a polygon as input, repairs it, and gives it back to the user; this is in
contrast with the cleaning functions that are automatically used on the input as a means to en-
able its conversion to another (internal) representation. As explained in Section3, ST_MakeValid

2

is not documented (one has to read the code and try with different inputs) and does not perform
well for polygons having a large number of boundaries. It should be said that the repair of poly-
gons is not an exact science, iedifferent persons could repair one invalid polygon in different
ways. As a consequence, we describe in Section 3 different algorithms and paradigms that can
be used, each one of these has pros and cons. We believe that the most suitable paradigm is
application-dependent.
We present in this paper a novel approach to automatically repair invalid GIS polygons. As

described in Section 4, it is conceptually simple and is based on the properties of a constrained
triangulation (CT) of the input polygon. Our CT-based approach permits us to implement ef-
ficiently different repair paradigms, and adding new ones is easily done. We also discuss in
Section 5 a preprocessing step to our approach to snap points and lines to each other if they are
within a tolerance. Doing so can destroy (modify and invalidate) the topology of the input, but
we show that with our approach we can recover from these errors, and that the repaired poly-
gons are free of spikes and more robust. We have implemented our approach and we report in
Section 6 on experiments we ranwith large and complex real-world GIS polygons used by practi-
tioners in different disciplines related to the geosciences. It can be seen that our implementation
is efficient in practice, and that it scales better than a graph-based approach (that of PostGIS’s
ST_MakeValid) for very large polygons. Finally, in Section 7, we elaborate on the advantages of
our method and discuss how other paradigms can be implemented on it.

2 What is a (robust) polygon?
We use the definition as found in the Simple Features specifications (SFS) [OGC, 2011]:

[A] planar Surface defined by 1 exterior boundary and 0 or more interior boundaries. Each
interior boundary defines a hole in the Polygon.

A boundary is defined by a (clockwise or counterclockwise) oriented ring. Different rules are
provided, the most relevant being the following (examples of polygons breaking the rules are
given between brackets, they refer to those in Figure 3):

1. Each ringdefining the exterior and interior boundaries shouldbe simple, ienon-self-intersecting
(𝑝􏷠 and 𝑝􏷠􏷟). Notice that this prevents the existence of rings with zero-area (𝑝􏷥), and of rings
having two consecutive points at the same location. It should be observed that the polygon
𝑝􏷠 is not allowed by the SFS (in a valid representation of the polygon, the triangle should
be represented as an interior boundary touching the exterior boundary), but some imple-
mentations do allow it (egESRI’s Shapefile).

2. Each ring should be closed (𝑝􏷠􏷠): its first and its last points should be the same.

3. The rings of a polygon should not cross (𝑝􏷢, 𝑝􏷦, 𝑝􏷧 and 𝑝􏷠􏷡) but may intersect at one tangent
point (the interior ring of 𝑝􏷡 is a valid case, although 𝑝􏷡 as a whole is not since the other
interior ring is located outside the interior one).

4. A polygon may not have cut lines, spikes or punctures (𝑝􏷤 or 𝑝􏷥); removing these is known
as the regularisation of a polygon (a standard point-set topology operation).

5. The interior of every polygon is a connected point set (𝑝􏷣).

6. Each interior ring creates a new area that is disconnected from the exterior. Thus, an in-
terior ring cannot be located outside the exterior ring (𝑝􏷡) or inside other interior rings
(𝑝􏷨).

Furthermore, the exterior boundary of a polygon must be oriented counterclockwise, and the
interior boundaries clockwise.
The ISO/OGCdefinitionof apolygonassumes an implementationof the ruleswith anarbitrary-

precision representation (real numbers), while most commonly these are done using floating-
point, which offers only an approximation [Hoffmann, 1989]. The coordinates of the vertices
of a polygon are thereforemost often rounded to the closest possible value in the computer. This
can have serious consequences as the topology of a polygon can bemodified and a valid polygon
can become invalid; Figure 4 shows an example. In the ISO/OGC rules, if two rings touch at lo-

3

p2

p4 p5 p6

p7 p8 p9

p3

p12p11p10

p1

exterior
boundary

interior
boundary

Figure 3: Several invalid polygons; this is not a complete list of all problematic polygons, but
rather an overview of common cases. Polygon 𝑝􏷠􏷡 has its exterior and interior rings
defined by the same geometry.

(a) (b) (c) (d)

Figure 4: (a)(b) Two polygons, appearing to be identical, having an interior ring touching the ex-
terior ring. However, because of the use of a finite-precision representation, the vertex
cannot be located directly on the segment, and will thus be either slightly (a) inside
or (b) outside the exterior ring. (c) A more robust representation of the polygon. Its
robustness is equal to the length of the red line. (d) If a given minimum tolerance for
a valid polygon is given (red circles), then the polygon becomes invalid.

4

a b

cd

e

f

g

h

i

j
k

(c)

a b

cd

e

f

g

(b)
o o

(d)(a)
o

a
b

cd

e

f

g

(e)

Figure 5: Three non-simple polygons; grey represents the interior of the polygon. (a) The odd-
even rule. (b) The non-zero winding rule. (c) The odd-even rule when applied to a
polygon having an interior ring. (d) Top: input polygon. Bottom: result of the odd-
even rule algorithm is formed by 3 polygons (having no interior rings). (e) Top: input
polygon. Bottom: result of thenon-zerowinding rule algorithm is formedby1polygon.

cation 𝑞, only one of the rings is required to have a vertex at location 𝑞. If both rings had a vertex
at location 𝑞 (if a fifth vertex was added to the exterior ring of the polygon in Figure 4(a)), this
problem would be avoided.
To facilitate operations (including validation) on polygons when finite-precision representa-

tions is used, Van Oosterom et al. [2004] define the concept of robustness of a polygon. Each
vertex of a polygon is assigned a tolerance: the maximum distance this vertex can be moved (in
any direction) while the polygon is guaranteed to remain valid. As an example, the polygon in
Figure 4(a) is not very robust, but if, as shown in Figure 4(c), the exterior ring explicitly had a ver-
tex where both rings touch than the robustness would be greatly increased. Van Oosterom et al.
[2004] use the tolerance for validation: a polygon is valid only if it respects the ISO/OGC rules
and if its robustness is greater than a given user-defined tolerance (see Figure 4(d)). Observe
here that this definition has the advantage of not allowing ‘spikes’ in polygons. As Figures 4(c)
and (d) show, calculating the robustness implies calculating distances between vertices and other
vertices, and between vertices and edges. We describe in Section 5 one method to improve the
robustness of polygons and to remove spikes from polygons.

3 Relatedwork

3.1 Algorithms to identify the interior of a polygon
The automatic repair of a polygon is akin to the identification of the interior of a polygon. Given
one simple and closed boundary in the plane, finding its interior is straightforward since, as
the Jordan curve theorem states, the boundary divides the plane into two distinct regions: the
interior and the exterior [Jordan, 1887].
If the boundary is non-simple then there are two commonly used algorithms in vector-based

graphic software [Foley et al., 1996]: (i) the odd-even rule; (ii) the non-zero winding rule. In
brief, both approaches first require us to construct the planar graph𝐺 of the boundary to identify
faces, and then two similar rules are used to determinewhether a face is an interior or an exterior
region of the boundary. Figure 5 illustrates both approaches. With the odd-even rule, a face 𝐹 is
an interior region if for any point 𝑝 inside 𝐹 the segment 𝑝𝑜 (where 𝑜 is a distant point located
outside the boundary) intersects an oddnumber of edges in𝐺. Thenon-zerowinding rule counts
the number of times the boundary makes a full revolution around a point 𝑝 in a given direction
(changing direction can cancel out previous rotations), let us assume counter-clockwise. If the
count is non-zero, 𝑝 is located inside. It is implemented by adding 1 when the segment 𝑝𝑜, as
above, intersects an edge of 𝐺 that is oriented from left to right, and subtracting 1 when the edge
is in the other direction; 𝑝 is an interior point when the count is non-zero.
Both algorithms canbe generalised toGISpolygons (iehaving interior rings). Figure 5(c) shows

one polygon having one interior ring (light grey boundary) whose interior has been defined as
the interior of the polygon with the odd-even rule (the input polygon has actually been split
into several polygons). While this behaviour is predictable (so a practitioner can predict easily
how her polygons will be repaired), it is perhaps not suited for all applications, especially when

5

rings overlap. As shown in Figure 5(d), with the odd-even rule all rings are considered equal
and interior rings become new polygons when located outside the exterior ring. We describe in
Section4 an implementationof this paradigmwhere degeneracies (egwhen two rings are sharing
an edge, or when they overlap) are handled.
We also propose in Section 4 an alternative approach to odd-even in which the interior of

interior rings is always considered as the exterior of the polygon. This offers another option for
practitioners, one where the information of whether a ring is inner or outer is deemed to be
correct. As shown in Figure 5(e), it follows a point-set topology approach in which a polygon 𝑝
having an exterior ring 𝑟 and 𝑛 interior rings 𝑟𝑖 (where 0 ≤ 𝑖 ≤ 𝑛) is defined as 𝑝 = 𝑟 \ (𝑟􏷟∪𝑟􏷠∪...∪𝑟𝑛).
We are not aware of other software implementing this approach explicitly.

3.2 How practitioners repair their invalid polygons
As seen in the Introduction, most GIS packages have algorithms to automatically clean invalid
polygons. These algorithms are usually used implicitly as soon as an invalid geometry is read by
the software so that the geometries can be stored in a specific data structure and then drawn on
the screen. As shown in Figure 2, the rules for the handling of extreme cases differ greatly from
one package to the other. While there exist also specific functions to repair invalid polygons
(egin ArcGIS one can define rules based on a tolerance for the allowed distances between rings
and how they can interact), these are usually applied after the invalid geometry has been cleaned
automatically. Therefore, the user has no direct control over these (some parts of a polygon could
be unpredictably deleted), and perhaps worse, these are not documented.
To explicitly repair polygons automatically, iein a manner where the output can be controlled

and/or predicted, practitioners often resort to ad hoc solutions and tricks. Ramsey [2010] gives
an excellent overview of these, his examples are PostGIS-related only, but since it uses other
open-source libraries such as GEOS we believe this is representative of what practitioners do.
The most known is the “buffer-by-0” operation: a buffered geometry is built, constructed by
offsetting lines from the original geometry by nothing (zero). To construct a buffer, the planar
graphof the input is built; in otherwords the topology is built, whichwill be structurally identical
to the original input. While this trick works fine for solving a few simple cases (polygon 𝑝􏷠 in
Figure 3 for instance), parts of a polygon can disappear for some input polygons: it removes half
of the bow-tie of 𝑝􏷠􏷟. Repairing it correctly (iewith two polygons) requires using three functions
in PostGIS2. All these functions are based on the construction of a planar graph of the input, and
on identifying loops in this graph to form rings. Some of them reconstruct all the possible loops,
while others stop after one loop has been found.
The script cleanGeometry.sql3 was the first attempt to formalise the decision tree based on a

given input. Unfortunately, polygons with interior rings are not properly handled.
The PostGIS function ST_MakeValid4 is an attempt to build a high-level function to repair any

input polygon. It uses the functions of GEOS and PostGIS, and depending on the topological and
geometrical configurationof the input rings, different functions areused to repair. Basically, first
a planar graph of the input is built, and then one face in the graph is found and a ring is built (at
this point it is unknown if it is an exterior or an interior ring). Then, for all the other faces in
the graph the resulting polygon is obtained by the symmetric difference of this ring and the one
already found. Each symmetric difference requires building a new independent graphwhere the
topological relations of the rings are extracted (to detect which ring is the exterior andwhich are
the interior). As a consequence, ST_MakeValid is inefficient for input containing a large number
of points and/or interior rings, as Section 6 demonstrates with real-world large polygons. Even
if the function is not documented, after reading the code and testing it we can conclude that
it operates according to the odd-even rule, as explained above. The main difference is that it
attempts to create a valid representation of a given invalid geometry without losing any of the
input vertices, ieif a ring collapses to a line segment, this line segment is also returned to the
user as a separate geometry.

2ST_ExteriorRing + ST_Union + ST_BuildArea
3Available at: trac.osgeo.org/postgis/wiki/UsersWikiCleanPolygons
4Since PostGIS version 2.0

6

trac.osgeo.org/postgis/wiki/UsersWikiCleanPolygons

(b)

(c) (d) (e)

(a)

dangling piece

ring not closed

Figure 6: Workflow of our approach for repairing a polygon. In (a) the input polygon has 2 prob-
lems; (b) the interior ring is closed; (c) the CT is constructed; (d) triangles are labelled
as inside (grey) or outside (white); (e) the repaired polygon.

4 Repairing a polygonwith a constrained triangulation
Wepresent in this section a triangulation-based approach to implement the two automatic repair
paradigms described in Section 3:

odd-even paradigm: the odd-even rule when interior rings are present.

setdiff paradigm: the polygon 𝑝 = 𝑟 \ (𝑟􏷟∪𝑟􏷠∪...∪𝑟𝑛), where 𝑟 is the exterior ring and 𝑟𝑖 are interior
rings.

We demonstrate that both paradigms can be implemented simply and efficiently using a con-
strained triangulation (CT) as a supporting data structure. Because the input polygons can be
invalid and thus contain special cases (egtwo rings sharing an edge or partly overlapping), we
have generalised the two paradigms so that they have a consistent behaviour. The overall layout
of the two algorithms is very similar, and in brief has the following three steps (Figure 6 illus-
trates the steps for a polygon having two errors):

1. construction of the CT of the segments of the input polygon;

2. labelling of each triangle as either outside or inside;

3. reconstruction of the repaired polygon according to the SFS.

Notice that the valid representation of an invalid input polygon can be either:

• nothing (egthe only ring of a polygon is a line segment);

• one polygon (potentially with interior boundaries);

• several polygons (egpolygons 𝑝􏷡, 𝑝􏷣, 𝑝􏷨 and 𝑝􏷠􏷟 in Figure 3).

4.1 Properties of a constrained triangulation
Given a set 𝑆 of points and (straight-line) segments in the plane (such as that in Figure 6(b)),
a constrained triangulation (CT) decomposes the convex hull of 𝑆 into triangles that are non-
overlapping, and every input segment appears as an edge of CT(𝑆). If 𝑆 contains segments form-
ing a face (which defines one boundary of a polygon in our case), it permits us to triangulate the

7

interior of this face (iea triangulation of the polygon). Notice here that for the sake of repairing
a polygon, we cannot use algorithms to triangulate a single polygon (egChazelle [1982]) as these
often assume that the input is simple and forms only one polygon.
Observe thatwhile the shapeof the triangles constructed is important formanyapplications [Shewchuk,

1997], here any CT can be used (the constrained Delaunay triangulation can be used but is not
necessary). A CT can be built efficiently with a variety of approaches [Guibas and Stolfi, 1985;
Clarkson et al., 1992]. Once the CT is constructed, it can be used for solving quickly the point-
location problem [eventually with an extremely light auxiliary data structure, cf. Mücke et al.,
1999], which is useful to identify double vertices and intersections of segments.

4.2 Advantages of a constrained triangulation for the automatic
repair

The two algorithms described in this section can in theory be implemented with a planar graph
approach where each input segment becomes one edge in the graph. While this would decrease
the memory usage (since the CT contains several additional unconstrained edges), there are in
practice several advantages to using aCT. First, we can exploit the properties of theCT to perform
some cleaning that is otherwise rather cumbersome to implement. One example is that if two
input segments intersect, they are split into two sub-segments and thus a new vertex is added
at their intersection. This step is performed efficiently since the CT is used as a spatial index to
identify the candidate segments intersecting; no brute-force computations or auxiliary spatial
index structures are thus necessary. Another example is that no two vertices or edges of a CT
can be at the same location, which means that if two identical segments are in the input, only
one will be kept in the CT. Also, the handling of rings collapsed to points or lines is trivial as
these have no area and are thus not labelled. Second, the CT permits us to embed together in
the same structure both the geometry and the topology of the input polygons, which allows us
to perform less operations when repairing. For instance, ST_MakeValid, an implementation of
a planar graph approach, needs to perform extra geometrical operations to detect topological
relationships between rings, while with a CT this is not necessary because the extra edges of the
CT ensures that the graph is always connected (even when a polygon has interior rings). Third,
implementation-wise, several stable and fast constrained triangulation libraries exist (including
CGAL [CGAL, 2011], Triangle [Shewchuk, 1997] and GTS [GTS, 2006]) and we can simply build
over them as the approach involves mostly the labelling of triangles.

4.3 Odd-even paradigm
The algorithm for the odd-even paradigm is shown in Algorithm 1. Its main steps are described
in the following.

Algorithm 1 The OddEven algorithm.
Input: an invalid polygon 𝑝 having an exterior ring 𝑟 and 𝑛 interior rings 𝑟𝑖 (where 0 ≤ 𝑖 ≤ 𝑛)
Output: 𝑝 is valid (potentially formed by none or several valid polygons)
1: for each 𝑟𝑖 do
2: if first vertex != last vertex then
3: add first vertex as last vertex
4: end if
5: end for
6: 𝒯 ← construct CT of all segments of 𝑟 and the 𝑟𝑖
7: label each triangle in 𝒯 as either outside or inside
8: reconstruct 𝑝 as a SFS polygon

Closing each ring The SFS require that the first and the last point of a ring be the same (a triangle
has thus 4 points). This is in practice often ignored, andmostGIS packageswill recover from that
(small) error by adding the missing point. We believe that this is consequent with the intention
of the user: if a shape was defined as a ring, it is probably a mistake that it is not closed.

8

Polyline 1

Polyline 2

Figure 7: The polyline generated from a given triangle in the interior of the ring joins all holes
with the external boundary, always while keeping the interior connected and on the
same side of the line (left in this case). A separate polyline is always generated for
each different interior connected component. Note that the ‘bridges’ generated involve
passing through them twice in the polyline.

Labelling triangles To label each triangle as either outside or inside, we start at one triangle lo-
cated outside any input ring, we label it as outside andwe expand to all triangles reachable from it
without passing through a constrained edge of the CT (this is akin to performing a breadth-first
search (BFS) on the dual graph of the triangulation). When these are exhausted, all remaining
triangles reachable by passing once through a constrained edge are known to be in its interior.
From the remaining triangles, those that can be reached by passing through two constrained
edges are in its exterior, and so on.
The fact that we start from the outside is key to ensuring that the algorithmperforms correctly.

To find a triangle located outside any ring, we exploit the “far-away point” (also called the “big
triangle”) that is used by several CT implementations [Liu and Snoeyink, 2005; Facello, 1995].
In brief, every edge on the border of the convex hull has a triangle incident to it, and this triangle
is formed by the edge and a special “infinite” point.
Thus, to label the triangles, the algorithm performs several passes. First the triangles incident

to the infinite point and the reachable ones are labelled as outside. Then this operation is ex-
panded to triangles further in the interior of the polygon (labelling them as inside). If all the
triangles have been flagged (if there are no interior rings) then the process if finished, otherwise
the labelling continues the same way, alternating between outside and inside, until all triangles
have been labelled.

From the CT to a polygon To reconstruct the polygon(s)—according to the SFS—from the labelled
CT, we need to remove all the edges (both constrained and non-constrained) whose left and right
labels are the same. If we performed that operation, then the reconstruction of the polygon(s)
(and the identification of the exterior and interior rings of each) would be computationally ex-
pensive. We use a more efficient alternative: we construct a path (a polyline) that runs along
the boundary segments of the polygon, on the inside of it. In a nutshell, as Figure 7 illustrates,
we traverse one area formed by several triangles labelled as interior (or exterior) in a depth-first
search order, always going counter-clockwise. In this process, so-called ‘bridges’ are generated to
connect the exterior and interior rings. These are later removed in a rather complex procedure
that also ensures that inner and outer rings are generated and nested correctly. More details can
be found in Arroyo Ohori et al. [2012].

4.4 The setdiff paradigm
The algorithm to repair a polygon according to the setdiffparadigm is shown inAlgorithm2. It

is conceptually similar to OddEven, the twomajor differences are that: (i) each input ring must
be repaired individually and properly identified (exterior or interior); (ii) the labelling step is
performed differently. The other steps (the construction of the CT and the reconstruction of the
polygon in SFS) are exactly the same as in OddEven.

Repairing each ring To ensure that every input ring is valid, the algorithm OddEven is used
separately for every ring (a ring becomes a polygon for this step). If an input ring is non-simple

9

Algorithm 2 The SetDiff algorithm.
Input: an invalid polygon 𝑝 having an exterior ring 𝑟 and 𝑚 interior rings 𝑟𝑖 (where 0 ≤ 𝑖 ≤ 𝑚)
Output: 𝑝 is valid (potentially formed by none or several valid polygons)
1: 𝑟′ ←OddEven
2: for each 𝑟𝑖 do
3: 𝑟′𝑖 ←OddEven
4: end for
5: 𝒯 ← construct CT of all segments of 𝑟′ and the 𝑟′𝑖
6: label each triangle in𝒯 as either outside or inside, taking the orientation of rings into account

7: reconstruct 𝑝 as a SFS polygon

o

o

o

o

CT +
labelling universe

labelling inside labelling interior
rings

outputinput

o

o

o
o

o
o
o
o

o

o

o

o

o

o
oo

o
o EMPTY

input CT labelling
inside

labelling
outside

output

Figure 8: The steps of the SetDiff algorithm for two invalid polygons.

(eg𝑝􏷠􏷟 in Figure 3) then it is split into simple rings.

Labelling triangles while considering the orientation As is the case for OddEven, one CT is con-
structed with the segments of all the repaired rings. Since the exterior and interior rings have to
be handled differently, the constrained edges of the CT are oriented and have an attribute for the
type of ring. If two rings share an edge, the information is kept for both directions of the edge.
The labelling is performed in three steps, as shown in Figure 8 for two polygons. First the

triangles incident the “far-away point” are labelled as outside, with exactly the same procedure as
with OddEven. Second, the interior triangles of the exterior ring are labelled as inside; during
the labelling procedure the constraints in the CT are never crossed. Finally, the interior of every
interior ring is labelled as outside; during this step, constrained edges representing the exterior
ring can be crossed and triangles already labelled as inside can be re-labelled as outside. This is to
properly handle the special cases such as 𝑝􏷠􏷡 in Figure 3 or when an interior ring surrounds the
exterior ring, as Figure 8 shows.

4.5 Time complexity
The time complexity of OddEven is defined by the complexity of constructing the CT,𝑂(𝑣 log 𝑣),
and by the reconstruction of the polygon(s), 𝑂(𝑣𝑟 log 𝑟), with 𝑣 the number of vertices in all the
rings and 𝑟 the number of rings. It should be noticed that constructing the CT can take 𝑂(𝑣􏷡)
in the worst case since a quadratic number of edge-edge intersections are possible (egin certain
star polygons). However, for single polygons commonly found in GIS applications the number
of intersections is usually much smaller than 𝑣. As an example, the 100 real-world GIS polygons
used for the experiments in Section6.2 containno intersections. The other operations (ieclosing
rings and labelling) are performed in linear time or lower. Therefore, the total running time is

10

𝑂(𝑣 log 𝑣 + 𝑣𝑟 log 𝑟). If 𝑣 is several orders of magnitude larger than 𝑟 (as it is most always the case
with polygons used in practice), the algorithm is dominated by the triangulation time,𝑂(𝑣 log 𝑣).
For SetDiff, each ring is similarly repaired in 𝑂(𝑛 log 𝑛), where 𝑛 is the number of points in a

ring. Since every input vertex is only repaired once (vertices belonging to more than one ring
appear in the input once per ring), this is equivalent to 𝑂(∑𝑟 𝑛 log 𝑛) ≤ 𝑂(𝑣 log 𝑣). The SetDiff
repair process is therefore also performed in 𝑂(𝑣 log 𝑣).
Thismatches the experimental results in Section6, where SetDiff is slower by a factor of about

2. This is explained by the fact that theOddEven steps have to be performed roughly twice: once
for each ring, and once for all the rings together.

4.6 Example of repaired polygons
Figure 9 shows examples of invalid polygons that were repaired with the approach described in
this section. The following should be noticed:

Dangling pieces These are ignored because the labels on the left and the right are the same.

Disconnected interior This is handled properly and one new polygon is created per interior-
connected part.

Collapsed area These areas are simply ignored in the output (same labels on left and right).
However, if they intersected another boundary, then the point(s) added during the con-
struction of the CT is present in the output. It is possible to post-process segments and
merge two consecutive collinear ones, but we have not implemented it.

Overlapping boundaries Such boundaries are merged / dissolved together.

Self-intersections Self-intersections, such as 𝑝􏷠 in Figure 3, are repaired as an interior boundary
is constructed.

4.7 Repairing a MultiPolygon
A MultiPolygon is a collection of 𝑚 polygons in which no two polygons overlap or are edge-
adjacent [OGC, 2011]. The first obvious approach to repairing a MultiPolygon is to use either
OddEven or SetDiff separately for each polygon; this doesn’t necessitate any changes to the
algorithms. An second approach is to use one of the two algorithms with all the rings of the
polygons together when labelling. Special cases such as when an interior ring of a polygon 𝑝􏷠
is located outside the exterior ring of 𝑝􏷠, but inside the exterior ring of another polygon 𝑝􏷡, will
yield totally different outcomes. In our implementation of the two algorithms (presented in Sec-
tion 6), we have favoured the latter. Ourmainmotivation is that if oneMultiPolygonwas created
by a user (and not several separate polygons), this is because the polygons “belong together” (and
share the same set of attributes), and thus it makes more sense to repair them in an integrated
manner.

5 Computing the robustness and improving it with snapping
The use of a CT as a base to automatically repair polygons can also help us to efficiently compute
the robustness of a given polygon, before and after repair. Indeed, the triangulation itself serves
as a spatial index, and no auxiliary spatial index structures (such as an R-tree) need to be used.
The algorithm works by doing a breadth-first search (BFS) from every vertex 𝑣 belonging to a
polygon, visiting up to the closest vertex 𝑐 or edge 𝑒 also belonging to a polygon or until the
robustness (initialised at infinity) has been reached. The robustness is updated to the smallest
distance between 𝑣 and 𝑐 or 𝑒 if it smaller than the current robustness. Notice that these vertices
or edges are found as constraints in the input polygon, but after repair (labelling) they are instead
defined as being incident to two triangles having different labels.
If the robustness of a given polygon is not high enough, it is possible to improve it by pre-

processing the polygon with a well-known method to convert its segments from an arbitrary-
precision representation to a finite-precision one: snap rounding [Goodrich et al., 1997]. As
shown in Figure 10, the method is based on the subdivision of the plane into a grid of a resolu-

11

p10

+ +

nothing

OddEven SetDiff

p1

p3

+

p4

+

p7

+

+

p8

p9

++

p13

p12p12p12p12

Figure 9: Some polygons from Figure 3 and how OddEven and SetDiff repair them; polygon
𝑝􏷠􏷢 is new.

12

(a) (b)

(c) (d)

Figure 10: (a) Input polygon with one interior ring. (b) ‘Hot’ cells are in grey. (c) The polygon
after vertices have been moved to the centre of the grid cells. Observe that one hot
cell contains a line segment. (d) The result of the ISR algorithm.

tion 𝑠. Each vertex, and each intersection between two ormore segments, aremoved to the centre
of the grid cell they are located in (these grid cells are labelled as ‘hot’). While this ensures that
the distance between two vertices is at least 𝑠, the distance between a vertex and a segment not
incident to that vertex can be very small. Iterated snap rounding (ISR) solves that problem and
ensures that any vertex is at least 𝑠/2 from a segment. As Figure 10c shows, it splits segments
overlapping a hot cell by adding a new vertex at the centre of the cell; as a result, the segment is
not straight anymore. The details of the algorithm are out-of-scope for this paper, the reader is
referred to Halperin and Packer [2002].
While the ISR algorithm allows us to increase the robustness of a polygon, its topology can

be significantly changed. For instance, the polygon in Figure 10 is now split into two polygons,
but other cases such as the collapsing of a small area into a line can also arise. One example
is the polygon in Figure 4d where the two spikes would potentially become segments, and thus
be removed by our triangulation-based approach. ISR can thus be used not only to improve the
robustness of polygons, but also to remove spikes since these collapses to lines, which are deleted.
Notice that the origin of the virtual grid used for ISR influences the outcome of Figure 4d: it

is possible that the vertex and the segment be located in different grid cells and the spike would
stay in the repaired polygon. However, the ‘base’ of the spike would be larger (the interior angle
of the vertex at the right would be greater).

6 Experiments and comparisonwith other tools
We have implemented in C++ the two algorithms described in Section 4. The prototype, called
prepair, is open-source and freely available under a GPL licence5. Two libraries are used: (1)
CGAL6 (we use its constrained triangulation module and its robust geometric operations) and
(2) the OGR Simple Features Library7 (which allows us to read and write from a large variety of

5 www.github.com/tudelft-gist/prepair
6www.cgal.org
7www.gdal.org/ogr

13

www.github.com/tudelft-gist/prepair
www.cgal.org
www.gdal.org/ogr

Figure 11: The polygon EU-180927 from the CLC2006 dataset. It covers an area of about 26 000
km􏷡 in the North of Norway and Sweden, and contains 102 272 points and 299 rings.
The polygon contains a typical error that is found in several polygons of the CLC2006
dataset: self-intersection of the exterior boundary.

GIS data formats). In its current form, the prototype reads one Polygon and returns one valid
MultiPolygon; different GIS formats are supported for the input/output.
We describe in this section experiments that were runwith different datasets. We compare our

implementation of OddEven to that of PostGIS (version 2.0.2) and the function ST_MakeValid.
Both implementations have the same behaviour, and preprocessing with ISR was not used. Since
ST_MakeValid first validates a polygon (with the function ST_IsValid()), we have subtracted from
the total running time the validation time. All the experiments were run on a laptop with Mac
OS X 10.8, 2.5GHz and 4GB of main memory.

6.1 Unit tests
All the polygons shown in Figure 3, and other similar ones, were tested. The situations depicted
in these purposefully involvemany degenerate cases, both with regard to interpretation and im-
plementation. They are meant as a sort of unit testing polygons to compare how they fare in
different tools [Burns, 2001]. We are able to repair all of these, with the behaviour explained in
Section 4. ST_MakeValid repairs these correctly also, and the results are the same as OddEven,
except that the collapsed geometries are also returned to the user. These polygons are very small
and the running time is comparable.

6.2 Corine 2006 dataset
To test the efficiency of prepair, we have tested it with complex real-world polygons from the
CORINE land cover dataset (CLC2006)8. Since they are constructed from reclassified raster im-
agery, they can be very large, both in terms of number of points and of rings. As a test dataset,
we used the 100 largest (in terms of number of points) invalid polygons in the CLC2006 dataset.
The smallest of these 100 polygons (ID = EU-2018418) contains 44 051 points and 126 rings;
the largest (ID = EU-199949) contains 1 189 903 points and 7 672 rings. The average numbers
of points and rings per polygon are respectively 146 478 and 776; the median values are 90 526
and 434. Figure 11 shows one example of a polygon, the errors in the polygons are generally
the self-intersection of a boundary and different interior boundaries touching at more than one

8www.eea.europa.eu/publications/COR0-landcover

14

www.eea.europa.eu/publications/COR0-landcover

location. It should be noticed that with these 100 polygons, no new vertices were added dur-
ing the construction of the CT; in other words there were no intersections between straight-line
segments in the input. The number of vertices in the CT is in fact in each case lower than the
number of points in the input (ranging from 2 to 90 vertices); the main explanation for this is
that several points were duplicated, an example is shown in Figure 11.
Figure 12 shows the results of the experiments for the odd-even paradigm. Observe that for

polygons with less than 400K points, the running time appears similar, although prepair is on
average 6 times faster. The bottom plot in Figure 12 shows that ST_MakeValid follows roughly a
polynomial of degree 2, and prepair has a linear behaviour. The results corroborates the theo-
retical analyses for the two algorithms, as previously explained in Section 3 and Section 4.5. For
the polygons having between 500K and 1M points it is about 11 times faster. The exception is
the biggest polygon: ST_MakeValid takes more than 100 times more time to repair.
The comparison of the running times for OddEven and SetDiff is shown in Figure 13. It

can be seen that both algorithms have a close-to-linear behaviour, and that in practice OddEven
runs on average about twice as fast as SetDiff.

7 Conclusions
Wehave demonstrated that a triangulation-based approach for automatically repairingGIS poly-
gons yields in practice a fast and scalable implementation (with a behaviour that in practice is
linear in terms of the number of points in the polygon), and has several benefits over a graph-
based approach. The main benefits are: (i) many of the cleaning operations can be performed
locally on the CT; (ii) the graph of the polygons with interior rings is always connected, which
facilitates the detection of topological relationships between rings; and (iii) it is robust, thanks to
the several robust triangulators that have been developed in several disciplines. We can further
claim that our implementation is fully robust sincewe rely onCGAL (whichuses exact arithmetic
when needed) and our repair operations are expressed solely in terms of labelling of triangles
(no complex geometric computations are involved).
While designing our approach we had to make several—often arbitrary—choices for its be-

haviour when special cases are present in the input polygon. While the way polygons are re-
paired in prepair is perhaps not always consistent with what onemight domanually, we believe
that the two paradigms we have proposed to automatically repair polygons are consistent and
sufficient for most applications. The two repair paradigms can be described in a simple man-
ner, and that permits users to predict easily how their polygons will be repaired. Since the two
paradigms can be translated to properties of a CT and labelling of triangles, it is relatively easy
for practitioners to modify the code so that different application-specific rules are used.

Acknowledgements
This research was financially supported by (i) the Dutch Technology Foundation STW, which is
part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded
by theMinistry of EconomicAffairs (project code 11300); (ii) the European Location Framework
(ELF) project, EC ICT PSP Grant Agreement no./ 325140.

References
Arroyo Ohori K, Ledoux H, and Meijers M (2012). Validation and automatic repair of planar
partitions using a constrained triangulation. Photogrammetrie, Fernerkundung, Geoinformation
(PFG), 1(5):613–630.

Burns T (2001). Effective unit testing. ACM Ubiquity, 2001, issue January(Article no. 1).

CGAL (2011). CGAL 3.8 User and Reference Manual. CGAL Editorial Board.

Chazelle B (1982). A theorem on polygon cutting with applications. In Proceedings 23rd Annual
Symposium on Foundations of Computer Science, pages 339–349. IEEE Computer Society, Wash-
ington, DC, USA.

15

vertices rings st_makevalid
total

prepair factor st_isvalid ST_MakeValid
EU-2018418
EU-1550061
EU-878743
EU-1919485
EU-1184879
EU-1916710
EU-647723
EU-336460
EU-245667
EU-220186
EU-222394
EU-1550646
EU-179119
EU-1558517
EU-1551074
EU-665533
EU-2018387
EU-950884
EU-220230
EU-238793
EU-1203173
EU-473614
EU-1829479
EU-486252
EU-1227589
EU-485593
EU-2019270
EU-1196877
EU-1180799
EU-559844
EU-201662
EU-17569
EU-1761469
EU-190399
EU-1091904
EU-487003
EU-1831172
EU-249345
EU-195404
EU-1550578
EU-650152
EU-230800
EU-474462
EU-350575
EU-1176841
EU-638860
EU-960500
EU-640944
EU-1925035
EU-1211168
EU-194315
EU-242963
EU-574435
EU-316456
EU-14645
EU-648334
EU-665872
EU-180927
EU-2024060
EU-245459
EU-232295
EU-196047
EU-193755
EU-649712
EU-893021
EU-230707
EU-737431
EU-685204
EU-674246
EU-194346
EU-1765903
EU-708160
EU-14495
EU-1208804
EU-50884
EU-1191296
EU-1829387
EU-28868
EU-750660
EU-240775
EU-233242
EU-1837712
EU-676886
EU-2025982
EU-232633
EU-188515
EU-195394
EU-741058
EU-192159
EU-190384
EU-201729
EU-249958
EU-574572
EU-1195888
EU-574574
EU-200597
EU-1203510
EU-192509
EU-752375
EU-199949

44051 126 3.8781199455 0.8464460373 4.3369450957 0.2071299553 3.6709899902 6.2080221096
44769 128 3.8593111038 0.7586359978 4.9406989425 0.1111190319 3.7481920719
46735 142 3.9665541649 0.7336220741 5.2496322758 0.1153080463 3.8512461185
47812 173 4.1548109055 0.8416619301 4.7939139751 0.1199560165 4.0348548889
48490 327 4.7919828892 0.9295601845 4.9625898148 0.1789569855 4.6130259037
49143 40 3.59826684 0.9328119755 3.7621299135 0.0889070034 3.5093598366
49178 100 3.9920079708 0.7721450329 5.0164783606 0.1185591221 3.8734488487
49383 227 4.880906105 0.9524519444 4.9217286757 0.1931960583 4.6877100468
49494 171 5.3977808952 0.9278829098 5.552659512 0.2455630302 5.152217865
50391 314 5.3617389202 0.8114659786 6.3636222339 0.1978759766 5.1638629436
50782 279 5.3918170929 0.8087310791 6.4157309532 0.2032160759 5.188601017
50856 133 5.3103220463 0.9652070999 5.3828781051 0.1147298813 5.195592165
54235 219 6.1159858704 1.0217130184 5.7175523729 0.2742881775 5.8416976929
54373 217 4.7533710003 1.0334060192 4.4779224159 0.1258590221 4.6275119781
54808 278 4.9966719151 0.9993948936 4.8896496131 0.10998106 4.886690855
54992 408 5.7786998749 0.9535908699 5.8579795732 0.1925840378 5.5861158371
55675 49 4.3576359749 1.042071104 4.0874128842 0.0982611179 4.2593748569
56023 103 4.5582859516 0.9516811371 4.697169835 0.088078022 4.4702079296
56550 320 6.1622989178 0.897767067 6.6066291719 0.2310848236 5.9312140942
56555 352 5.9874999523 0.888379097 6.508588531 0.2054059505 5.7820940018
57020 442 6.2478129864 1.0555799007 5.711476631 0.2188930511 6.0289199352
57336 219 5.6252629757 1.0978529453 4.9340480189 0.2084038258 5.4168591499
57513 220 5.1740829945 1.0908930302 4.6061583591 0.1492569447 5.0248260498
58146 231 5.8373320103 1.1210429668 5.0109274893 0.219866991 5.6174650192
58898 370 6.5151028633 1.1347072124 5.5242838926 0.2466580868 6.2684447765
61228 280 6.4098289013 1.143228054 5.3912873829 0.2463579178 6.1634709835
61350 59 4.9884150028 1.1552488804 4.2152493104 0.1187529564 4.8696620464
62407 288 5.8445060253 1.0502171516 5.4206809189 0.1516139507 5.6928920746
63700 441 6.6653051376 1.2056679726 5.3560209755 0.207722187 6.4575829506
63815 372 6.5854849815 1.0270049572 6.1790110947 0.2396099567 6.3458750248
67867 227 7.6557998657 1.1680879593 6.2792402041 0.3210949898 7.3347048759
69318 460 6.3710250855 1.3367459774 4.6477949046 0.1581039429 6.2129211426
70555 482 7.4892940521 1.3569488525 5.37247446 0.1991209984 7.2901730537
70663 487 8.5460321903 1.2202730179 6.6796888982 0.39498806 8.1510441303
71036 198 7.2592840195 1.1363539696 6.2008371844 0.2129380703 7.0463459492
73371 326 7.7279839516 1.3394448757 5.5422399168 0.304459095 7.4235248566
73685 259 7.3810799122 1.4187068939 5.0339790619 0.2393391132 7.141740799
74346 230 8.9257938862 1.3846950531 6.1180929476 0.4541008472 8.4716930389
74532 408 7.4296240807 1.3916668892 5.1646439637 0.2421600819 7.1874639988
76268 254 7.1207590103 1.2476220131 5.5436470672 0.2043828964 6.9163761139
79342 434 7.4911220074 1.3042340279 5.5954972932 0.1932840347 7.2978379726
79803 307 8.828635931 1.4781279564 5.7176226403 0.3772580624 8.4513778687
80040 257 8.3499939442 1.5192101002 5.2823358149 0.3250160217 8.0249779224
80205 337 9.4726450443 1.3734657764 6.6029989586 0.4036519527 9.0689930916
81751 832 9.5510361195 1.6239900589 5.6665162839 0.3486700058 9.2023661137
84517 467 8.3890609741 1.3565299511 5.9884758403 0.2655141354 8.1235468388
85413 968 12.368889093 1.4914140701 7.8987843229 0.5885310173 11.780358076
87455 233 7.6181910038 1.4689571857 5.060538173 0.1844770908 7.433713913
89245 267 8.4228858948 1.5396950245 5.3414051427 0.1987509727 8.224134922
90526 554 9.6644580364 1.6901710033 5.5131972491 0.3462119102 9.3182461262
91501 586 14.252270937 1.6479640007 8.108606086 0.8895800114 13.362690926
92801 416 11.680834055 1.7350640297 6.4180975147 0.5450239182 11.135810137
96638 353 8.5231230259 1.8738379478 4.4187744276 0.2430558205 8.2800672054
97312 489 11.703074932 1.5376870632 7.274218559 0.517603159 11.185471773
97559 816 10.911828041 1.919615984 5.4660177486 0.4191730022 10.492655039
98913 548 9.6232829094 1.6298668385 5.7497323423 0.2519848347 9.3712980747

101864 755 14.103344917 1.7894880772 7.4296202185 0.8081281185 13.295216799
102272 299 10.644652128 1.691491127 6.0587607976 0.3963119984 10.24834013
102773 431 9.9634900093 1.6940608025 5.6993769251 0.308398962 9.6550910473
103085 426 13.028250933 1.9197511673 6.48321415 0.5820930004 12.446157932
104389 564 13.838979006 1.9483191967 6.7449471313 0.6976690292 13.141309977
109171 471 11.812805176 1.7851190567 6.3675389311 0.4459900856 11.36681509
110335 675 13.810140133 2.0653219223 6.4054348423 0.5808551311 13.229285002
112119 547 13.357954025 1.8217298985 7.0527117983 0.5098180771 12.848135948
114798 173 9.6610488892 2.0510311127 4.5993363904 0.2276668549 9.4333820343
120363 573 16.027656078 2.2362360954 6.824204266 0.767124176 15.260531902
121439 506 16.042546034 2.0960948467 7.2687650875 0.806524992 15.236021042
127273 1073 19.06439209 2.1961181164 8.2551912147 0.9350171089 18.129374981
131272 1247 20.377846003 2.3168230057 8.410108197 0.8931138515 19.484732151
132268 909 19.236660004 2.6174039841 6.9571324521 1.0270338059 18.209626198
135321 623 15.119310141 2.6197168827 5.5652892016 0.5398280621 14.579482079
138543 433 14.628802061 2.2302289009 6.3466571053 0.4743039608 14.1544981
138892 1070 17.438358069 2.76384902 6.0616570841 0.6848530769 16.753504992
143018 1056 18.465255022 2.6353061199 6.759772918 0.651184082 17.81407094
146618 710 16.635406971 2.8426930904 5.6560776589 0.5569140911 16.07849288
158458 655 20.131518126 2.9434680939 6.5102758023 0.9687290192 19.162789106
159167 186 14.895792961 3.1275091171 4.6068505482 0.4878258705 14.407967091
165417 387 18.067790031 3.3662929535 5.1696249434 0.6653180122 17.402472019
174953 836 30.285763979 3.1136021614 9.0911325595 1.9795939922 28.306169987
183423 1457 33.668266058 3.5117690563 8.957812344 2.2104978561 31.457768202
191131 695 34.944799185 3.6165630817 8.9962985609 2.4091179371 32.535681248
195672 756 22.533802986 3.8357729912 5.6662865998 0.7992138863 21.7345891
207050 1688 39.363101006 3.6866769791 10.055428608 2.2919838429 37.071117163
209244 1085 26.134007931 3.8753359318 6.4800307143 1.0217120647 25.112295866
214925 783 38.548593998 4.1016418934 8.7374236443 2.7108111382 35.83778286
217558 968 32.283975124 3.6320588589 8.3720419623 1.8762259483 30.407749176
220242 1234 32.662763119 4.252505064 7.3178396482 1.543612957 31.119150162
226239 1104 39.297286034 4.0225939751 9.1275093228 2.5810220242 36.716264009
259733 2048 52.89556694 5.0613238811 9.6658902503 3.9733657837 48.922201157
267839 1935 46.15162015 5.2843520641 8.2312002624 2.6550600529 43.496560097
273962 1480 49.431200028 5.2235109806 8.9564653656 2.6470048428 46.784195185
282178 1063 58.521463871 5.5057518482 9.9137700816 3.9387059212 54.58275795
323497 2101 53.484571934 8.4017000198 6.0460849318 2.6871800423 50.797391891
364637 1685 50.106575966 6.7749860287 7.1298024507 1.8022639751 48.304311991
474557 1017 54.714522123 9.3423559666 5.6453663614 1.9735000134 52.74102211
515787 2614 128.45887899 10.112967968 11.77429311 9.3858299255 119.07304907
532193 4465 145.60111094 10.767818213 12.647055256 9.419919014 136.18119192
616945 4232 189.50889397 12.234797955 14.228980303 15.420194864 174.0886991
966894 4719 238.37734294 19.863076925 11.225574202 15.402899027 222.97444391

1189903 7672 2353.122458 22.618509054 101.83603891 49.743089914 2303.3793681

vertices rings st_makevalid prepair
EU-1916710
EU-2018387
EU-2019270
EU-647723
EU-950884
EU-2018418
EU-1550061
EU-1550646
EU-878743
EU-245667
EU-1919485
EU-893021
EU-1829387
EU-1091904
EU-1558517
EU-179119
EU-473614
EU-1829479
EU-336460
EU-201662
EU-249345
EU-486252
EU-640944
EU-1550578
EU-474462
EU-1831172
EU-1925035
EU-1551074
EU-222394
EU-485593
EU-1196877
EU-180927
EU-230800
EU-220186
EU-220230
EU-487003
EU-1184879
EU-350575
EU-238793
EU-574435
EU-1227589
EU-559844
EU-28868
EU-665533
EU-195404
EU-242963
EU-245459
EU-2024060
EU-708160
EU-650152
EU-1180799
EU-1203173
EU-17569
EU-638860
EU-196047
EU-1761469
EU-190399
EU-316456
EU-737431
EU-649712
EU-648334
EU-1211168
EU-232295
EU-230707
EU-194315
EU-1765903
EU-1191296
EU-193755
EU-233242
EU-50884
EU-665872
EU-1837712
EU-232633
EU-14645
EU-1176841
EU-750660
EU-194346
EU-960500
EU-188515
EU-574574
EU-1208804
EU-249958
EU-14495
EU-685204
EU-2025982
EU-741058
EU-195394
EU-674246
EU-240775
EU-201729
EU-1195888
EU-676886
EU-190384
EU-192159
EU-574572
EU-200597
EU-192509
EU-1203510
EU-752375
EU-199949

49143 40 3.59826684 0.9328119755 3.8574406575
55675 49 4.3576359749 1.042071104 4.1817069468
61350 59 4.9884150028 1.1552488804 4.3180435727
49178 100 3.9920079708 0.7721450329 5.170023507
56023 103 4.5582859516 0.9516811371 4.7897197643
44051 126 3.8781199455 0.8464460373 4.581650542
44769 128 3.8593111038 0.7586359978 5.0871710743
50856 133 5.3103220463 0.9652070999 5.5017436639
46735 142 3.9665541649 0.7336220741 5.4068086346
49494 171 5.3977808952 0.9278829098 5.8173082383
47812 173 4.1548109055 0.8416619301 4.936436777

114798 173 9.6610488892 2.0510311127 4.7103375612
159167 186 14.895792961 3.1275091171 4.7628295884
71036 198 7.2592840195 1.1363539696 6.3882242803
54373 217 4.7533710003 1.0334060192 4.5997129027
54235 219 6.1159858704 1.0217130184 5.9860114926
57336 219 5.6252629757 1.0978529453 5.1238765625
57513 220 5.1740829945 1.0908930302 4.7429792394
49383 227 4.880906105 0.9524519444 5.1245694168
67867 227 7.6557998657 1.1680879593 6.5541295969
74346 230 8.9257938862 1.3846950531 6.4460358013
58146 231 5.8373320103 1.1210429668 5.2070546651
87455 233 7.6181910038 1.4689571857 5.1861218814
76268 254 7.1207590103 1.2476220131 5.7074650299
80040 257 8.3499939442 1.5192101002 5.496273322
73685 259 7.3810799122 1.4187068939 5.2026813599
89245 267 8.4228858948 1.5396950245 5.4704897793
54808 278 4.9966719151 0.9993948936 4.9996972636
50782 279 5.3918170929 0.8087310791 6.6670086414
61228 280 6.4098289013 1.143228054 5.6067806232
62407 288 5.8445060253 1.0502171516 5.5650453015

102272 299 10.644652128 1.691491127 6.2930582125
79803 307 8.828635931 1.4781279564 5.9728495715
50391 314 5.3617389202 0.8114659786 6.6074722311
56550 320 6.1622989178 0.897767067 6.8640287048
73371 326 7.7279839516 1.3394448757 5.7695423617
48490 327 4.7919828892 0.9295601845 5.1551077264
80205 337 9.4726450443 1.3734657764 6.8968919407
56555 352 5.9874999523 0.888379097 6.7398028304
96638 353 8.5231230259 1.8738379478 4.5484845878
58898 370 6.5151028633 1.1347072124 5.7416598677
63815 372 6.5854849815 1.0270049572 6.4123205398

165417 387 18.067790031 3.3662929535 5.3672660939
54992 408 5.7786998749 0.9535908699 6.0599362444
74532 408 7.4296240807 1.3916668892 5.3386511804
92801 416 11.680834055 1.7350640297 6.7322207452

103085 426 13.028250933 1.9197511673 6.7864268842
102773 431 9.9634900093 1.6940608025 5.8814240875
138543 433 14.628802061 2.2302289009 6.5593276345
79342 434 7.4911220074 1.3042340279 5.7436946494
63700 441 6.6653051376 1.2056679726 5.5283090281
57020 442 6.2478129864 1.0555799007 5.9188442125
69318 460 6.3710250855 1.3367459774 4.7660701383
84517 467 8.3890609741 1.3565299511 6.1842062295

109171 471 11.812805176 1.7851190567 6.617376657
70555 482 7.4892940521 1.3569488525 5.5192161724
70663 487 8.5460321903 1.2202730179 7.0033771665
97312 489 11.703074932 1.5376870632 7.6108300655

121439 506 16.042546034 2.0960948467 7.6535401339
112119 547 13.357954025 1.8217298985 7.3325656216
98913 548 9.6232829094 1.6298668385 5.9043368957
90526 554 9.6644580364 1.6901710033 5.718035641

104389 564 13.838979006 1.9483191967 7.1030347744
120363 573 16.027656078 2.2362360954 7.1672468355
91501 586 14.252270937 1.6479640007 8.6484115739

135321 623 15.119310141 2.6197168827 5.7713527139
158458 655 20.131518126 2.9434680939 6.839387241
110335 675 13.810140133 2.0653219223 6.686676776
191131 695 34.944799185 3.6165630817 9.6624331983
146618 710 16.635406971 2.8426930904 5.8519883933
101864 755 14.103344917 1.7894880772 7.8812175936
195672 756 22.533802986 3.8357729912 5.8746445731
214925 783 38.548593998 4.1016418934 9.3983324239
97559 816 10.911828041 1.919615984 5.684380695
81751 832 9.5510361195 1.6239900589 5.8812158776

174953 836 30.285763979 3.1136021614 9.7269215555
132268 909 19.236660004 2.6174039841 7.3495188824
85413 968 12.368889093 1.4914140701 8.2933970794

217558 968 32.283975124 3.6320588589 8.8886156251
474557 1017 54.714522123 9.3423559666 5.8566085813
143018 1056 18.465255022 2.6353061199 7.0068728951
282178 1063 58.521463871 5.5057518482 10.629150293
138892 1070 17.438358069 2.76384902 6.3094466964
127273 1073 19.06439209 2.1961181164 8.6809502402
209244 1085 26.134007931 3.8753359318 6.743675488
226239 1104 39.297286034 4.0225939751 9.7691405787
220242 1234 32.662763119 4.252505064 7.6808287414
131272 1247 20.377846003 2.3168230057 8.7955989528
183423 1457 33.668266058 3.5117690563 9.5872665651
273962 1480 49.431200028 5.2235109806 9.4632135763
364637 1685 50.106575966 6.7749860287 7.3958198222
207050 1688 39.363101006 3.6866769791 10.677122305
267839 1935 46.15162015 5.2843520641 8.7336384082
259733 2048 52.89556694 5.0613238811 10.450935009
323497 2101 53.484571934 8.4017000198 6.365922588
515787 2614 128.45887899 10.112967968 12.702391563
616945 4232 189.50889397 12.234797955 15.4893358
532193 4465 145.60111094 10.767818213 13.521876768
966894 4719 238.37734294 19.863076925 12.00102803

1189903 7672 2353.122458 22.618509054 104.03525946

0

75

150

225

300

0 1250 2500 3750 5000

Chart 11

ru
nn

in
g

tim
e

(s
ec

on
ds

)

rings

0

10

20

30

40

50

60

0 80 160 240 320 400

Chart 16

0

500

1000

1500

2000

2500

0K 200K 400K 600K 800K 1000K 1200K

Ru
nn

in
g

tim
e

(s
ec

)

Number of points

prepair ST_MakeValid

0

15

30

45

60

0K 100K 200K 300K 400K

Ru
nn

in
g

tim
e

(s
ec

)

Number of points

0

2000

4000

6000

8000

0 375000 750000 1125000 1500000

Chart 19

vertices

Figure 12: Running time of prepair (OddEven algorithm) and ST_MakeValid for the 100 largest
polygons in the CLC2006 dataset. The bottom plot is for the part in the ellipse at the
top.

16

vertices rings st_makevalid
total

prepair factor st_isvalid ST_MakeValid setdiff
EU-2018418
EU-1550061
EU-878743
EU-1919485
EU-1184879
EU-1916710
EU-647723
EU-336460
EU-245667
EU-220186
EU-222394
EU-1550646
EU-179119
EU-1558517
EU-1551074
EU-665533
EU-2018387
EU-950884
EU-220230
EU-238793
EU-1203173
EU-473614
EU-1829479
EU-486252
EU-1227589
EU-485593
EU-2019270
EU-1196877
EU-1180799
EU-559844
EU-201662
EU-17569
EU-1761469
EU-190399
EU-1091904
EU-487003
EU-1831172
EU-249345
EU-195404
EU-1550578
EU-650152
EU-230800
EU-474462
EU-350575
EU-1176841
EU-638860
EU-960500
EU-640944
EU-1925035
EU-1211168
EU-194315
EU-242963
EU-574435
EU-316456
EU-14645
EU-648334
EU-665872
EU-180927
EU-2024060
EU-245459
EU-232295
EU-196047
EU-193755
EU-649712
EU-893021
EU-230707
EU-737431
EU-685204
EU-674246
EU-194346
EU-1765903
EU-708160
EU-14495
EU-1208804
EU-50884
EU-1191296
EU-1829387
EU-28868
EU-750660
EU-240775
EU-233242
EU-1837712
EU-676886
EU-2025982
EU-232633
EU-188515
EU-195394
EU-741058
EU-192159
EU-190384
EU-201729
EU-249958
EU-574572
EU-1195888
EU-574574
EU-200597
EU-1203510
EU-192509
EU-752375
EU-199949

44051 126 3.8781199455 1.2565250397 2.9215414531 0.2071299553 3.6709899902 3.6113753937 3.4498040676 2.7455115964
44769 128 3.8593111038 1.2670881748 2.9581146335 0.1111190319 3.7481920719 2.868751049 2.2640500528
46735 142 3.9665541649 1.2497830391 3.0815317524 0.1153080463 3.8512461185 3.1077959538 2.4866683709
47812 173 4.1548109055 1.4898610115 2.7082089254 0.1199560165 4.0348548889 3.3016178608 2.2160576291
48490 327 4.7919828892 1.5265009403 3.0219607351 0.1789569855 4.6130259037 3.4753382206 2.2766695577
49143 40 3.59826684 1.5411810875 2.2770587214 0.0889070034 3.5093598366 3.8279628754 2.4837852647
49178 100 3.9920079708 1.3058149815 2.9663075579 0.1185591221 3.8734488487 3.4573590755 2.647663815
49383 227 4.880906105 1.4762120247 3.1754991616 0.1931960583 4.6877100468 3.3158071041 2.2461591212
49494 171 5.3977808952 1.4586889744 3.5320880294 0.2455630302 5.152217865 3.4989027977 2.3986626753
50391 314 5.3617389202 1.3512969017 3.8214125535 0.1978759766 5.1638629436 3.5324728489 2.6141352389
50782 279 5.3918170929 1.4427728653 3.5962701696 0.2032160759 5.188601017 3.4873509407 2.4171170838
50856 133 5.3103220463 1.5289640427 3.3981127221 0.1147298813 5.195592165 3.5850141048 2.3447340845
54235 219 6.1159858704 1.7135460377 3.4091279513 0.2742881775 5.8416976929 3.7060909271 2.1628195833
54373 217 4.7533710003 1.6282188892 2.8420699506 0.1258590221 4.6275119781 3.694715023 2.2691758752
54808 278 4.9966719151 1.8053159714 2.7068341124 0.10998106 4.886690855 3.8287830353 2.1208381779
54992 408 5.7786998749 1.4848361015 3.7621093879 0.1925840378 5.5861158371 3.7462358475 2.5229962038
55675 49 4.3576359749 1.6154279709 2.6366850975 0.0982611179 4.2593748569 4.0225329399 2.4900726076
56023 103 4.5582859516 1.5903980732 2.8107478278 0.088078022 4.4702079296 3.6402800083 2.288911229
56550 320 6.1622989178 1.5039901733 3.943652159 0.2310848236 5.9312140942 3.4791631699 2.3132884985
56555 352 5.9874999523 1.5035331249 3.8456711767 0.2054059505 5.7820940018 3.6047182083 2.3974983647
57020 442 6.2478129864 1.632969141 3.6919986936 0.2188930511 6.0289199352 3.8858940601 2.3796494144
57336 219 5.6252629757 1.6757850647 3.2324307359 0.2084038258 5.4168591499 3.9756360054 2.3724020993
57513 220 5.1740829945 1.7665410042 2.8444434847 0.1492569447 5.0248260498 3.948625803 2.2352302005
58146 231 5.8373320103 1.7039070129 3.2968143077 0.219866991 5.6174650192 4.1425471306 2.4312049303
58898 370 6.5151028633 1.7612528801 3.5590827685 0.2466580868 6.2684447765 4.1343550682 2.3473943548
61228 280 6.4098289013 1.8257319927 3.3758903323 0.2463579178 6.1634709835 4.1871509552 2.2934094226
61350 59 4.9884150028 1.8009579182 2.7039288355 0.1187529564 4.8696620464 4.3360769749 2.4076503571
62407 288 5.8445060253 1.7057061195 3.3375573959 0.1516139507 5.6928920746 4.2834479809 2.5112461823
63700 441 6.6653051376 1.8983411789 3.4016977677 0.207722187 6.4575829506 4.5815649033 2.4134570509
63815 372 6.5854849815 1.7152080536 3.6997698393 0.2396099567 6.3458750248 4.2182421684 2.4593180749
67867 227 7.6557998657 1.8630411625 3.9369526684 0.3210949898 7.3347048759 4.5959179401 2.4668901754
69318 460 6.3710250855 2.0404121876 3.0449343424 0.1581039429 6.2129211426 4.7080059052 2.3073798195
70555 482 7.4892940521 2.1157770157 3.4456244678 0.1991209984 7.2901730537 4.7583658695 2.2489921359
70663 487 8.5460321903 2.0911719799 3.8978353807 0.39498806 8.1510441303 4.6702721119 2.2333276061
71036 198 7.2592840195 1.9208509922 3.6683459455 0.2129380703 7.0463459492 4.5757389069 2.3821415224
73371 326 7.7279839516 2.2087788582 3.360918106 0.304459095 7.4235248566 4.8664879799 2.2032481712
73685 259 7.3810799122 2.2586679459 3.1619259538 0.2393391132 7.141740799 5.0891261101 2.2531537313
74346 230 8.9257938862 2.1597688198 3.9224999274 0.4541008472 8.4716930389 5.2393660545 2.4258920707
74532 408 7.4296240807 2.4931921959 2.8828359124 0.2421600819 7.1874639988 4.8974552155 1.964331199
76268 254 7.1207590103 2.070797205 3.3399582042 0.2043828964 6.9163761139 5.1964640617 2.5094026828
79342 434 7.4911220074 2.250756979 3.2423926887 0.1932840347 7.2978379726 5.3508780003 2.37736817
79803 307 8.828635931 2.3628048897 3.5768411965 0.3772580624 8.4513778687 5.8017241955 2.4554393894
80040 257 8.3499939442 2.3986740112 3.3455892234 0.3250160217 8.0249779224 5.6222491264 2.3438987958
80205 337 9.4726450443 2.1920747757 4.1371732352 0.4036519527 9.0689930916 5.2132751942 2.3782378466
81751 832 9.5510361195 2.4637420178 3.7351175762 0.3486700058 9.2023661137 5.533618927 2.246022062
84517 467 8.3890609741 2.2294669151 3.6437171521 0.2655141354 8.1235468388 5.2832131386 2.369720359
85413 968 12.368889093 2.6447379589 4.4542628643 0.5885310173 11.780358076 5.533809185 2.0923846789
87455 233 7.6181910038 3.0446720123 2.4415483451 0.1844770908 7.433713913 5.811658144 1.9087961266
89245 267 8.4228858948 2.5862071514 3.1799985231 0.1987509727 8.224134922 5.8608400822 2.2661912751
90526 554 9.6644580364 3.1350910664 2.9722409745 0.3462119102 9.3182461262 6.1048910618 1.947277107
91501 586 14.252270937 2.5411279202 5.258566804 0.8895800114 13.362690926 6.8100290298 2.6799237362
92801 416 11.680834055 2.9461021423 3.7798452324 0.5450239182 11.135810137 6.7414419651 2.2882580574
96638 353 8.5231230259 3.0050919056 2.7553457483 0.2430558205 8.2800672054 6.8276150227 2.2720153783
97312 489 11.703074932 2.666260004 4.1951916753 0.517603159 11.185471773 6.4923849106 2.4350156777
97559 816 10.911828041 3.5157299042 2.9844883779 0.4191730022 10.492655039 6.8724451065 1.9547705011
98913 548 9.6232829094 2.9287509918 3.1997592492 0.2519848347 9.3712980747 6.6021049023 2.2542390667

101864 755 14.103344917 3.2683970928 4.0678095168 0.8081281185 13.295216799 7.1120450497 2.17600397
102272 299 10.644652128 3.0814068317 3.3258640256 0.3963119984 10.24834013 7.2540259361 2.3541279462
102773 431 9.9634900093 2.7673809528 3.4888911978 0.308398962 9.6550910473 7.0002439022 2.5295555695
103085 426 13.028250933 3.3006920815 3.7707721972 0.5820930004 12.446157932 7.4879670143 2.2686051378
104389 564 13.838979006 3.2217860222 4.0788897481 0.6976690292 13.141309977 7.5030281544 2.3288412398
109171 471 11.812805176 3.4624650478 3.282867822 0.4459900856 11.36681509 7.4946219921 2.1645336165
110335 675 13.810140133 4.0859510899 3.2377492316 0.5808551311 13.229285002 7.9713308811 1.9509119678
112119 547 13.357954025 4.3857359886 2.9295279017 0.5098180771 12.848135948 7.6885991096 1.7530920989
114798 173 9.6610488892 3.8538441658 2.4477850241 0.2276668549 9.4333820343 8.1967570782 2.1269041314
120363 573 16.027656078 3.7399930954 4.0803636566 0.767124176 15.260531902 8.2942588329 2.2177203597
121439 506 16.042546034 3.5167331696 4.3324359021 0.806524992 15.236021042 8.669686079 2.4652669569
127273 1073 19.06439209 3.8983058929 4.6505778353 0.9350171089 18.129374981 8.6917619705 2.2296254345
131272 1247 20.377846003 3.9105429649 4.982615541 0.8931138515 19.484732151 9.6901078224 2.4779443441
132268 909 19.236660004 4.4213130474 4.1186014206 1.0270338059 18.209626198 9.5319330692 2.1559054894
135321 623 15.119310141 4.0471539497 3.6024036297 0.5398280621 14.579482079 9.9758279324 2.4648995458
138543 433 14.628802061 4.4446730614 3.1845982606 0.4743039608 14.1544981 9.4482610226 2.1257493841
138892 1070 17.438358069 5.107596159 3.280115434 0.6848530769 16.753504992 9.7416539192 1.9072874237
143018 1056 18.465255022 4.8170540333 3.6981256214 0.651184082 17.81407094 9.7628369331 2.0267235671
146618 710 16.635406971 4.8641130924 3.305534344 0.5569140911 16.07849288 10.203773975 2.0977665982
158458 655 20.131518126 4.8781309128 3.9283056254 0.9687290192 19.162789106 10.958081961 2.2463689796
159167 186 14.895792961 5.1204931736 2.8137850403 0.4878258705 14.407967091 12.0229249 2.3480013531
165417 387 18.067790031 5.9903991222 2.905060525 0.6653180122 17.402472019 12.50247097 2.0870848027
174953 836 30.285763979 6.0861010552 4.6509530043 1.9795939922 28.306169987 11.82454896 1.9428775258
183423 1457 33.668266058 5.8062770367 5.4178896396 2.2104978561 31.457768202 11.961926937 2.0601715801
191131 695 34.944799185 6.789522171 4.7920428608 2.4091179371 32.535681248 12.074685097 1.7784292904
195672 756 22.533802986 6.2248158455 3.4916035493 0.7992138863 21.7345891 12.470155954 2.003297168
207050 1688 39.363101006 6.4729650021 5.727068994 2.2919838429 37.071117163 13.026250124 2.0124085515
209244 1085 26.134007931 6.7801988125 3.7037698393 1.0217120647 25.112295866 13.248724937 1.954031925
214925 783 38.548593998 7.256000042 4.9390549411 2.7108111382 35.83778286 13.749630213 1.894932488
217558 968 32.283975124 6.7073888779 4.5334704353 1.8762259483 30.407749176 13.222413063 1.9713204801
220242 1234 32.662763119 9.0992469788 3.419969832 1.543612957 31.119150162 13.962847948 1.5345058751
226239 1104 39.297286034 7.4048910141 4.9583800679 2.5810220242 36.716264009 14.255703926 1.9251740369
259733 2048 52.89556694 8.9403169155 5.4720880276 3.9733657837 48.922201157 16.304974079 1.8237579532
267839 1935 46.15162015 9.816133976 4.4311294246 2.6550600529 43.496560097 16.95291996 1.7270465136
273962 1480 49.431200028 10.735197067 4.3580192233 2.6470048428 46.784195185 18.087888956 1.6849144774
282178 1063 58.521463871 10.518432856 5.1892481227 3.9387059212 54.58275795 18.272057056 1.7371463323
323497 2101 53.484571934 15.459442854 3.2858488091 2.6871800423 50.797391891 27.493659019 1.7784378958
364637 1685 50.106575966 13.946503878 3.4635427212 1.8022639751 48.304311991 23.188714981 1.6626901756
474557 1017 54.714522123 16.690093994 3.1600194779 1.9735000134 52.74102211 30.956369162 1.8547750044
515787 2614 128.45887899 18.245460033 6.5261741195 9.3858299255 119.07304907 32.5696311 1.7850813868
532193 4465 145.60111094 22.401834011 6.0790197737 9.419919014 136.18119192 33.95796299 1.5158563791
616945 4232 189.50889397 23.227007151 7.4950981835 15.420194864 174.0886991 38.834509134 1.6719549308
966894 4719 238.37734294 40.98723197 5.4400952003 15.402899027 222.97444391 64.22258091 1.5668923668

1189903 7672 2353.122458 67.218478203 34.267056167 49.743089914 2303.3793681 76.215224981 1.1338433571
2.1834456007

vertices rings st_makevalid prepair
EU-1916710
EU-2018387
EU-2019270
EU-647723
EU-950884
EU-2018418
EU-1550061
EU-1550646
EU-878743
EU-245667
EU-1919485
EU-893021
EU-1829387
EU-1091904
EU-1558517
EU-179119
EU-473614
EU-1829479
EU-336460
EU-201662
EU-249345
EU-486252
EU-640944
EU-1550578
EU-474462
EU-1831172
EU-1925035
EU-1551074
EU-222394
EU-485593
EU-1196877
EU-180927
EU-230800
EU-220186
EU-220230
EU-487003
EU-1184879
EU-350575
EU-238793
EU-574435
EU-1227589
EU-559844
EU-28868
EU-665533
EU-195404
EU-242963
EU-245459
EU-2024060
EU-708160
EU-650152
EU-1180799
EU-1203173
EU-17569
EU-638860
EU-196047
EU-1761469
EU-190399
EU-316456
EU-737431
EU-649712
EU-648334
EU-1211168
EU-232295
EU-230707
EU-194315
EU-1765903
EU-1191296
EU-193755
EU-233242
EU-50884
EU-665872
EU-1837712
EU-232633
EU-14645
EU-1176841
EU-750660
EU-194346
EU-960500
EU-188515
EU-574574
EU-1208804
EU-249958
EU-14495
EU-685204
EU-2025982
EU-741058
EU-195394
EU-674246
EU-240775
EU-201729
EU-1195888
EU-676886
EU-190384
EU-192159
EU-574572
EU-200597
EU-192509
EU-1203510
EU-752375
EU-199949

49143 40 3.59826684 1.5411810875 2.3347462989
55675 49 4.3576359749 1.6154279709 2.6975117761
61350 59 4.9884150028 1.8009579182 2.7698676091
49178 100 3.9920079708 1.3058149815 3.0571007589
56023 103 4.5582859516 1.5903980732 2.866128945
44051 126 3.8781199455 1.2565250397 3.0863849291
44769 128 3.8593111038 1.2670881748 3.0458110024
50856 133 5.3103220463 1.5289640427 3.4731503803
46735 142 3.9665541649 1.2497830391 3.1737942033
49494 171 5.3977808952 1.4586889744 3.7004330533
47812 173 4.1548109055 1.4898610115 2.7887238295

114798 173 9.6610488892 3.8538441658 2.5068602864
159167 186 14.895792961 5.1204931736 2.909054354

71036 198 7.2592840195 1.9208509922 3.7792020562
54373 217 4.7533710003 1.6282188892 2.9193685393
54235 219 6.1159858704 1.7135460377 3.5691984551
57336 219 5.6252629757 1.6757850647 3.3567926426
57513 220 5.1740829945 1.7665410042 2.9289345575
49383 227 4.880906105 1.4762120247 3.3063720004
67867 227 7.6557998657 1.8630411625 4.1093025854
74346 230 8.9257938862 2.1597688198 4.1327543042
58146 231 5.8373320103 1.7039070129 3.4258512735
87455 233 7.6181910038 3.0446720123 2.5021384809
76268 254 7.1207590103 2.070797205 3.4386558921
80040 257 8.3499939442 2.3986740112 3.4810874279
73685 259 7.3810799122 2.2586679459 3.2678906723
89245 267 8.4228858948 2.5862071514 3.2568488917
54808 278 4.9966719151 1.8053159714 2.7677547833
50782 279 5.3918170929 1.4427728653 3.7371212216
61228 280 6.4098289013 1.8257319927 3.5108268502
62407 288 5.8445060253 1.7057061195 3.4264437223

102272 299 10.644652128 3.0814068317 3.4544780061
79803 307 8.828635931 2.3628048897 3.7365065434
50391 314 5.3617389202 1.3512969017 3.9678466764
56550 320 6.1622989178 1.5039901733 4.0972999871
73371 326 7.7279839516 2.2087788582 3.4987585665
48490 327 4.7919828892 1.5265009403 3.1391941941
80205 337 9.4726450443 2.1920747757 4.3213147422
56555 352 5.9874999523 1.5035331249 3.9822866906
96638 353 8.5231230259 3.0050919056 2.8362270751
58898 370 6.5151028633 1.7612528801 3.6991297144
63815 372 6.5854849815 1.7152080536 3.8394671525

165417 387 18.067790031 5.9903991222 3.0161245791
54992 408 5.7786998749 1.4848361015 3.8918099236
74532 408 7.4296240807 2.4931921959 2.9799644379
92801 416 11.680834055 2.9461021423 3.9648435426

103085 426 13.028250933 3.3006920815 3.9471270301
102773 431 9.9634900093 2.7673809528 3.6003319308
138543 433 14.628802061 4.4446730614 3.2913111626

79342 434 7.4911220074 2.250756979 3.3282678127
63700 441 6.6653051376 1.8983411789 3.5111207678
57020 442 6.2478129864 1.632969141 3.8260447362
69318 460 6.3710250855 2.0404121876 3.1224206188
84517 467 8.3890609741 2.2294669151 3.7628102562

109171 471 11.812805176 3.4624650478 3.4116749231
70555 482 7.4892940521 2.1157770157 3.5397369366
70663 487 8.5460321903 2.0911719799 4.0867189655
97312 489 11.703074932 2.666260004 4.3893224646

121439 506 16.042546034 3.5167331696 4.5617751647
112119 547 13.357954025 4.3857359886 3.0457724906

98913 548 9.6232829094 2.9287509918 3.2857975759
90526 554 9.6644580364 3.1350910664 3.0826721878

104389 564 13.838979006 3.2217860222 4.2954370372
120363 573 16.027656078 3.7399930954 4.2854774513

91501 586 14.252270937 2.5411279202 5.6086397005
135321 623 15.119310141 4.0471539497 3.7357882424
158458 655 20.131518126 4.8781309128 4.1268917308
110335 675 13.810140133 4.0859510899 3.379908332
191131 695 34.944799185 6.789522171 5.1468716508
146618 710 16.635406971 4.8641130924 3.4200288223
101864 755 14.103344917 3.2683970928 4.3150646989
195672 756 22.533802986 6.2248158455 3.6199951204
214925 783 38.548593998 7.256000042 5.3126507408

97559 816 10.911828041 3.5157299042 3.103716252
81751 832 9.5510361195 2.4637420178 3.8766380776

174953 836 30.285763979 6.0861010552 4.9762177303
132268 909 19.236660004 4.4213130474 4.3508930034

85413 968 12.368889093 2.6447379589 4.6767919112
217558 968 32.283975124 6.7073888779 4.813195673
474557 1017 54.714522123 16.690093994 3.2782632706
143018 1056 18.465255022 4.8170540333 3.8333086767
282178 1063 58.521463871 10.518432856 5.5637056085
138892 1070 17.438358069 5.107596159 3.4142006388
127273 1073 19.06439209 3.8983058929 4.8904300005
209244 1085 26.134007931 6.7801988125 3.8544604153
226239 1104 39.297286034 7.4048910141 5.3069364504
220242 1234 32.662763119 9.0992469788 3.5896116673
131272 1247 20.377846003 3.9105429649 5.2110016909
183423 1457 33.668266058 5.8062770367 5.798597939
273962 1480 49.431200028 10.735197067 4.6045917665
364637 1685 50.106575966 13.946503878 3.5927696579
207050 1688 39.363101006 6.4729650021 6.0811546166
267839 1935 46.15162015 9.816133976 4.7016086234
259733 2048 52.89556694 8.9403169155 5.9165203471
323497 2101 53.484571934 15.459442854 3.4596700825
515787 2614 128.45887899 18.245460033 7.0405941401
616945 4232 189.50889397 23.227007151 8.1589889191
532193 4465 145.60111094 22.401834011 6.4995174441
966894 4719 238.37734294 40.98723197 5.8158926935

1189903 7672 2353.122458 67.218478203 35.007077234

0

75

150

225

300

0 1250 2500 3750 5000

Chart 11

ru
nn

in
g

tim
e

(s
ec

on
ds

)

rings

0

10

20

30

40

50

60

0 80 160 240 320 400

Chart 16

0

500

1000

1500

2000

2500

0K 200K 400K 600K 800K 1000K 1200K

Ru
nn

in
g

tim
e

(s
ec

)

Number of points

prepair ST_MakeValid

0

15

30

45

60

0K 100K 200K 300K 400K

Ru
nn

in
g

tim
e

(s
ec

)

Number of points

0

20

40

60

80

0 2000 4000 6000 8000

of rings

0

20

40

60

80

0K 200K 400K 600K 800K 1000K 1200K

Ru
nn

in
g

tim
e

(s
ec

)

Number of points

OddEven SetDiff

Figure 13: Running time for the CLC2006 polygons for the prepair implementations of
OddEven and SetDiff. Both display a linear behaviour.

Clarkson KL, Mehlhorn K, and Seidel R (1992). Four results on randomized incremental con-
structions. In Finkel A and Jantzen M, editors, Proceedings of the 9th Annual Symposium on The-
oretical Aspects of Computer Science, volume 577 of Lecture Notes in Computer Science, pages 461–
474. Springer Berlin / Heidelberg.

FacelloMA (1995). Implementation of a randomized algorithm for Delaunay and regular trian-
gulations in three dimensions. Computer Aided Geometric Design, 12:349–370.

Foley JD, Dam AV, Feiner SK, and Hughes JF (1996). Computer Graphics: Principles and Practice.
Addison-Wesley.

Goodrich M, Guibas LJ, Hershberger J, and Tanenbaum P (1997). Snap rounding line segments
efficiently in two and three dimensions. In Proceedings 13th ACM International Symposium on
Advances in GIS, pages 284–293.

GTS (2006). GTS Library Reference Manual.

Guibas LJ and Stolfi J (1985). Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74–123.

Halperin D and Packer E (2002). Iterated snap rounding. Computational Geometry: Theory and
Applications, 23(2):209–225.

Hoffmann CM (1989). The problems of accuracy and robustness in geometric computation.
Computer—IEEE Computer Society Press, 22:31–42.

ISO(TC211) (2003). ISO 19107:2003: Geographic information—Spatial schema. International
Organization for Standardization.

Jordan MC (1887). Cours d’analyse de l’École Polytechnique, Paris, volume Tome troisième.
Gauthier-Villairs.

Liu Y and Snoeyink J (2005). The “far away point” for Delaunay diagram computation in 𝔼𝑑. In
Proceedings 2nd International Symposium on Voronoi Diagrams in Science and Engineering, pages
236–243. Seoul, Korea.

17

Mücke EP, Saias I, and Zhu B (1999). Fast randomized point location without preprocessing
in two- and three-dimensional Delaunay triangulations. Computational Geometry—Theory and
Applications, 12:63–83.

OGC (2011). OpenGIS implementation specification for geographic information—simple fea-
ture access. Open Geospatial Consortium inc. Document 06-103r4.

Ramsey P (2010). PostGIS: Tips for power users. Presentation at the FOSS4G 2010 Conference,
Barcelona, Spain. http://2010.foss4g.org/presentations/3369.pdf.

Shewchuk JR (1997). Delaunay Refinement Mesh Generation. Ph.D. thesis, School of Computer
Science, Carnegie Mellon University, Pittsburg, USA.

vanOosteromP,QuakW, andTijssenT (2004). About invalid, valid and clean polygons. In Fisher
PF, editor, Developments in Spatial Data Handling—11th International Symposium on Spatial Data
Handling, pages 1–16. Springer.

18

http://2010.foss4g.org/presentations/3369.pdf

	Introduction
	What is a (robust) polygon?
	Related work
	Algorithms to identify the interior of a polygon
	How practitioners repair their invalid polygons

	Repairing a polygon with a constrained triangulation
	Properties of a constrained triangulation
	Advantages of a constrained triangulation for the automatic repair
	Odd-even paradigm
	The setdiff paradigm
	Time complexity
	Example of repaired polygons
	Repairing a MultiPolygon

	Computing the robustness and improving it with snapping
	Experiments and comparison with other tools
	Unit tests
	Corine 2006 dataset

	Conclusions

