
EDGECRACK: a parallel Divide-and-Conquer algorithm for building a
topological data structure

Martijn Meijers & Hugo Ledoux
Delft University of Technology (OTB, section GIS technology), The Netherlands

ABSTRACT: In this paper we consider the problem of converting a large database of 2D polygons into a
topological data structure (a data structure with nodes, edges and faces). We present EDGECRACK, an algorithm
to obtain the topological data structure (which is based on a known algorithm for segment intersection) and
performs small geometric corrections of the input by snapping to avoid problems. We further show how we
have extended this algorithm to a Divide-and-Conquer approach, which is also suited for parallel processing.
We present experimental results based on our implementation and show that we have been able to convert a
large database of 5.3 millions polygons into a topological data structure.

1 INTRODUCTION

This paper presents our ongoing investigations to convert a large database of 2D polygons, modelled according
to the Simple Features specification (OGC, 2006), into a topological data structure (a data structure with nodes,
edges and faces and explicit adjacency links between them). Although this important operation has been in-
vestigated in the past (van Roessel, 1991; van Oosterom, 1994), it is still problematic to perform with standard
GIS tools an initial conversion to such topological data structures for larger data sets (i.e. performing the initial
bulkload conversion in a reasonable amount of time, cf. Arroyo Ohori et al., 2012). Furthermore, snapping of
geometry to solve small geometric errors in the input, e.g. caused by truncating coordinate digits to an exchange
format, is a prerequisite for us.

We have investigated and extended a known algorithm for segment intersection (Sugihara, 1991, 1992) and here
we first present our extended algorithm, which we call EDGECRACK. EDGECRACK performs the geometry to
topology conversion, but can at the same time also ensure that coordinates are rounded to a grid and that fea-
tures are snapped to each other (based on various tolerances, e.g. segment-segment and segment-point distance
thresholds), while maintaining a valid topology structure and transferring the thematic attributes of the original
polygons to the topology structure. This is, however, at the cost of added points.

More importantly, based on EDGECRACK, we have devised a divide-and-conquer algorithm so that we are
able to obtain in parallel an explicit topological data structure for the input, so that we can process datasets
with millions of input polygons. We show details of the implementation and the tests that we conducted with
EDGECRACK on a subset of the polygons of a large topographic dataset. We have been able to process 5.3
million polygons into an explicit topology data structure with our parallel, Python based implementation.

The remainder of this paper is organized as follows. Section 2 gives relevant definitions. Section 3 introduces
EDGECRACK and explains the Divide-and-Conquer algorithm. Section 4 presents the main results that we have
obtained, while running the algorithm on a large input data set. Section 5 offers concluding remarks and provides
some suggestions for future work.

1



2 DEFINITIONS

Our topology builder is based on using a Conforming Delaunay Triangulation, this section gives some relevant
definitions of this and related concepts.

A triangulation is a Delaunay Triangulation (DT) if the circumscribing circle of any triangle of the triangulation
contains no vertex in its interior. A triangulation edge (a side of a triangle) is said to be Delaunay if it is inscribed
in an empty circle (containing no vertex in its interior).

(a) 12 line segments (b) Delaunay triangula-
tion

(c) Constrained Delau-
nay triangulation

(d) Conforming Delau-
nay triangulation

Figure 1: Different ways to embed a set of segments in a triangulation: (a) shows the line segments (b) gives the Delaunay triangulation
of the end points of the segments, note that not all segments are present (c) illustrates the Constrained Delaunay triangulation, all line
segments are represented, but not all triangles are fully Delaunay (d) shows a Conforming Delaunay triangulation, all line segments
are represented and all triangles are Delaunay.

Figure 1 illustrates that a set of given line segments may initially be present in a DT – or only partly. To be
sure that all segments are represented in the triangulation two approaches exist: the first is the Constrained
Delaunay approach that loosens the Delaunay criterion by introducing a visibility criterion, which then means
that a circumscribing circle of any triangle of the DT will contain no vertex ‘visible’ from this triangle. In this
case, a constraint edge acts as a visibility blocker and this way input edges (‘constraints’) are embedded in the
triangulation. A second approach to represent segments in a DT is by adding vertices to the initial segments, until
all are recovered and the triangulation conforms to the given segments, hence the name: Conforming Delaunay
triangulation. An advantage is that each triangle is conforming to the Delaunay criterion, without visibility
criterion. The difficulty with this approach is that to recover one segment it is likely that another (earlier already
represented) segment will be destroyed and in worst case quite many vertices (order O(n2)) might have to be
added.

Theoretical algorithms, and several implementations, that robustly construct a Constrained Delaunay triangula-
tion, assume that the input segments form a Planar Straight Line Graph (PSLG). A PSLG is a set of vertices and
straight line segments that satisfies two conditions: 1. the PSLG must contain for every segment the two vertices
that are its endpoints, 2. segments are only allowed to intersect at their endpoints. In our case, this is a too strong
requirement for our input, as topological structuring exactly has to produce these new intersection points for
touching and (partially) overlapping polygon boundaries (these can not exist by definition for a PSLG) and at
the same time we like to snap segments together that are very close. Therefore, the line intersection algorithm of
Sugihara (1992) that we employ in EDGECRACK is based on the second approach: constructing a Conforming
Delaunay triangulation.

3 OUR APPROACH

This section presents in § 3.1 how we extend Sugihara’s segment intersection algorithm to a topology builder.
We give details on our Divide-and-Conquer algorithm for building topology for large data sets with polygons in
§ 3.2.

3.1 EDGECRACK

We start with input polygons, that are valid according to the Simple Feature specification definition (OGC,
2006). If this would not have been the case, we perform a cleaning step, in which we make all input polygons
individually valid (Ledoux et al., 2012). A polygonal area is bounded by one (or more) ring(s): every polygon
consists of at least one outer ring and zero or more inner rings. A ring is a simple, closed polyline. Next to the

2



validity according to the specification (where rings are allowed to touch each other in at most one point), we
assume that each ring is oriented in such a way that the interior of the polygon is at the left hand side of this ring,
which means that the outer ring is oriented counter clockwise and all inner rings are oriented clockwise. Every
segment of the ring is formed by two consecutive vertices. Figure 2 illustrates that based on the orientation rules
we can annotate the left side of all segments with the identifier of the input polygon (at the left).

Figure 2: Based on known orientation (outer ring counterclockwise, inner ring clockwise), we can annotate the left side of every
segment with the identifier of the input polygon.

EDGECRACK is for a large part based on the segment intersection algorithm given by Sugihara (1992). The
segments of all input polygons form the input. EDGECRACK starts by first realizing (cracking) the segments of
the polygon boundaries (that become edges) into the conforming Delaunay triangulation. Realizing the segments
into the triangulation also takes care of snapping. After realizing all the input segments in the triangulation the
structure conforms to the input, while for all triangles the Delaunay criterion still holds. After all segments
have been realized in the triangulation, the nodes, edges and faces can be obtained from the triangulation, and
because segments were annotated with the identifier of the original polygon, also the connection to the original
polygon attributes is maintained.

A segment for EDGECRACK is in our algorithm part of a hierarchical data structure (a binary tree) to keep track
of additional insertions of points to represent the segment in the conforming triangulation. Figure 3 gives an
illustration of how segments are represented in the triangulation. Based on the input polygons a list of segments
is created. The place of a segment in the list is what we call the ‘segment handle’. We represent the segment in
the triangulation by keeping a list of segment handles on every triangulation vertex.

1 2 3 4 5 6

[3]

[3, 4, 5, 6]

[6]

[4][5]

Figure 3: Segments are represented in the triangulation by their place in the segment list, the ‘segment handle’. The original segments
1 and 2 have been split by insertion of their intersection point. This vertex in the triangulation representing the intersection point has
a list of all related segment handles (3, 4, 5 and 6). Segments are part of a binary tree, which tracks how segments are split (illustrated
by the circles and arrows). Note that segment 1 and 2 (and their respective handles) are not present any more in the triangulation at
this stage.

Following the terminology of Sugihara, we call a segment realized if it is present as a side of a triangle in the
triangulation. The original segments will be split to be represented in the triangulation. Splitting thus leads to
subsegments, which are descendants of the original segment. If the length of a subsegment in the segment tree
goes under a defined threshold for a minimal segment length, we call the segment saturated – this also means
that we are not allowed to split this segment any further.

EDGECRACK proceeds then as follows, while maintaining a valid Delaunay Triangulation throughout:

Step 1. Compute the Delaunay Triangulation based on the end points of all the initial segments. In our im-
plementation we use Lawson’s incremental insertion algorithm (Lawson, 1977) and we represent the
triangulation with a half edge data structure (Mäntylä, 1988).

3



Figure 4: Visualization of the resulting contents of the topological data structure. Note that EDGECRACK also generates a point inside
every face (that can be used for example as anchor point for placing a label).

Insertion of a point is based on walking in the triangulation to its definite location. If in this process,
based on some tolerance value, a close enough point is detected that already exists in the triangulation,
the newly inserted point is snapped to the existing point. A segment is ignored if its two end points collapse
to one vertex. This also means that the order of insertion of vertices in the triangulation is important, e.g.
polygons that represent ‘hard’ topography with higher quality, such as houses, should be inserted first.

Step 2. Crack all segments into the triangulation. Cracking means adding additional points to the input seg-
ments, until all segments either are realized or saturated.

The loop that adds points to the initial triangulation consists of two steps. Firstly, it tries to add an inter-
section point between an already realized segment and a not yet unrealized segment (Sugihara terms this:
“finding a cross pattern”). Secondly, if segments are knocked out by adding the new intersection point,
the longest of these segments is recovered (either by snapping the segment to already existing vertices, or
by adding its midpoint).

Snapping a line segment to one or more close points is possible by performing a walk in the triangulation
to find close vertices to the not yet represented segment. If there are close vertices (close is defined by a
threshold), the original segment is ‘bend’, so that it is defined by these vertices. This happens frequently in
polygonal domains with neighbouring objects (think of two differently sized squares that share the same
edge, the longest segment should be bend so that it goes through the shortest segment). This snapping is
a modification from the original Sugihara’s algorithm.

For both steps the segments are split into subsegments. Splitting means that in general 2 new segments
are added to the hierarchical segment tree. For these new segments we register their handles in the trian-
gulation and the old handles of the parent segments are removed from the triangulation.

Step 3. Force unrealized segments.

If unrealized – but saturated – segments do exist after step 2 (i.e. the input segment is still not represented
as a collection of triangle sides in the triangulation), we redefine these segments based on a shortest path
traversal over the triangulation, i.e. we execute Dijkstra’s shortest path algorithm on the relevant subpart
of the triangulation (Dijkstra, 1959).

In our experiments we have observed that this step is barely used, but still necessary to ensure a correct
result.

Step 4. Generate the topology structure (with nodes, edges and faces).

In this step, we embed the knowledge of which triangle side is a segment directly in the triangulation data
structure. It means keeping a boolean flag on every triangulation edge of the triangulation. This simplifies
traversal of the triangulation data structure, to ‘harvest’ nodes, edges and faces from the triangulation.
Because all segments have been embedded in the triangulation structure harvesting means traversing
every element class of the triangulation once (i.e. triangle vertices, triangle edges and triangles) to obtain
nodes, edges and faces. Topology primitives are harvested as follows:

• Nodes are the vertices where there are more than 2 original input segments incident. Additionally,
for a ring of segments that forms a hole, one arbitrary vertex has to be selected as node (cf. the hole
of polygon in Figure 2).

4



EdgeCrack
Worker Final?

Unfinalized
Topology primitives

Finalized
Topology primitives

Polygons

yes

no

Figure 5: Flow of data for our Divide-and-Conquer algorithm.

• Edges are formed by making the longest chains possible between triangle vertices that are nodes.

• Faces are created by forming groups of triangles (a connected component) that are surrounded by
a set of segments. Per face also a point inside the face is generated – the barycenter of the largest
triangle of the group.

Figure 4 gives an example of the resulting nodes, edges and faces.

3.2 A Divide-and-Conquer algorithm suited for parallel processing

EDGECRACK functions well if the number of vertices of all input polygons and the new points that will be cre-
ated, together with the triangulation data structure, fit in main memory. When this is not the case, the operating
system will have to start swapping and this causes performance problems (very long run times). A solution to
this is to divide the input into smaller and more manageable chunks.

For chunking a dataset in smaller pieces two possibilities exist: 1. cut the input geometries into pieces by
introducing cut lines into the input – this leads to extra intersection points and segments, which need to be
administrated, so that they can be removed from the definite output, 2. process whole input geometries – with
this option it is necessary to keep an administration (which polygons are being processed) as processing the
same polygon at the exact same time could lead to contradictory results that then have to be integrated again
(i.e. locking is necessary). Although option 1 could initally lead to a more parallel solution (as no locking is
needed for obtaining the topology primitives) embedding and then later removing the cut lines is unattractive.
This option would mean that the topological identifiers, that were handed out by the parallel processes, should
be unified in a separate step (i.e. to unify faces and edges that were split by the cut line and to remove the
unwanted nodes on the cut lines). As snapping will happen at both sides of the cut line, and this unification step
will have to use the geometry of the resulting topology primitives, it might be quite problematic. Therefore, we
have opted for the second alternative.

To be able to chunk the input dataset into smaller pieces, we construct a quadtree based on the input polygons.
A quad in the quadtree is split in 4 if too many vertices would have to be processed in one go. Once the quadtree
has been constructed, all leaf nodes of the quadtree form a full partitioning of the input dataset, which we will
call tiles. Figure 6 gives an example of a set of tiles that we have used in our experiments.

After constructing the tile set, we process the polygonal input data per tile, with multiple tiles in parallel. One
instance of EDGECRACK (which we call a worker) selects for one of the tiles all related input polygons, i.e. ev-
ery polygon whose bounding box overlaps the tile. Based on the the union of all the bounding boxes the worker
locks all neighbouring tiles that are overlapping this unioned bounding box. Another worker can be run in par-
allel, except that it is not allowed to process any locked tiles. A worker produces a set of topology primitives
and when a worker is finished, it unlocks the tiles it did lock and finally marks the tile as processed.

The main algorithm, as described in § 3.1, has to be extended to be able to function correctly in parallel with
other workers. Next to the polygonal input geometries, a worker also is given the outline of which tiles have
been processed already, so that it can be determined by a worker when a topology primitive that is generated
is final (finalized) or has to be further processed (unfinalized). Finalized elements are those topology primitives
for which it is clear that they will not need to be processed in any other of the remaining tiles. A worker also
produces unfinalized elements: these topology primitives will have to be loaded when an adjacent (and previ-
ously locked) tile is processed. Although we present not all special cases here (e.g. adjacency to the universe

5



Figure 6: A run of EDGECRACK with 4 parallel workers. Each tile contains no more than 500 000 vertices. Colours represent the
status of a tile: blue: not yet processed, orange: being processed by a worker, green: processed.

face), determining whether a primitive is finalized or not can be realized by comparing a primitive its related
bounding boxes to the union of the already processed tiles. Which bounding boxes to consider depends on the
type of topology primitive:

• A node is finalized if the node itself (and hence its ‘degenerate’ bounding box) is located in the interior
of the union of the processed tiles (i.e. it is fully inside and not on the boundary).

• A face is finalized if its bounding box is fully inside the union of the processed tiles.

• An edge is finalized if its bounding box and the two bounding boxes of its adjacent faces are fully inside
of the union of the processed tiles.

Figure 5 illustrates that a worker, that processes an earlier locked tile, will first load the unfinalized topology
primitives and that it will not load the original input polygons which generated these topology primitives. By
using the outline of the processed tiles, it can be determined which polygons were already processed into
(unfinalized) topological primitives – their bounding box overlaps with the outline of the processed tiles.

Note that for the unfinalized topology primitives the segments need to carry information that is relevant for the
topological data structure – similar to the identifier of the polygon we keep information (pointers, e.g. from edge
to face) that is important for the topology structure. The reason for this is that an edge that is unfinalized can
point to a face that is finalized already and for which a topological identifier was handed out, so this information
should be propagated from a processed tile to a not yet processed tile.

An important remaining question is the order in which to process the tiles. Determining an exact schedule
beforehand seems not viable: although overlaps of tiles are known beforehand, it is not known a priori how long
a task will run. For the decision of which tiles to process first, we therefore turn to reasonable simple heuristics
to be able to derive dynamically at run time an execution schedule. We aim at processing first the tiles that both
have a lot of overlap with other tiles and contain a lot of input segments. This way we try to prevent a scenario
where we can not process tiles in parallel. In our experiments, we have implemented these heuristics as follows:
Per tile we query the database to get a unioned bounding box of all input polygons that spatially interact with the
tile (their bounding box overlaps the tile) and get the size of the area that is covered by this box. Furthermore,
we count the total number of vertices in the related input polygons as this gives a good estimate how many
segments will need to be processed. By multiplying the two numbers per tile we can get an ordered list of tiles,
where tiles that should be processed first have a high associated number.

Our experiments (§ 4) show that we did not fully succeed with running in parallel all the time with this approach
– congestion takes place due to the geometric configuration of the input. However, the heuristics seem to be good
enough for practical use. In the worst case EDGECRACK would only be able to run on all tiles sequentially and
no parallel speed up can then be obtained, which seems very unlikely for practical GIS data sets.

4 EXPERIMENTAL RESULTS

We have implemented EDGECRACK and the parallel Divide-and-Conquer algorithm. For the implementation
we used the Python programming language and we have used Cython for optimizing some important parts of the
implementation to shorten the runtime (e.g. the triangulation). For the triangulation we have created a wrapper
around the exact predicates of Shewchuk (1997) for orientation and in-circle tests, to be able to robustly build
the triangulation (we have observed errors when not using the exact predicates, while these did not occur when
the exact predicates were in use).

6



0 10000 20000 30000 40000 50000 60000 70000 80000
processing time per tile (s)

0

1

2

3
pr

oc
es

s

Process activity

(a) Activity of workers

(b) One large polygon makes that all remaining tiles
are locked and only one worker can process data. The
dashed line shows the unioned bounding box of all
polygons that are related to the orange (currently ac-
tive) tile.

Figure 7: Activity of workers of a run of EDGECRACK with 4 parallel workers. The two subfigures illustrate that congestion takes
place: only one worker at a time can process data (after ±55k seconds) due to the geometric configuration of the input. After the
related tiles totally have been processed, the workers can again process data in parallel (after ±68k seconds).

Table 1: Statistics on input – geometry – and output – the generated topology. Note that: a. the number of faces is less than the number
of input polygons, because slivers were cleaned by the performed snapping and b. the number of coordinates in the resulting topology
is quite high due to the use of EDGECRACK).

Geometry Topology
Polygons Coordinates Nodes Edges Faces Coordinates

Top10NL 5 326 132 99 212 628 7 887 686 13 040 554 5 298 197 72 953 951

With the implementation, we have performed two parallel test runs. In the first run, we set the maximum of
vertices for a tile to 500 000; in the second run the maximum was set to 1 000 000. The tests were run on our
research server (a SUN V40z server running Solaris 10, 64-bit) equipped with 4 AMD CPU’s clocked at 2.2
GHz and 8 GB of main memory.

The input geometry – a subset of the polygons of the Dutch Top10NL topographic dataset (which since January
1, 2012 is available to the general public as open data, see http://www.kadaster.nl/top10nl/) – is stored
in PostgreSQL 9.1.4, extended with PostGIS 2.0.1. These polygons are supposed to form a polygonal coverage
(representing terrain, water and road features).

Figure 7 shows details on the activity of the workers for the parallel process during the first test run. It shows
that the total run took about 21 hours (the second run, with more data per tile did not significantly deviate from
this). Furthermore, it illustrates that, although we try to avoid it by our heuristics of first processing tiles with a
huge number of inputs and having the biggest overlap with other tiles, congestion takes place: only one worker
can process data (after ±55k seconds) due to the geometric configuration of the input. In the input there exists
one large polygon, which causes that all remaining tiles are locked by one worker and only this worker can
process data. However, after the related tiles have been fully processed, the workers again start to process data
in parallel (after ±68k seconds).

Table 1 shows the statistics about the number of generated topological primitives and coordinates. It is clear
that EDGECRACK could be leaner with respect to added coordinates: if a boundary is stored twice by the
polygonal geometry, we would expect to find around 50% of the original input vertices in the topological data
structure. This would mean that 99M coordinates should lead to approximately 50M coordinates, however we
obtain around 73M coordinates. This higher number is caused by the coordinates that were added by midpoint
insertions (to represent the segments in the triangulation).

For both test runs we have collected runtime statistics. Figure 8 shows the runtime versus the size of the input:
our tests on the topographic dataset indicate that our approach with this dataset exhibits O(n logn) runtime
performance, which is what theory states (Lawson, 1977).

7

http://www.kadaster.nl/top10nl/


200000 400000 600000 800000 1000000
n vertices

0

500

1000

1500

2000

2500

3000

3500

4000

ru
nt

im
e

(s
)

1 · 10−4 to 2 · 10−4n log n sec

Runtime per input size

Figure 8: Runtime of EDGECRACK for varying input sizes using the topographic Top10NL dataset. Practical runtime for the tested
dataset exhibits O(n logn) behaviour.

5 DISCUSSION

5.1 Discussion of results

The most important contribution of this work is that we have presented a Divide-and-Conquer approach for
building a topological data structure for huge polygonal data sets (with millions of polygons), that is suited
for running in parallel. Furthermore, we have demonstrated with EDGECRACK that snapping can be easily
integrated in Sugihara’s algorithm of segment intersection. This snapping is based on using the conforming
Delaunay Triangulation as underlying spatial search structure for finding close vertices.

The beauty of the parallel algorithm is that it is in principle not tied to EDGECRACK. Also other approaches
could be used for constructing the topological data structure, as long as a worker correctly splits the output in
finalized and unfinalized primitives. For this, the same principles for scaling out – using the locking strategy
and the comparision of the bounding box of generated primitives with the already processed area – can be
applied.

5.2 Future work

One concern is that EDGECRACK adds quite some vertices, also on locations where these do not exist in the
input (the crossings initially also do not exist, but these should be made explicit as a requirement from the
topological data structure). The addition of points has a negative influence on practical runtime (although for
our experiment the algorithm seems to follow an O(n logn) theoretical curve).

One option is to remove the added extra points (which was already suggested by Sugihara, 1992). Although
the points are annotated with the fact that they are added to the triangulation as additional ‘midpoints’, we have
not yet tried this. The reason for this is that removal of these points has to be executed before outputting the
topology structure. We think that this can be accomplished by collapsing triangulation edges that are between
two of such points (these points are by definition on a straight line) and updating the triangulation accordingly,
but we still have to try this.

Another option is to employ a completely different strategy: either using a Constrained Triangulation (where
only intersection points are added, that still will have to be computed for intersecting segments), or using a
completely different approach (e.g. using a R-tree or sweepline, cf. van Oosterom, 1994; van Roessel, 1991;
Hobby, 1999). For selecting an alternative approach we should carefully consider how snapping would fit.

Furthermore, we plan to extend EDGECRACK, so that it also supports point and line object and not only
polygons as input. The result then is a scalable bulk loader for topology that can be stored in either Ora-
cle Spatial Topology or PostGIS (which since version 2 supports a topology model based on ISO, 2006, see
http://postgis.refractions.net/docs/Topology.html).

8

http://postgis.refractions.net/docs/Topology.html


ACKNOWLEDGEMENTS

This research is supported by the Dutch Technology Foundation STW (project numbers 11300 and 11185),
which is part of the Netherlands Organisation for Scientific Research (NWO) and partly funded by the Ministry
of Economic Affairs.

REFERENCES

Arroyo Ohori, K., H. Ledoux, and M. Meijers (2012, October). Validation and Automatic Repair of Planar Par-
titions Using a Constrained Triangulation. Journal of Photogrammetry, Remote Sensing and Geoinformation
Processing 2012(5), 613–630.

Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271.

Hobby, J. D. (1999, October). Practical segment intersection with finite precision output. Computational
Geometry: Theory and Applications 13(4), 199–214.

ISO (2006). ISO/IEC 13249-3: 2006: Information technology - Database languages - SQL Multimedia and
Application Packages - Part 3: Spatial.

Lawson, C. L. (1977, August). Software for C1 surface interpolation. In J. R. Rice (Ed.), Mathematical Software
III, New York, pp. 161–194. Academic Press.

Ledoux, H., K. Arroyo Ohori, and M. Meijers (2012). Automatically repairing invalid polygons with a con-
strained triangulation. In Proceedings 15th AGILE International Conference on Geographic Information
Science.

Mäntylä, M. (1988). An introduction to solid modeling. New York, USA: Computer Science Press.

OGC (2006, October). OpenGIS Implementation Specification for Geographic Information - Simple Feature
Access - Part 1: Common Architecture.

Shewchuk, J. R. (1997, October). Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
Predicates. Discrete & Computational Geometry 18(3), 305–363.

Sugihara, K. (1991, February). A Robust Intersection Algorithm Based on Delaunay Triangulation. Technical
Report CSD-TR-91-011, Purdue University.

Sugihara, K. (1992). Application of the Delaunay triangulation to geometric intersection problems. In L. Davis-
son, A. MacFarlane, H. Kwakernaak, J. Massey, Y. Tsypkin, A. Viterbi, and P. Kall (Eds.), System Modelling
and Optimization, Lecture Notes in Control and Information Sciences, pp. 112–121. Springer Berlin / Hei-
delberg.

van Oosterom, P. (1994). An R-tree based map-overlay algorithm. In Proceedings EGIS’94, pp. 318–327.

van Roessel, J. W. (1991). A new approach to plane-sweep overlay: Topological structuring and line-segment
classification. Cartography and Geographic Information Science 18, 49–67.

9


	INTRODUCTION
	DEFINITIONS
	OUR APPROACH
	EdgeCrack
	A Divide-and-Conquer algorithm suited for parallel processing

	EXPERIMENTAL RESULTS
	DISCUSSION
	Discussion of results
	Future work


