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Abstract

Real-world phenomena have traditionally been modelled in 2D/3D
GIS. However, powerful insights can be gained by integrating additional
non-spatial dimensions, such as time and scale. While this integration
to form higher-dimensional objects is theoretically sound, its implementa-
tion is problematic since the data models used in GIS are not appropriate.
In this paper, we present our research on one possible data model/struc-
ture to represent higher-dimensional GIS datasets: generalised maps. It
is formally defined, but is not directly applicable for the specific needs
of GIS data, e.g. support for geometry, overlapping and disconnected re-
gions, holes, complex handling of attributes, etc. We review the properties
of generalised maps, discuss needs to be modified for higher-dimensional
GIS, and describe the modifications and extensions that we have made to
generalised maps. We conclude with where this research fits within our
long term goal of a higher dimensional GIS, and present an outlook on
future research.

1 Introduction
Spatial data modelling refers to the creation of abstract mathematical represen-
tations of real world objects embedded in space. This includes not only purely
spatial aspects, such as the objects’ geometry and topology, but also other char-
acteristics required for their use, such as the ability to attach attributes (both
for storage and for thematic aspects), mark visited objects, or to have efficient
access to the objects within a region.

Spatial models have been developed largely independently in the disciplines
that required information on spatial objects, including computer graphics, computer-
aided design and manufacturing (CAD/CAM), geology, and geographic infor-
mation systems (GIS) [1]. Because of their independent creation, they are a
reflection of the idiosyncrasies of their domains and differ significantly in key
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issues. One consequence of this is that in many fields support for 3D data has
been long widespread and the theoretical foundations for higher dimensions are
well established. However, GIS still has limited support for 3D data, and higher-
dimensional GIS, despite decades of frequent mentions in literature [2, 3, 4, 5],
remains in most cases a theoretical discussion1.

This slow progress in the GIS world is not due to a lack of applications
in higher dimensions. While being limited to 3D space is acceptable to many
users of geographic information, substantial work has been done regarding the
integration of non spatial-dimensions [6], such as time [7, 8] and scale [9, 10],
to spatial data models. This is done either by creating specific models for these
non-spatial dimensions, or by treating them as additional spatial ones [5], yield-
ing a higher dimensional spatial model. The latter case is more extensible and
generic, allowing us to manipulate objects in a dimension independent man-
ner [11]. It is also the focus of this paper, and therefore the notion of a higher
dimensional spatial model is first explained in detail in Section 2.

Since there is both a need for higher-dimensional GIS, and an availability of
such data models from other fields that are able to support higher-dimensional
data, there is great potential in finding a suitable model and adapting it to
the specific needs of real-world (GIS) data, such as: support for overlapping
regions, holes, and complex handling of attributes and metadata; and providing
the specific operations that are required for its use, such as good construction
and querying operations, buffering and overlays [12]. A short summary of the
most remarkable representations for higher dimensional objects developed in
other fields and that could thus be adopted is given in Section 3.

Among these, we propose the use of generalised maps, which are explained
in Section 4, a model capable of representing a wide class of objects in arbitrary
dimensions. It has several advantageous properties, such as support for un-
bounded objects (useful for time and other unbounded dimensions [13]), avoid-
ing problems with incompatible orientations (a common problem when objects
are built independently), and providing a simple manner to attach attributes to
the objects of every dimension (e.g. vertex, edge, facet, etc.). Practically, it also
has the advantage of having been implemented in 3D (it is used in GOCAD2

for geological modelling and in Moka3 for geometric modelling).
However, generalised maps by themselves cannot support all the character-

istics of real-world spatial data. To bring our ideas into practice, in Section 5
we therefore explain how we have modified and implemented generalised maps
for this purpose, and how some specific challenging aspects of GIS data can be
handled. We finalise with our conclusions, discussion and our plans for future
work in Section 6.

1Among the implementations that do exist, this term is most often used as a catchphrase
for any processing involving 3D space and time. However, time is usually treated as a mere
attribute, and true 4D space is almost never used.

2http://www.gocad.org/
3http://moka-modeller.sourceforge.net/
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2 Higher-dimensional spatial information
The simplest technique to handle additional dimensions in spatial information,
both in GIS and other fields, is using multiple independent representations. In
practice, this means that these dimensions are considered as simple attributes
which are attached to 2D or 3D objects. Such is the case in so-called 2.5D models
for height, the ‘snapshot’ model for time [14] and most approaches to multi-
scale data, including CityGML [15]. This approach is simple to understand and
implement, but it also has important disadvantages:

• There is only a fixed (discrete) number of representations, which means
that the objects being represented only have a known value at certain
predefined points along the dimension. For example, a moving object’s
position is only known at certain moments.

• There is no link between the same object at different representations,
which makes it difficult to maintain consistent representations after up-
dates and precludes topological queries along this dimension. For instance,
finding a moving object involves a brute force search, and checking if two
objects at different scales are equivalent can only be inferred indirectly.

• The geometric and topological information is stored multiple times, which
is wasteful in memory and can easily lead to changes being propagated
incorrectly (or not at all), resulting in inconsistencies.

Many other approaches add some topology and additional information to
these independent 2D or 3D representations. For instance, event-based mod-
els [16] connect successive moments in time with the changes that occurred in
them, object-relationship models [17] add information to model the changes
themselves, and the original tGAP structure [18] links appropriate 2D objects
at different levels of detail. These representations are lightweight and sufficient
for many applications, but they do not solve any of the above mentioned prob-
lems in their entirety: there is still a fixed number of points along a dimension
(e.g. levels of detail or moments in time), some topological relations are not
possible to keep in an efficient manner (especially along the additional dimen-
sions), and inconsistencies are easy to generate when combining data sources or
manipulating objects without special care.

Because of this, others have proposed to treat all dimensions as spatial ones
(see [19] for time and [20] for scale). This solution is more complex, but it
means that objects have known geometry, topology and attributes at all possible
values within a range. Alternatively, this can be seen as having access to all
the topological relationships between the objects, down to the vertex-to-vertex
level. This helps to avoid redundancies and inconsistencies in the data. What
we mean by treating all dimensions as spatial ones is explained as follows.

For simplicity, let us first consider a case with 2D space, time as the third
dimension, and only linear (flat) geometries. At any one point in time, an object
would be represented as a polygon in 3D space, and it would be parallel to the



2D space plane and orthogonal to the time axis. Every object existing (and not
moving or changing shape) during a time period would then be a prism, with
its base and top parallel to the 2D space plane and the other facets orthogonal
to it. An example of this situation is shown in Figure 1.
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Figure 1: A 2D space (x, y) + time (vertical axis) perspective view of the
footprint of two separate buildings at time t0, which were connected by a corridor
(red) from time t1 to time t2 and then became disconnected again when the
corridor was removed until time t3. The moments in time are shown along the
thick line representing the front right corner of the right building.

Extending this to a 4D representation of 3D space and time, every object at
one point in time would be a polyhedron in 4D space, and an object that exists
for a period of time would be a polychoron, i.e. the four-dimensional analogue of
a polygon/polyhedron. If this object is not moving or changing shape, it would
take the form of a prismatic polychoron, i.e. the four-dimensional analogue of a
prism. A simple example of such an object, generated by successive extrusions
of a 2D footprint from the GBKN4 data set, is shown in Figure 2.

3 Higher-dimensional data models
There are several data models that are able to support higher-dimensional ob-
jects. However, most of these are limited to point or raster data, which have
trivial or no topology, and are thus much more straightforward to use and imple-
ment. Higher-dimensional point clouds are common in data mining [21], while
higher-dimensional rasters are common in medical imaging [22], among other
examples.

4http://www.gbkn.nl, a Dutch large-scale topographic data set
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(a) The GBKN footprint of
the Aula Congress Centre in
Delft

(b) After extruding it to cre-
ate a block shaped polyhe-
dron (perspective projection
of edges and facets only)

(c) After extruding it again (double perspective
projection of the edges only)

Figure 2: A 4D (3D+time) representation of the Aula Congress Centre in Delft.



For vector data consisting of closed polytopes (i.e. the higher-dimensional
analogue of a polygon/polyhedron), there are fewer options. A deceptively
simple one involves the geometric subdivision of an n-dimensional polytope into
n-dimensional simplices, i.e. an n-dimensional simplicial decomposition or n-
dimensional triangulation, which can be easily represented and stored using an
incidence model, as shown in Figure 3. In its simplest form, a data structure for
this could be a list of vertex coordinates, and a list of simplices, each containing
the n + 1 vertices that define it and the n + 1 simplices that are adjacent to
it. This option has several advantages: the data structures are simple to use
and implement, it can be compressed with relative ease [23, 24], and operations
between simplices are much more straightforward than those between arbitrary
polytopes (e.g. the intersection of two simplices of a certain dimension can yield
only a limited number of different configurations).

(a) Triangle based representation (b) Tetrahedron-based representation

Figure 3: n-simplex based data structures in 2D and 3D. Black arrows represent
pointers from the element shown, while red arrows show the ones from other
elements that point to this one.

However, doing this subdivision is extremely difficult in practice, since it
requires the creation of an n-dimensional constrained triangulator, which has
been described in theory [25, 26] for some cases, but has never been implemented.
Doing so for the general case, especially in a robust manner, would prove very
difficult.

Another option, and the one further discussed in this paper, is using ordered
topological models [27], a type of boundary representations that are based on a
single type of fundamental constructing element (e.g. a half-edge), on which a
usually small number of pre-defined functions act. The more complex elements
and connected components of such a model are only defined implicitly, e.g. as
a set of fundamental elements. This allows objects to be represented as is, at
least from a high level perspective, not needing to conform to a particular shape
(unlike decomposition models like rasters).

Such data models also have the advantage of separating the topology of
the objects (which is dealt with in the model directly), and their geometry
(which is dealt with in an embedding model). This is a useful property, since it
distinguishes the problems in geometric modelling from those in computational
geometry [28]. Algorithms and methods from both fields can then be applied
indistinctly to solve specific problems.



There are other possible models which are not discussed further in this pa-
per but still represent interesting possibilities. Constructive models based on
constructive solid geometry, alternate decompositions [29] or intersections of
half-spaces have a strong theoretical background, but attaching attributes to
individual elements is difficult, and realising an object involves complex geo-
metric computations. Nef polyhedra [30] are very powerful, but require the
construction of an n-dimensional hyperspherical projective kernel, which is also
a very complex task in practice [31].

4 Generalised maps
Generalised maps (sometimes shortened as G-maps) are an ordered topological
model developed by Liendhardt [32] based on the concept of a combinatorial
map, also known as a topological map, which was described by Edmonds [33].
They are roughly equivalent to the cell-tuple structure of Brisson [34], but were
shown to be able to represent the topology of a wider class of objects, i.e. ori-
entable or non-orientable cellular quasi-manifolds with or without boundary—
manifolds partitioned into cells [35] that allow certain types of singularities, as
long as every i-dimensional cell (i-cell) is incident to no more than two (i+ 1)-
cells in a (i+ 2)-cell.

A generalised map is composed of two elements: darts and involutions (α).
The precise definition of a dart is complex [32], but since for our application
we are only interested in representing linear (flat) geometries, a dart can be
intuitively seen as a unique combination of a specific i-cell (a vertex being a
0-cell, an edge is a 1-cell, a facet is a 2-cell, and so on) in each dimension, all of
which are incident to each other. Meanwhile, involutions are bijective operators
connecting darts that are related along a certain dimension. In this manner, α0

joins darts into edges, α1 connects consecutive edges within a facet, α2 connects
adjacent facets within a volume, and so on. An example of a 3D generalised map
(3-G-map) representation of two adjacent cubes is shown in Figure 4, where α0

thus joins vertices to form edges, α1 connects consecutive edges within a facet,
α2 connects adjacent facets within a volume, and so on.

One can traverse the combinatorial structure by the use of the orbit operator,
which returns a set of darts that are reachable by following certain involutions
only. To obtain the darts that are part of a certain i-cell only, one can start from
any dart d belonging to the i-cell, following all involutions except for αi. This is
commonly denoted an <�αi > orbit of d [36]. Since αi connects adjacent i-cells,
not following it means staying within the same i-cell. For simple construction,
the sew operation is used, connecting two objects of the same dimension along
the common face, i.e. (i − 1)-cell, in their boundaries. Analogously, the unsew
operation can be used to unset these involutions.

More formally, a n-dimensional generalised map is defined by a (n+2)-tuple
G = (D,α0, α1, . . . , αn), where D is a non-empty set of darts, and αi is an
involution (i.e. ∀d ∈ D,∀0 ≤ i ≤ n, αi(αi(d)) = d) that connects objects of
dimension i, and ∀0 ≤ i ≤ n− 2,∀i+2 ≤ j ≤ n, αi(αj(d)) is also an involution.



(a) A G-map representation of a cube.

/α =< α ,α >

/α =< α ,α >

/α =< α ,α >

(b) The �αi operator obtains all the darts be-
longing to a specific i-cell. Thus, �α0 obtains
the darts belonging to a vertex, �α1 those be-
longing to an edge, and �α2 those belonging
to a facet.

(c) A G-map representation of two cubes. Note how the individual cubes have identical involu-
tions to those of (a), with the addition of an α3 involution that connects the two cubes at their
common face. In the other darts, this involution is not used.

Figure 4: A 3D G-map representation of a pair of adjacent cubes, showing the
α0 (dashed red), α1 (solid blue), α2 (double green), α3 (triple purple), and�αi

operators.



In order to traverse a G-map, the orbit operator< A > (d) =< αi1, αi2, . . . , αin >
(d) obtains all the darts that can be reached from dart d by successive appli-
cations of the operators αi1, αi2, . . . , αin ∈ A. For convenience, the operator
<�αi > (d) is defined as well, which traverses all α involutions except for αi [36],
obtaining all the darts that are part of the same i-cell as d.

The construction of objects in its simplest form is based on the sewing
operator, which joins two i-cells along the (i − 1)-cell that lies in their geo-
metric common boundary. Thus, it takes two corresponding darts d1 and d2
(∀0 ≤ j ≤ n, i 6= j ⇐⇒ d1 and d2 belong to the same j-cell) on opposite
sides of the common (i − 1)-cell, computes their < α0, α1, . . . , αi−1 > (d1) and
< α0, α1, . . . , αi−1 > (d2) orbits, performs a parallel traversal of both, and
connects them by adding αi involutions that connect the corresponding darts
from each orbit along the i-th dimension. Note that this implies the use of
consistent ordering criteria in the orbit operator, such as always following the
lowest possible α involution first. The unsew operator similarly uses a single
< α0, α1, . . . , αi−1 > (d) orbit (since the (i− 1)-cells are now linked) to remove
all the involutions between any darts in the orbit along the i-th dimension.

5 Implementation
There are many possible realisations of generalised maps as a data structure.
For instance, a minimal data structure that stores the combinatorial aspect of
an n-G-map could involve a single type of object, a Dart with n+1 pointers to
other darts representing its involutions. However, another option could be to
have a set of Involutions that store the identifiers of the two darts that each
of them link. These two options are presented in Figure 5.

struct Dart {
Dart *involutions[n+1];

};

(a) Based on darts

struct Involution {
id dart1 , dart2;

};

(b) Based on involutions

Figure 5: A minimal G-maps implementation

Nevertheless, these data structures by themselves do not store any geometry
or support many of the characteristics of GIS data. An implementation for use
in GIS requires:

1. Geometry and topology Storing not only topological relationships, but
also the geometry of the objects. At least linear (flat) objects should be
supported.

2. Attributes Storing complex attributes of different types (e.g. numeric,
text, an element of a discrete set of classes, etc.), possibly at every di-
mension (e.g. vertex, edge, face, etc.). Every i-cell can have a tuple of



attributes of different types, but all the cells of a certain dimension gen-
erally have the same attribute types in their tuples.

3. Construction Constructing a model from both topological or non topo-
logical data. Topological data might need to be checked (in case the topo-
logical information does not match the actual geometry of the objects),
while non topological construction should be performed in a consistent
manner, generating valid topological information and ensuring that ob-
jects that are geometrically equivalent are only generated once.

4. Queries Answering geometric, topological and attribute based queries
efficiently. In order to do this, all necessary links between the objects
should be kept, and an external data structure for spatial indexing might
be required as well.

5. Holes Storing and efficiently accessing void regions in possibly every di-
mension higher than 0. To ensure a consistent model, these holes should
fit inside their containing object, which implies that they should be of the
same dimensionality or lower.

6. Disconnected and overlapping objects Keeping track and traversing
objects even when they form topologically disconnected groups. They
might be disconnected by virtue of being geometrically disconnected, or
also by being in a configuration that is not directly representable using
generalised maps. This implies that a higher level structure that somehow
maintains this information is required. This data structure can however
have many possible forms.

The data structures presented previously are only sufficient to represent the
combinatorial structure (topology) of a generalised map, equivalent to the
topological relationships in a partition of space without holes. However, to rep-
resent the geometry and other characteristics of the model, some modifications
and additional structures are needed. These are shown in Figure 6 and explained
as follows.

To store geometry, embedding structures are used; each one of these con-
taining the geometry of a specific i-cell. Since only linear geometries are re-
quired, only the 0-dimensional point embeddings are strictly necessary, which
store the coordinates of each vertex. The geometry of the higher-dimensional
embeddings can then be inferred from the points in their boundary. Since each
dart represents a unique combination of an i-cell of each dimension, a dart can
be linked to its corresponding embedding structure for each dimension. On the
other direction, it is sufficient to link an embedding to any one dart representing
part of its boundary.

Attributes and holes work in a similar manner. Since the tuples of at-
tribute types of all i-cells (cells of equal dimension) are equal, one embedding
data structure per dimension storing the attributes of that dimension, is suffi-
cient. A list of holes present in that i-cell can be then kept as an additional
attribute, its only practical requirement being that the dimensionality of the



getMarker(markerNumber : int) : Marker
markedLock : Mutex

Marked

value : bool
Marker

getMarker() : int
freeMarker(markerNumber : int)

markersInUse : bool[]
managerLock : Mutex

MarkerManager

Dart

isGeometricallyEqualTo(e : Embedding) : bool
isGeometricallyDifferentTo(e : Embedding) : bool

dimension: int
markersLock : Mutex

Embedding

coordinates : Point<d>
PointEmbedding NCellEmbedding Orbit

search(bbox : BoundingBox) : Embedding[]
insert(e : Embedding)
erase(e : Embedding)
size() : int

 
SpatialIndex

createPoint(p : Point<d>) : PointEmbedding
createEdge(points : PointEmbedding[]) : NCellEmbedding
createNCell(boundaryCells : NCellEmbedding[]) : NCellEmbedding
extrude(e : NCellEmbedding, minValue : float, maxValue : float)

 
G-Map
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Figure 6: Our implementation of generalised maps for real-world GIS data.



hole (represented as an embedded cell as well) should be equal or lower than
that of the containing cell, and that its geometry should be fully inside the
containing cell.

Meanwhile, queries and disconnected objects are handled through the
use of a spatial index. For this purpose we have investigated several options,
among which the most promising options are R-tree variants like the R*-tree,
or a simple index using a single vertex per cell, such as the lexicographically
smallest one. Usual R-tree implementations are not practical since they have
problems when dealing with objects of heterogeneous dimension (e.g. an object
with zero-length along a particular dimension has a volume5 of zero in higher
dimensional space). The most important aspect of such a spatial index is that
it allows us to maintain a connected graph.

Finally, we have developed two construction operators: a higher dimen-
sional analogue of extrusion, which uses a d-dimensional object and a range
along the (d + 1)-th dimension to create a (d + 1)-dimensional object; and an
incremental construction methods that creates a (d+1)-dimensional object de-
scribed by the d-dimensional objects in its boundary. These are the focus of
two upcoming articles and are not discussed here any further.

6 Conclusion and Future Work
This paper presents part of our ongoing research to implement a higher-dimensional
GIS based on mathematical models that have been developed in other domains.
This will enable the full integration of the separate dimensional aspects of GIS,
such as 2D/3D space, time and scale [37]. We have modified and extended gen-
eralised maps into a data structure that is not much more complex than a basic
implementation, but one that is able to support the real-world characteristics
that are found in GIS data.

Our future work will cover: the visualisation of higher-dimensional data,
efficient construction techniques, improved spatial indexing, keeping the consis-
tency and validity of data, and improving the memory consumption of gener-
alised maps.
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