A star-based data structure to store efficiently
3D topography in a database

Hugo LEDOUX* Martijn MEIJERS
Delft University of Technology Delft University of Technology

December 24, 2013

This is the draft author’s version of the paper. The definitive version is:

H. Ledoux and M. Meijers (2013). A star-based data structure to
store efficiently 3D topography in a database. Geo-spatial Information
Science, 16(4):256-266.

http://dx.doi.org/10.1080/10095020.2013.866618

For storing and modelling three-dimensional topographic objects (e.g. buildings,
roads, dykes and the terrain), tetrahedralisations have been proposed as an alter-
native to boundary representations. While in theory they have several advantages,
current implementations are either not space efficient or do not store topological
relationships (which makes spatial analysis and updating slow, or require the use
of an expensive 3D spatial index). We discuss in this paper an alternative data
structure for storing tetrahedralisations in a DBMS. It is based on the idea of stor-
ing only the vertices and stars of edges; triangles and tetrahedra are represented
implicitly. It has been used previously in main memory, but not in a DBMS. We de-
scribe how to modify it to obtain an efficient implementation in a DBMS, and we
describe how it can be used for modelling 3D topography. As we demonstrate with
different real-world examples, the structure is compacter than known alternatives,
it permits us to store attributes for any primitives, and has the added benefit of be-
ing topological, which permits us to query it efficiently). The structure can be easily
implemented in most DBMS (we describe our implementation in PostgreSQL) and
we present some of the engineering choices we made for the implementation.

Keywords: 3D GIS, tetrahedralisation, DBMS, data structures.

1 Introduction

Several data models to represent three-dimensional (3D) topographic objects (e.g.
buildings, roads, dykes or the ground) and to store them in a database manage-

*Corresponding author: h.ledoux@tudelft.nl

http://dx.doi.org/10.1080/10095020.2013.866618
h.ledoux@tudelft.nl

ment system (DBMS) have been proposed. Some of them store only the geometry
of single objects while others permit us to explicitly store the topological relation-
ships between objects (and also those between the lower-dimensionality primitives
of the representation of an object). Geometry models usually store objects with a
boundary representation, called b-rep, and one popular data structure used in prac-
tice is GML, the Geography Markup Language (OGC, 2007). It can be seen in the
overview of Zlatanova et al.| (2004) that many topological models are variations of
the formal data structure (FDS) (Molenaar, 1990, |1998), which, unlike its name im-
plies, is a conceptual model—with rules and constraints to preserve the validity—
that can be implemented in a DBMS. The FDS is a boundary representation in
which four primitives are kept (nodes, arc, edge and face; bodies are implicit), and
where the topological relationships between them are stored.

An alternative to b-rep models is to use tetrahedralisations, where 3D objects are
decomposed into tetrahedra and where empty space (e.g. between buildings) is
also decomposed into tetrahedra (dubbed the ‘air” tetrahedra) and integrated in
the mode Carlson| (1987) and [Pilouk! (1996), among others, argue that tetra-
hedralisations have several advantages to represent 3D objects, in the same way
that triangulations have advantages in 2D (Frank and Kuhn, 1986). The advan-
tages the most often cited are: storage is simplified as only one convex primitive
is needed (Penninga, [2005), spatial analysis operations can be performed more ef-
ticiently (Ledoux and Gold, 2008), and the overall implementation is simpler, thus
more robust. However, tetrahedralisations also have theoretical drawbacks, |Zla-
tanova et al. (2004) state in their comparison of the different 3D GIS models: “An
additional disadvantage of TEN is its much larger database size compared with
other representations.” However, as Penninga and van Oosterom (2008) state, the
storage penalty is true only if all the primitives of the tetrahedra are explicitly rep-
resented (nodes, edges and faces, as with the FDS). To design a compact data struc-
ture, they propose two variations of a data structure where only vertices and tetra-
hedra are represented: edges and triangles are extracted on-the-fly when needed.
The first approach can be seen as akin to Simple Features (OGC,2006): a tetrahedron
is formed by the concatenation of the 4 coordinates of the 4 vertices and only one
table is stored. The second approach is a variation: vertices are stored in one table
and have an ID, and one tetrahedron is formed by the concatenation of 4 vertex
IDs into a series of bits. For both approaches they ensure that all tetrahedra are
correctly oriented (i.e. the ordering of the vertices is the same for all tetrahedra),
which speeds up spatial analysis and the incremental update of the model.

While Penninga and van Oosterom's data structures are compact, the topological
relationships between the tetrahedra are not explicitly stored (neither adjacency be-
tween tetrahedra nor incidence from one tetrahedron to primitives in other tetrahe-
dra). These can be extracted in views, but still require a global scan of the the tables.
That means that spatial analysis operations will perform slowly on big datasets,
and so will incremental updates. Penninga and van Oosterom|(2008) advocate us-
ing an auxiliary spatial index for each tetrahedron, such as an R-tree (Guttman,
1984), although that has not been implemented nor tested. The main problems
with an auxiliary index are: (i) storage space is expensive, the bounding box of a
tetrahedron (required by the R-tree) has only one point less than the tetrahedron
itself; (ii) a R-tree is a rather complex structure and updating incrementally a large

I'Notice that this model is often called “TEN”, which stands for either TEtrahedral Network, TEtrahedral irregular
Network, TEtrahedronised irregular Network or TEtrahedron Network, depending on the authors. For the
purpose of this paper, they are all equivalent and a TEN is a tetrahedralisation, as defined in Section

tree can be slow. Triangulations in 2D often are not indexed at the triangle level for
the same reasons, see [Finnegan and Smith/(2010).

We discuss in this paper an alternative data structure for storing tetrahedralisa-
tions in a DBMS. Instead of storing explicitly tetrahedra, we store only two lower-
dimensionality primitives (vertices and edges), and the stars of edges. It has been
used previously in 3D in main memory (Blandford et al.,[2005), but to our knowl-
edge no attempt has been made to implement it in a DBMS. We define in Section 2
the concept of stars, which is related to that of a tetrahedralisation. We present
in Section [3] the data structure and we detail how attributes and constraints can
be stored. One important advantage of our star-based structure is that it permits
us to avoid the use of an auxiliary 3D spatial index, the topological relationships
between the tetrahedra are instead exploited; only a standard binary-tree (B-tree)
is needed to index the tetrahedra. As explained in Section 4} the structure is very
compact, can be implemented easily in a DBMS, and can be efficiently queried. We
report in Section 5| on the storage space needed in PostgreSQL/PostGIS for dif-
ferent real-world 3D city models. It can be seen that the size of the DBMS tables
required for our structure (including the indexing) is smaller than simply the R-
tree needed to index the tetrahedra when stored with|Penninga and van Oosterom
(2008)’s structure. We finally discuss in Section [p| some of the engineering choices
we made while implementing the structure, and our future challenges.

2 Constrained tetrahedralisation and stars

2.1 Constrained tetrahedralisation

Given a set S of points in R (the Euclidean space of dimension d), a triangulation
decomposes the convex hull of S into non-overlapping simplices. A simplex is the
simplest element in a given dimension. Specifically, a k-dimensional simplex is
called a k-simplex and it is the convex hull of a set of (k + 1) linearly independent
points in R¥; a 0-simplex is a node, a 1-simplex an edge, a 2-simplex a triangle, a
3-simplex a tetrahedron, and so on. To simplify the notation, a k-simplex ¢ formed
by the vertices a, b and ¢, is simply denoted abc. The facets of o are the (k — 1)-
simplices forming it.

If the set S contains both points and constraints, then a constrained triangulation
(CT) decomposes the convex hull of S into simplices that are non-overlapping,
and every input constraint appears in the triangulation of CT(S). As shown in
Figure , the constraints in IR? are (straight-line) segments in the plane; if several
segments form a loop (which defines a polygon), a CT permits us to triangulate
the interior of this polygon. In IR3, the constraints are planar surfaces, as Figure|1p
shows. In our case these constraints are the walls of buildings for instance; as is the
case in 2D, if several adjacent surfaces form a closed polyhedron, a CT will permit
us to tetrahedralise its interior.

It is known that the CT of a set of points and segments in IR? is always pos-
sible (Shewchuk) 1997). However, in 3D the problem is more complex. This is
because some arbitrary polyhedra cannot be tetrahedralised without the addition
of extra vertices, the so-called Steiner points. Figure 2|shows an example, as it was
first illustrated by Schonhardt (1928). This polyhedron is formed by twisting the
top face of a triangular prism to form a 6-vertex polyhedron having eight trian-
gular faces (each one of the three quadrilateral faces adjacent to the top face will
fold into two triangles). It is impossible to select four vertices of the polyhedron

(@)

Figure 1: (a) Two-dimensional polygons representing buildings footprints, and their con-
strained Delaunay triangulation. (b) Three-dimensional representation of the same
buildings (polyhedra in this case, obtained by extruding the footprints in (a)) and
their constrained Delaunay tetrahedralisation (for clarity only the tetrahedra inside
the polyhedra are shown here, but the whole convex hull in 3D is partitioned into
tetrahedra).

~| —/

Figure 2: The Schonhardt polyhedron is impossible to tetrahedralise without adding extra
vertices..

link(v)

Figure 3: The star and the link of a vertex v in (a) 2D and (b) 3D.

such that a tetrahedron is totally contained inside the polyhedron, as none of the
vertices of the bottom face can directly ‘see’ the three vertices of the top triangular
face. Adding one Steiner in the centre of the prism allows the CT to be constructed.

To construct a CT in 3D, there are three approaches. The first one is the conform-
ing Delaunay tetrahedralisation, where additional vertices are inserted and where
each tetrahedron respects the Delaunay criteria, i.e. its circumsphere is empty of
any other vertex. While in certain disciplines having well-shaped tetrahedra is
important (e.g. in finite-element analysis), in the case of 3D topography it is most
likely less as the partitioning of space is used as a data structure, and the shape of
the element is not used directly. Moreover, conforming Delaunay tetrahedralisa-
tions often insert several new vertices, although there are techniques to reduce them
in practice (Cohen-Steiner et al., 2004). The second solution is the constrained De-
launay tetrahedralisation (CDT) (Shewchuk) 2002; Si and Gértner, 2011), where the
tetrahedra are not fully Delaunay but where the number of Steiner points is min-
imised. A third approach consists of creating tetrahedra without any guarantee
on their shapes, this requires the use of Steiner points but these can be minimised.
Robust and efficient implementations of the last two approaches exists, we use for
the experiments in Section 4] the software TetGen (S, 2004).

2.2 Stars and links

Let v be a vertex in a d-dimensional triangulation. Referring to Figure 3, the star
of v, denoted star(v), consists of all the simplices that contain v; it forms a star-
shaped polytope P. For example, in 2D, all the triangles and edges incident to v
form star(v). Notice however that the edges and vertices disjoint from v—but still
part of the triangles incident to v—are not contained in star(v). From a point-set
topology point-of-view, star(v) is the interior of P. Also, observe that the vertex v
itself is part of star(v), and that a simplex can be part of a star(v), but not some of
its facets.

The boundary of P is defined as the link of v. It is formed by the set of simplices
incident to the d-simplices forming star(v), but ‘left out” by star(v). For example,
if v is a vertex in a 2D triangulation, link(v) is formed by the vertices and edges
that are incident to the triangles incident to v. In 2D it is a polyline, and in a tetra-
hedralisation, link(v) is a two-dimensional triangulation formed by the vertices,
edges and triangular faces that are contained by the tetrahedra of star(v), but are
disjoint from v. In a d-dimensional triangulation, the link of a given vertex is a
(d — 1) triangulation.

The closely related concepts of star and link also apply to edges in 3D: in Figure[4]

Figure 4: The link of the edge ab in 3D is formed by the bold dashed polyline cdef ghc.

star(ab) is formed by all the incident simplices (6 in this case), and link(ab) is a
1-dimensional triangulation.

3 A star-based data structure

To our knowledge, Cline and Renka (1984) are the first to design a data structure
where stars of vertices are used to represent a triangulation, albeit in 2D. Their
structure is compact, but does not allow incremental updates (which is arguably
important for a GIS data model). Shewchuk|(2005) uses a star-based data structure
to manipulate 3D triangulations, but his structure is very verbose since the star
of every vertex is stored as a 2D triangulation, itself stored with stars. |Blandford
et al.| (2005)) fix both issues with their structure, which is valid for 2D and 3D tri-
angulations. Their representation indeed uses about a factor 3 less memory than
traditional representations in 3D and at the same time can be queried and dynami-
cally modified. To achieve this compression, they designed a pointer-less structure
where each vertex is assigned a label (an integer) and they compress based on la-
bels: if possible they store the integers using 4 bits (they use differences between
the labels to achieve that) and use different optimisations to keep the memory foot-
print low.

While it would theoretically be possible to implement the compression in a DBMS,
we are interested in their basic idea of using labels for vertices and storing the stars
of edges in 3D. In a nutshell, a star-based data structure for a tetrahedralisation in
a DBMS is as follows. First, each vertex is given a label. For an edge ab of the tetra-
hedralisation, we store its link as an ordered list of labels. The orientation of all
the edges must be the same; we use in this paper the right-hand rule: if the thumb
points from a to b, the vertices of link(ab) are ordered in the direction of the curled
fingers of the right hand. In Figure link(ab) is the ordered list [c, d, ¢, f, g, h, c]; no-
tice that this is a circular list and that the starting vertex could be any vertex. The
link list is of variable length: its minimum is 2 (one tetrahedron) and its theoretical
maximum is the number of vertices in the tetrahedralisation minus 2. A tetrahe-
dron is formed by ab and 2 consecutive vertices in the list; abcd and abhc are two
examples of tetrahedra implicitly represented in link(ab). Notice that the length of
the list gives the number of incident tetrahedra to ab. Also, lower-dimensionality

simplices (triangles and edges) are implicitly represented in links: for instance, re-
ferring to Figure [} the triangle abc is present in the links of its 3 edges. Since the
link is an ordered list, the simplices implicitly represented are also ordered.

The key idea behind the structure is that if we represent the link of each edge
then we obtain a data structure where relationships such as incidence and adja-
cency between tetrahedra and their lower-dimensionality simplices are present. It
is the overlap between the (ordered) links that permits us to represent explicitly
that information. Observe that each tetrahedron is represented in the link of its 6
edges, and that since these are ordered, we can easily navigate from tetrahedron to
tetrahedron. We demonstrate in Section[4.3|queries that can be efficiently answered
with such a data structure.

3.1 Representative edges

Storing the link for each edge of a tetrahedralisation yields a powerful and topo-
logical data structure, but also one that is not space efficient. Indeed, if the CT of a
set S of n points contains ¢ tetrahedra, then the number e of edges is significantly
higher: Blandford et al.| (2005) estimate it at (7/6)t for a CT where the points are
uniformly distributed in space. The real-world datasets of buildings used for the
experiments in Section |5/ corroborate this. Since, as explained in the Introduction,
one of the disadvantages of using tetrahedralisations to model topography is the
larger storage requirements, this is clearly not optimal.

To reduce the number of edges whose star is stored, we store only the represen-
tative edges (RE), as Blandford et al.|(2005) suggest. If the label given to each vertex
is an integer, a RE is one where its 2 vertex labels are either odd or even. If we ran-
domly label the vertices, that should reduce by a factor of about 2 the number of
edges to be stored and still permits us to represent at least once each triangle and
each tetrahedron (which is fundamental to ensure that all topological relationships
are present). Indeed, it ensures that each triangle has at least one RE: a triangle has
either 3 REs (3 odd or 3 even labels) or one RE (1 odd / 2 even; 2 odd / 1 even).

Figure |5/ shows the same 6 tetrahedra as in Figure |4} and the REs are in bold. It
can be seen that out of the 19 edges, 6 are representative, and that each triangle,
and each tetrahedron, contains at least one RE.

3.2 Storage space

Evaluating the theoretical storage space for a given dataset is difficult since the
number of tetrahedra in a CT depends on the locations of the points and the con-
straints (Shewchuk) 1997). However, to obtain an order of magnitude, we can state
that we need on average 3 labels per tetrahedron. Indeed, each tetrahedron has 4
triangles, which are shared by 2 tetrahedra (if we ignore those on the convex hull);
thus 2 triangles per tetrahedron. A triangle has 3 labels, but since it appears in 3
stars and that only half of the edges are represented, we obtain 15. Thus: 2 x 1} = 3
labels per tetrahedron. Our experiments with real-world datasets corroborate that,
see Section 5l

3.3 Attributes and constraints

Attaching attributes to the tetrahedra is possible, although one must be careful
since tetrahedra are present in multiple stars and only implicitly. As Blandford
et al.| (2005) suggest, we exploit the fact that each vertex has a unique label (which

6

Figure 5: A set of 8 vertices yields a tetrahedralisation with 6 tetrahedra. Out of the total 19
edges the 6 representative edges (REs) are stored (and shown in bold): (1,3), (1,5),
(1,7),(2,4), (2,6), (2,8).

can be ordered) and attach the attributes to the star of the REs whose origin is the
lowest; in case there are more than one, the one having the lowest destination is
chosen. For example, an attribute for the tetrahedron abcd is stored in the star of the
RE ab. Given a tetrahedron abcd, we can find out in constant time which RE stores
its attributes. Each attribute is stored in its own list having the same length as the
list of the star. Table (1| shows one example for a specific dataset, and a concrete
example is given in Section [4.3}

In the context of modelling 3D city models, an example of an attribute would be
the ID (or name) of the building inside which a tetrahedron lies. If we store this ID
for each tetrahedron (and assign also an ID for the ‘air’ tetrahedra), then we can
also explicitly represent the original constraints in the dataset: they are formed by
the triangles whose incident tetrahedra have different IDs.

3.4 Spatial indexing: using the tetrahedralisation itself

An advantage of a star-based structure—or of any structure in which adjacency
and incidence relationships are stored—is that a spatial index, such as an R-tree
(Guttman, 1984), is not necessary to access efficiently the tetrahedra. Instead, the
tetrahedralisation itself can be used to determine which tetrahedron contains a
query point g: the adjacency relationships between the tetrahedra are used to nav-
igate in the tetrahedralisation. The latter can be implemented with the walking
algorithm as described in Miicke et al.| (1999). It is a sub-optimal algorithm that is
favoured by practitioners since it does not require an auxiliary data structure and
yields fast practical performances (Miicke et al.,[1999; Devillers et al., 2002).

The idea is as follows: starting from a given tetrahedron o, we move to one of
the neighbours of o (we choose one neighbour such that the query point g and ¢
are on each side of the triangular face shared by ¢ and its neighbour) until there
is no such neighbour, then the tetrahedron containing g is . In Figure[6 only the
grey triangles are visited during the walk.

To minimise the number of tetrahedra visited, the starting tetrahedron should be
close to q. [Miicke et al. (1999) investigated a ‘bucketing” approach where a certain
number of triangles are randomly selected, and each walk starts from the closest

starting triangle

Figure 6: Walking in a 2D triangulation, starting from a given triangle to the query point 4. In
3D the principle is the same: the walk is performed from tetrahedron to tetrahedron.

start
1 0.*
0.* tetra 4 1 end 0."
Feature - Vertex RE
2.* . 0.*
link/star

Figure 7: The UML diagram of the data model for our star-based data structure.

one (selected by a simple Euclidean distance test); it is called the jump-and-walk
method. The result of a query can be either a tetrahedron, or one representative
edge in that tetrahedron. Modifying this algorithm to start from a representative
edge is trivial.

4 Implementation in a DBMS

This section describes a prototype implementation of the star-based data structure
in a specific object-relational DBMS (PostgreSQL), but since the data structure is
based solely on lists of labels, implementing it in another DBMS is straightfor-
ward. Several engineering decisions were taken while implementing the structure
in PostgreSQL, and we report here on the main ones.

4.1 Data model

Figure|7|shows the UML class diagram for the data structure.

The tetrahedralisation itself is represented with two classes: one for the vertices,
and one for the REs. The third class is used to represent features in a dataset, e.g.
solids such as buildings.

Each vertex has a location with 3D coordinates. A RE has a start and an end
vertex, and a link (which is an array of vertices). The relationship “tetra” between
the classes ‘Feature” and ‘RE’ represents one tetrahedron (four vertices) located in-
side a feature: it permits us to efficiently locate one RE for a tetrahedron inside the
feature without performing a global search.

(a) Vertex table (b) RE table

ID X y z start end link[] attribute[]
1 0.0 0.0 0.0 1 3 [-1,4,8,7,2] [1,1,1,2,-1]
2 1.0 0.0 0.0 1 5 [-1,6,7,8] [-1,2,1,-1]
3 1.0 1.0 0.0 1 7 [6,2,3,8,5] [2,-1,-1,-1,-1]
4 0.0 1.0 0.0 2 6 [-1,7,1] [
5 0.0 0.0 1.0 3 7 [-1,8,1,2] [1
6 1.0 0.0 1.0 4 8 [-1,1, 3] [
7 1.0 1.0 1.0 5 7 [-1,6,1, 8] [1
8 0.0 1.0 1.0
(c) Feature table

1D owner tetral[]

1 ‘John Smith’ [1,3,4,8]

2 "Bob Brown’ [1,5,6,7]

Table 1: The 3 tables for the dataset shown in Figure

4.2 PostgreSQL tables

These three classes are straightforward to implement in a DBMS supporting an
array type of variable length such as PostgreSQL. An example of the tables filled
with data, for the two features shown in Figure [§ is shown in Table [Il In our
implementation, we define an ID for each Vertex and it is the primary key (which
creates a B-tree index on the column). This ensures efficient access and enforces
uniqueness. The primary key of the table RE is defined as the concatenation of the
columns ‘start” and ‘end’. It should be noticed that these two columns could be
merged into one column, but that would require using a data type twice as large
(64-bit integers for instance) and would not permit us to compress the storage.

Table[Talso shows how attributes are stored in the ‘RE’ table.

Also, to be able to represent triangles and tetrahedra two custom types have been
defined. Both types are a sequence of vertex IDs, where triangles are represented
by 3 vertex IDs and tetrahedra by 4. Based on these custom types a view can be
defined that ‘glues’ the geometry of the vertices and edges together to triangles
and tetrahedra (performed by a database join).

4.3 Examples of topological queries

We describe in the following how a few typical queries are answered with a star-
based structure. All the queries refer to the example in Figure |8, and the resulting
tables in PostgreSQL (Table).

Observe that out of the 19 edges in the tetrahedralisation, 7 are REs. In Table
in the link column of the RE table the ID “-1" is used for links that do not form a
cycle, i.e. the edge is on the boundary of the convex hull of the dataset.

Observe also that the array of the column attribute is filled only for some tetrahe-
dra: as explained in Section 3.3} for a given tetrahedron, we attach an attribute to it
in the RE whose origin is the lowest. If a given RE is one such RE for a tetrahedron,
then an array of the same length as that of the link column is used and -1" is used

10

feature #1 0 0
8

2 2
feature #2 4

Figure 8: (a) Two adjacent 3D features (both triangular prisms) sharing a surface (in grey). (b)
The two features tetrahedralised, with the 7 REs in bold black.

when the tetrahedron’s attribute is stored in another RE. If a RE is not used to store
the attributes of any tetrahedra (i.e. the attributes of the incident tetrahedra to the
RE are stored in other REs), then the array can be empty to save storage space. The
last four rows in the Table[I|(b) have an empty array.

Since triangles and tetrahedra can be present multiple times in the structure,
querying the structure has to be done with care. For example, tetrahedron [1,5,6,7]
is present in the edge table in the links of all its representative edges: [1,5], [1,7]
and [5,7].

Is the tetrahedron [1,2,6,7] present? First, one RE has to be found: [1,7] is one
of them. Observe that a RE is found in constant time only by finding locally
2 odd or even IDs in the tetrahedron. Second, the IDs 2 and 6 have to appear
consecutively (not necessarily in that order) in the link of that RE. It is the
case, thus the tetrahedron is present.

What attribute has tetrahedron [1,2,6,7]|? First, make sure the tetrahedron ex-
ists, as above. In the attribute[] column of its RE ([1,7]) find the first instance
of either 6 or 2: first position in the link. The attribute (value is 2) is at the
same position in the attribute list.

Which tetrahedra are adjacent to [6,7,1,5]? First, find one RE, as above ([1,5])
and find the position of vertices 6 and 7 in the link. The vertices before and
after the tuple give 2 adjacent tetrahedra: [1,5,0,6] and [1,5,7,8]; the former
does not exist since 0 is in the link. Second, find another RE ([1,7]) and repeat
the same operations in its link: tetrahedra [1,7,8,5] and [1,7,6,2] are found,
the former having been previously identified. Since we know that each tri-
angle is represented in at least one RE, this operation will always return the
4 tetrahedra, unless the tetrahedron is on the boundary of the convex hull.
Notice that this is also a mechanism to identify which triangles are on the
boundary of the convex hull (triangles [5,6,7] and [6, 5, 1] in this case).

Total number of tetrahedra? Here we apply the same criteria as for storing at-
tributes in Section the lowest concatenation of the IDs is the one repre-
senting the tetrahedron. For instance, tetrahedron [7,8,1,5] is conceptually
stored in edge [1,5] and not [1,7]. Thus, it suffices to scan the RE table and
take a local decision to extract tetrahedra: 6 tetrahedra are present in Figure

11

Volume of a given feature? From the Feature table we obtain a tetrahedron inside
the feature; let us find the volume of the feature 1 in Table[I] First find a RE for
the tetrahedron [1, 3, 4, 8] ([1, 3]) and identify the adjacent tetrahedra. If these
tetrahedra also have the same attribute (same as above), then add them to the
list of tetrahedra. Repeat this step for all the found tetrahedra, and sum the
volume of the tetrahedra.

Are features #1 and #2 adjacent? As in the case of finding the volume of a fea-
ture, we need to visit all the tetrahedra inside the feature 1 and test if one of
their adjacent tetrahedra has the attribute 2. For the feature 1 in Table [1}, we
would first find the RE [1, 3] and the tetrahedron [1, 3,8, 7]. From this tetrahe-
dron, we repeat the same operation and find [1, 3,7, 2], which has the attribute
2 in the list. Features 1 and 2 are thus adjacent.

5 Experiments with real-world data

To test the star-based data structure in PostgreSQL/PostGIS, we have made ex-
periments with three real-world datasets containing 3D buildings. These were all
obtained by extruding the 2D footprints to their height (which was obtained by
averaging the height of the LIDAR samples inside a footprint). To be able to tetra-
hedralise the resulting 3D datasets, the surfaces of the buildings should be unique,
i.e. if two buildings are adjacent, their shared wall should be present only once.
We have created such a topologically consistent dataset with the methodology de-
scribed in|Ledoux and Meijers|(2011). In a nutshell, it consists of ensuring that the
2D footprints are topologically consistent (i.e. no two footprints overlap and the
graph of the footprint is a planar graph), and extrude each edge to a vertical wall.

We have constructed the constrained tetrahedralisation of the models with Tet-
Gerﬁ (Si, 2008). For populating the DBMS, we have created a program that takes
as input the result of the tetrahedralisation (a list of vertices and tetrahedra) and
outputs a list of REs and their links.

5.1 Datasets used

The three datasets, shown in Figure [J} are areas in the Netherlands: ‘campus’ is
the campus of the Delft University of Technology; ‘kvz’ is an area of Rotterdam,;
‘engelen” an area of the municipality of Den Bosch. Table 2| gives the details of the
3D extruded datasets, and the results of the construction of the tetrahedralisation.
It should be noticed here that we tried to minimise the number of Steiner points
when tetrahedralising the datasets; as it can be seen this was very satisfactory as
only one point needed to be inserted for the dataset ‘campus’, and none for the
other two. The cuboid shape of the buildings explains this.

5.2 Comparisons with alternatives

For each dataset, we have created 3 databases in PostgreSQL 9.2.2 /PostGIS 2.0.2:

b-rep: each building is stored as a 3D primitive, the type POLYHEDRALSUR-
FACE was used, which is a boundary representation. The original surfaces
of a building were used, no triangulation was performed. A 3D R-tree index
was used to index each building.

Zhttp://www.tetgen.org

12

http://www.tetgen.org

\4

@ °

RSN

(b)
d)

£

(

Figure 9: Part of the footprints of the datasets (a) campus, (b) kvz, and (c) engelen. In (d) a view
on the kvz dataset tetrahedralised; notice that the ‘air’ tetrahedra are not shown.

Table 2: Details concerning the datasets used for the experiments.

3D model input CDT
solids faces vertices constraints vertices edges tets
campus 370 4298 5970 3976 5971 36790 28024
kvz 637 6549 8951 13571 8951 59332 50376
engelen 1629 15870 23732 15 868 23732 145296 110232

13

Table 3: Details of the stars.

link
REs avg max min sum ID/tet
campus 16 004 4.79 27 3 76693 2.73
kvz 28 763 5.04 35 3 145158 2.88
engelen 71 841 498 23 3 357984 3.25

Table 4: Size of the PostgreSQL /PostGIS tables.

b-rep tetrahedra star-based
table index table index vertex index RE index
campus 424kB 320kB 15MB 3 440kB 408kB 152kB 1 408kB 368kB
kvz 768kB 224kB 26MB 5072kB 600kB 216kB 2 560kB 648kB

engelen 1936kB 304kB 57MB 12 000kB 1584kB 536 kB 6360kB 1592kB

tetrahedra: each tetrahedron was stored as a POLYHEDRALSURFACE, which is
conceptually similar to what Penninga and van Oosterom| (2008) propose.
They originally propose to concatenate the 4 xyz coordinates of the 4 ver-
tices. This is not possible without creating a totally new data type. We have
instead opted to use a POLYHEDRALSURFACE for each tetrahedron—more
storage is used since this is a generic type and the ordering of the vertices
cannot be inferred. We estimate that the storage penalty is around a factor 3
since each vertex is stored in 3 surfaces. As is the case for the buildings, a 3D
index was used to index each tetrahedron. Notice that we could not test the
other approach of Penninga and van Oosterom|(2008) (where a tetrahedron is
formed by the concatenation of 4 IDs, and another table with vertices is used
for the coordinates) since it is not possible to spatially index the table of tetra-
hedra. A join between the 2 tables should first be performed, and then this
table can be indexed; that would increase significantly the size and duplicate
the information.

our star-based structure: as was described in Section 4l

It should be noticed that for the experiments we do not consider the features, we
focus only on the tetrahedra.

The first observation is that for a given dataset with 7 solids, the CT of the dataset
contains several tetrahedra: in our experiments, this number is around 75 times
more. If every tetrahedron is stored individually, a direct consequence is that the
table will have several more rows, and more importantly, the R-tree will be signif-
icantly bigger and more complex to update.

TableB|presents the details of our star-based data structure for the three datasets.
Notice that around half of the edges of the CT are stored as RE, as theory states.
In our experiments, the number of REs is around 60% of that of the number of
tetrahedra. This is inline with what theory states for a tetrahedralisation in which
the points are uniformly distributed in space: (7/6)t (where t is the number of
tetrahedra), and only half of the edges are REs. This is therefore expected for most
datasets. It should be noticed here that this translates into less rows in a table to
store the tetrahedra, but also into a leaner index to build and maintain.

14

Table B|also shows the details of the links of the REs. The average number of IDs
stored in a link is about 5, its maximum is 35 for one dataset, and its minimum is 3
(an edge on the boundary of the convex hull). The column ‘sum’ is the sum of all
the IDs in all the links. As described in Section [3.2] the number of IDs used for one
tetrahedron is in theory 3—we obtain similar results with real-world datasets.

This number is however higher in practice in a DBMS since we must also assign
IDs to the REs (‘start” and ‘end” attributes), but is nonetheless of the same magni-
tude as Penninga and van Oosterom! (2008). As an example, for the kvz dataset we
need to have (28 763 x 2) IDs for the REs, plus 145 158 IDs in the links; the total is
thus 202 684 IDs. If the second approach of Penninga and van Oosterom| (2008) was
used to store the tetrahedra (where IDs of vertices are used) then each tetrahedron
would need exactly 4 IDs: 50 376 x 4 = 201 504 IDs.

Table] shows the size of the tables and the indices in PostgreSQL /PostGIS for
the three datasets; for the star-based structure both tables are shown, and the index
used is a B-tree for both. The total size of the tables for the star-based structure is
around 4 times that of the b-rep structure, but around 8 times less than with the
tetrahedra structure. The former was expected since far less objects/solids are
stored with the b-rep, and the connections between non-adjacent buildings (the
‘air’ tetrahedra) are not stored. The latter is explained by the fact that Penninga
and van Oosterom! (2008) cannot be stored with generic types; even if the storage
was reduced by a factor 3 the size of the tetrahedra structure would still be larger.
Furthermore, the size of the indices for the star-based structure is around 6 times
less than that of the R-tree for the tetrahedra structure. In fact, both tables and both
indices for the star-based structure take around 33% less storage space than the
R-tree index alone for the tetrahedra structure.

The size of the tables of the b-rep option is obviously smaller than that of the
star-based structure, but it should be noticed that we are comparing apples to or-
anges here, especially since, as the number of solids grow in a dataset, the number
of tetrahedra will grow even more (depending on the complexity and distribution
of the points). A star-based structure permits us to represent more than simply
the features: their adjacency and even their connection is encoded in the tetrahe-
dralisation, which is useful for several applications. Topological queries are much
faster answered as no comparison of coordinates need to be performed, and it is
for instance possible to query for features that are neighbours, but do not touch.

6 Discussion and future work

We have shown that a star-based data structure implemented in a DBMS can be
both compact and topological at the same time, two criteria that are usually con-
tradictory. Our structure is in theory as compact as the most compact structure
implemented in a DBMS so far (that of Penninga and van Oosterom (2008)), but
if we consider that spatial indexing is needed then our structure is several times
compacter. While storage space in a DBMS is not the most important factor, having
smaller tables (in terms of rows) with leaner indices means faster updating and
maintenance when a dataset is modified. As three-dimensional datasets become
more available and grow in size, this is becoming more important.

Another strong point of the star-based structure is that it can be easily imple-
mented in any DBMS supporting variable length arrays with two simple tables,
and that no complex spatial index is needed. While the structure seems more cum-
bersome to maintain when the data are updated, the users need not be aware that

15

this is the structure used. We plan to add functionalities to the DBMS so that views
can be created over the edges and stars so that only features (e.g. buildings) are
shown to the user, which is whatvan Oosterom et al. (2002) advocate for storing 3D
GIS datasets in a DBMS. We have plans to make the data structure fully dynamic,
i.e. supporting insertions and deletes of tetrahedra and of features, updating the
already stored tetrahedra in the database.

Object relational DBMS systems keep evolving and new powerful features have
been added to mainstream systems. One example is Common Table Expressions
(SQL-99) which paves the way to deal with more complex data structures like trees
and graph storage inside such systems natively. We intend to see how far these
features are useful during implementation of the query part of our data structure
and how much custom procedural functionality still needs to be built.

Apart from 3D topography, 3D models can also be useful for modelling space
and map scale in one integrated 3D data structure, e.g.[van Oosterom and Meijers
(2011). Hence, one operation we want to investigate in more detail is to create a
cross section through the stored 3D model: selecting intersecting tetrahedra, per-
forming intersection and then create a topologically clean output of the intersected
elements to see whether this tetrahedra based model can be a useful underlying
technology for producing vario-scale data.

Acknowledgements

This research is supported by the Dutch Technology Foundation STW, which is
part of the Netherlands Organisation for Scientific Research (NWO), and which
is partly funded by the Ministry of Economic Affairs (project codes: 11300 and
11185).

References

Daniel K. Blandford, Guy E. Blelloch, David E. Cardoze, and Clemens Kadow.
Compact representations of simplicial meshes in two and three dimensions. In-
ternational Journal of Computational Geometry and Applications, 15(1):3-24, 2005.

E. Carlson. Three-dimensional conceptual modeling of subsurfaces structures. In
Proceedings 8th International Symposium on Computer-Assisted Cartography (Auto-
Carto 8), pages 336-345, Falls Church, VA, USA, 1987.

A. K. Cline and R. J. Renka. A storage-efficient method for construction of a
Thiessen triangulation. The Rocky Mountain Journal of Mathematics, 14:119-139,
1984.

David Cohen-Steiner, Eric Colin de Verdiere, and Mariette Yvinec. Conforming
Delaunay triangulations in 3D. Computational Geometry—Theory and Applications,
28:217-233, 2004.

Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation.
International Journal of Foundations of Computer Science, 13(2):181-199, 2002.

David C. Finnegan and Michael Smith. Managing LiDAR topography using Oracle
and open source geospatial software. In Proceedings GeoWeb 2010, Vancouver,
Canada, 2010.

16

A. Frank and W. Kuhn. Cell graphs: A provable correct method for the storage
of geometry. In Proceedings 2nd International Symposium on Spatial Data Handling,
Seattle, USA, 1986.

Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings 1984 ACM SIGMOD International Conference on Management of Data,
pages 47-57. ACM Press, 1984.

Hugo Ledoux and Christopher M. Gold. Modelling three-dimensional geoscien-
tific fields with the Voronoi diagram and its dual. International Journal of Geo-
graphical Information Science, 22(5):547-574, 2008.

Hugo Ledoux and Martijn Meijers. Topologically consistent 3D city models ob-
tained by extrusion. International Journal of Geographical Information Science, 25
(4):557-574, 2011.

Martien Molenaar. A Formal Data Structure for three dimensional vector maps. In
Proceedings 4th International Symposium on Spatial Data Handling, pages 830-843,
Zurich, Switzerland, 1990.

Martien Molenaar. An introduction to the theory of spatial object modelling for GIS.
Taylor & Francis, 1998.

Ernst P. Miicke, Isaac Saias, and Binhai Zhu. Fast randomized point location with-
out preprocessing in two- and three-dimensional Delaunay triangulations. Com-
putational Geometry—Theory and Applications, 12:63-83, 1999.

OGC. OpenGIS implementation specification for geographic information—simple
feature access. Open Geospatial Consortium inc., 2006. Document 06-103r3.

OGC. Geography markup language (GML) encoding standard. Open Geospatial
Consortium inc., 2007. Document 07-036, version 3.2.1.

Friso Penninga. 3D topographic data modelling: Why rigidity is preferable to
pragmatism. In A. G. Cohn and David M. Mark, editors, COSIT—Proceedings
International Conference on Spatial Information Theory, volume 3693 of Lecture Notes
in Computer Science, pages 409-425. Springer, 2005.

Friso Penninga and Peter van Oosterom. A simplicial complex-based DBMS ap-
proach to 3D topographic data modelling. International Journal of Geographical
Information Science, 22(7):751-779, 2008.

Morakot Pilouk. Integrated modelling for 3D GIS. PhD thesis, ITC, The Netherlands,
1996.

E. Schénhardt. Uber die zerlegung von dreieckspolyedern in tetraeder. Mathema-
tische Annalen, 98:309-312, 1928.

Jonathan Richard Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburg, USA, 1997.

Jonathan Richard Shewchuk. Constrained Delaunay tetrahedralization and
provably good boundary recovery. In Proceedings 11th International Meshing
Roundtable, pages 193-204, Ithaca, New York, USA, 2002.

17

Jonathan Richard Shewchuk. Star splaying: An algorithm for repairing Delaunay
triangulations and convex hulls. In Proceedings 21st Annual Symposium on Com-
putational Geometry, pages 237-246, Pisa, Italy, 2005. ACM Press.

H. Si and K. Gértner. 3D boundary recovery by constrained Delaunay tetrahedral-
ization. International Journal for Numerical Methods in Engineering, 85(11):1341—
1364, 2011.

Hang Si. Tetgen: A quality tetrahedral mesh generator and three-dimensional De-
launay triangulator. User’s manual v1.3 9, WIAS, Berlin, Germany, 2004.

Hang Si. Three Dimensional Boundary Conforming Delaunay Mesh Generation. PhD
thesis, Berlin Institute of Technology, Berlin, Germany, 2008.

Peter van Oosterom and Martijn Meijers. Towards a true vario-scale structure sup-
porting smooth-zoom. In Proceedings of 14th ICA/ISPRS Workshop on Generalisa-
tion and Multiple Representation, pages 1-19, Paris, 2011.

Peter van Oosterom, Jantien Stoter, Wilko Quak, and Siyka Zlatanova. The balance
between geometry and topology. In Dianne Richardson and Peter van Oost-
erom, editors, Advances in Spatial Data Handling—10th International Symposium
on Spatial Data Handling, pages 209-224. Springer, 2002.

Sisi Zlatanova, Alias Abdul Rahman, and Wenzhong Shi. Topological models and
frameworks for 3D spatial objects. Computers & Geosciences, 30(4):419-428, 2004.

18

	Introduction
	Constrained tetrahedralisation and stars
	Constrained tetrahedralisation
	Stars and links

	A star-based data structure
	Representative edges
	Storage space
	Attributes and constraints
	Spatial indexing: using the tetrahedralisation itself

	Implementation in a DBMS
	Data model
	PostgreSQL tables
	Examples of topological queries

	Experiments with real-world data
	Datasets used
	Comparisons with alternatives

	Discussion and future work

