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The international standards for geographic information provide unambiguous def-
initions of geometric primitives, with the aim of fostering exchange and interoper-
ability in the geographical information system (GIS) community. In two dimensions,
the standards are well-accepted and there are algorithms (and implementations of
these) to validate primitives, i.e. given a polygon, they ensure that it respects the stan-
dardised definition (and if it does not a reason is given to the user). However, while
there exists an equivalent definition in three dimensions (for solids), it is ignored by
most researchers and by software vendors. Several different definitions are indeed
used, and none is compliant with the standards: e.g. solids are often defined as 2-
manifold objects only, while in fact they can be non-manifold objects. Exchanging
and converting datasets from one format/platform to another is thus highly prob-
lematic. I present in this paper a methodology to validate solids according to the in-
ternational standards. It is hierarchical and permits us to validate the primitives of
all dimensionalities. To understand and study the topological relationships between
the different parts of a solid (the shells) the concept of Nef polyhedron is used. The
methodology has been implemented in a prototype, and I report on the main engi-
neering decisions that were made and on its use for the validation of real-world three-
dimensional datasets.

1 Introduction
To facilitate and encourage the exchange and interoperability of geographical information, the
ISO1 and theOGC2 havedeveloped in recent years standards that definewhat the basic geograph-
ical primitives are (the abstract specifications [ISO, 2003]), and also how they can be represented
1International Organization for Standardization: www.iso.org
2Open Geospatial Consortium: www.opengeospatial.org
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in a computer (the implementation specifications [OGC, 2007, 2006]). While the abstract def-
initions for the primitives are not restricted to two dimensions (2D), most of the efforts for the
representation and storage of the geographical primitives have been done only in 2D. However,
in recent years, with the adoption of CityGML as an international standard [OGC, 2012], the
amount of available datasets with three-dimensional (3D) primitives is increasing rapidly. Al-
though the topic might appear trivial—“a polygon is simply a polygon, no?”—it is in practice
a problem and a topic of research. As van Oosterom et al. [2004] discuss: (i) there are several
differences between the standards and their implementations in different systems, and (ii) in
extreme cases, related to the floating-point arithmetic used by computers, parts of polygons can
“collapse” and become invalid.

Having unambiguous definitions for the geometric primitives is important to foster interop-
erability, but perhaps as important is to have algorithms and tools to validate primitives. That is,
given a specific primitive, we need to check if it respects the standardised definitions. Most GIS
operations (e.g. calculation of the area of polygons; creation of buffers; conversion to other for-
mats; Boolean operations such as intersection, union, etc.) indeed require that the input primi-
tives be valid, otherwise the output of the operation is not guaranteed.

The validation rules for 2D primitives are well-defined and there are several (open-source)
implementations of these: JTS3 and GEOS4 are the most well-known examples, and are used by
different software packages. However, for primitives in 3D (primitives representing a volume,
called either a solid or a polyhedron), there are no such validation rules, implementation speci-
fications or known implementations. Indeed, as described in Section 3, the algorithms and tools
currently available all use different definitions, and these are often simpler and more restrictive
than these of the international standards. The two principal restrictions are: (i) holes in faces
and voids inside solids are not considered; (ii) solids are often defined as 2-manifold objects.
However, holes, cavities and non-manifold are allowed according to the ISO and the OGC inter-
national standards, and furthermore, they are necessary to represent all the real-world objects.

I present in this paper a methodology to validate solids against the definition of the ISO/OGC.
I first give in Section 2 the definition of an ISO/OGC solid (which forms the basis for the imple-
mentation specifications; these are presently lacking), and then explain in Section 3why current
methods inGIS andcomputer-aideddesign (CAD) arenot appropriate. Asdescribed in Section4,
the methodology I propose is hierarchical (the primitives of different dimensionalities are vali-
dated separately, which ensures that the user does not get cascading errors, i.e. errors caused by
errors in lower dimensionality primitives), and it requires the use of both 2-manifold and non-
manifold data structures and algorithms. Nef polyhedra, which are defined in Section 4.3, are
used to inspect the topological relationships between the different boundaries that a solid can
have, certain topological configurations are allowed by the standards while others are not (the
allowed configurations are described in Section 2). I also present in Section 5 one implementa-
tion of the proposed methodology, and describe in Section 6 some experiments that were run
with unit test solids (a set of solids containing extreme cases) and real-world examples of 3D city
models.

2 What is a solid? And the implications for its validation
There is no single definition for a solid or a polyhedron (notice that these two terms are often
used interchangeably in the scientific literature). This is best illustrated by Grünbaum [2003]
who states that even in the field of mathematics opinions differ as to what constitutes the term
‘polyhedron’. Some use it only for a regular polyhedron, or only for a convex one, and some
consider non-planar faces as part of the definition. De Berg et al. [2000] characterise the term
as “difficult to define”, and give a simple definition that is probably the most common one: a
polyhedron is a 3D solid bounded by planar faces. The bounding faces are thus planar surfaces
embedded inℝ􏷢, the three-dimensional Euclidean space, and the bounding surfaces forma closed
two-dimensional manifold (or 2-manifold for short). A 2-manifold is a topological space that is
topologically equivalent to ℝ􏷡. An obvious example is the surface of the Earth, for which near
to every point the surrounding area is topologically equivalent to a plane. Representing and
storing a 2-manifold, even inℝ􏷢, can be done with data structures that are intrinsically 2D since

3Topology Suite: www.vividsolutions.com/jts
4Geometry Engine, Open Source: trac.osgeo.org/geos
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exterior shell

interior shell

Figure 1: One solid which respects the international definition. It has one exterior shell and one
interior shell (a cavity).

each edge is guaranteed to have a maximum of two incident faces [Kettner, 1999]. Examples of
popular 2D data structures are the half-edge [Mäntylä, 1988], the quad-edge [Guibas and Stolfi,
1985], and the doubly-connected edge list (DCEL) [Muller andPreparata, 1978]; all of these store
the edge of a polyhedron as the atom, with links to its adjacent edges and incident faces.

However, the ISO’s definition of a solid is broader than that of a 2-manifold, and to permit us
to represent all the real-world features. The following three definitions, taken from ISO [2003],
summarise the main differences5.

Definition 1 A GM_Solid is the basis for 3-dimensional geometry. The extent of a solid is defined by the
boundary surfaces. The boundaries of GM_Solids shall be represented as GM_SolidBoundary.

Definition 2 AGM_Shell is used to represent a single connected component of a GM_SolidBoundary. It
consists of a number of references to GM_OrientableSurfaces connected in a topological cycle (an object
whose boundary is empty). […] Like GM_Rings, GM_Shells are simple.

Definition 3 A GM_Object is simple if it has no interior point of self-intersection or self-tangency. In
mathematical formalisms, this means that every point in the interior of the object must have a metric
neighbourhood whose intersection with the object is isomorphic to an 𝑛-sphere, where 𝑛 is the dimension
of this GM_Object.

Since shells are simple, they are in fact 2-manifold objects.
Figure 1 shows a solid that respects that definition. First observe that the solid is composed of

two shells (its boundaries), one being the exterior and one being the interior shell. The exterior
shell has eleven planar surfaces, and the interior one six. An interior shell creates a cavity in the
solid—cavities are also referred to as “voids” or holes in a solid. A solid can have no inner shells,
or several. Observe that a cavity is not the same as the hole in a torus—a torus is represented
with one exterior shell having a genus of 1 and has no interior shell. The boundary of each shell
of a solid is a representation of a 2-manifold, but it should be noticed here that since shells are
formed of planar surfaces, the ISO definition of a surface is used and this states that a polygon
can have inner boundaries. The boundaries of a polygon are defined as rings, thus a hole in a face
is referred to as an interior ring. Observe that the top face of the solid in Figure 1 has one inner
ring, but that other surfaces “fill” that hole so that the exterior shell is “watertight”. Several dis-
ciplines ignore holes because they are not necessarily needed, and because they complicate the
representation of a 2-manifold: if a graph-based data structure is used, then the graph becomes
unconnected.

From a point-set topology point-of-view, a solid is a set of points 𝑆 ⊆ ℝ􏷢. A boundary of 𝑆,
denoted 𝜕𝑆, is a shell. It should be observed here that while a shell is used to represent a surface
embedded in ℝ􏷢, when referring to a shell from a point-set topology point-of-view, we refer to
the volume that the boundary contains. That is, let 𝐻 ⊆ ℝ􏷢 be a shell, 𝜕𝐻 refers to the boundary
of the shell, and 𝐻𝑜 to its interior. 𝐻 ′ refers to the complement of the shell (its exterior).

According to the ISO abstract specifications, the different boundaries of a solid are allowed to
interact with each other, but only under certain circumstances. To understand these, we have
to generalise to 3D the implementation specifications defined in 2D by the OGC (since they do
not exist yet in 3D). Figure 2 shows the six assertions that have to be true for a 2D polygon to be
5All the geometric objects have the prefix ‘GM_’
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1. Polygons are topologically closed;
2. The boundary of a Polygon consists of a set of LinearRings that make up its exterior and

interior boundaries;
3. No two Rings in the boundary cross and the Rings in the boundary of a Polygon may

intersect at a Point but only as a tangent, e.g.

∀𝑃 ∈ 𝑃𝑜𝑙𝑦𝑔𝑜𝑛, ∀𝑐􏷠, 𝑐􏷡 ∈ 𝑃.𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(), 𝑐􏷠 ≠ 𝑐􏷡,

∀𝑝, 𝑞 ∈ 𝑃𝑜𝑖𝑛𝑡, 𝑝, 𝑞 ∈ 𝑐􏷠, 𝑝 ≠ 𝑞, [𝑝 ∈ 𝑐􏷡 ⇒ 𝑞 ∉ 𝑐􏷡];

4. A Polygon may not have cut lines, spikes or punctures e.g. :

∀𝑃 ∈ 𝑃𝑜𝑙𝑦𝑔𝑜𝑛, 𝑃 = 𝑃.𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟.𝐶𝑙𝑜𝑠𝑢𝑟𝑒;

5. The interior of every Polygon is a connected point set;
6. The exterior of a Polygon with 1 or more holes is not connected. Each hole defines a

connected component of the exterior.

Figure 2: The six assertions for the validity of a polygon [OGC, 2006, pages 27–28].

valid. Observe that all of them, except the third one, generalise directly to 3D since a point-set
topology nomenclature is used. The onlymodifications needed are that, in 3D, polygons become
solids, rings become shells, and holes become cavities.

To further explain what the assertions are in 3D, Figure 3 shows 12 solids, some of them valid,
some not; all the statements below refer to solids in this figure. The first assertion of the OGC
means that a solid must be closed, or ‘watertight’ (even if it contains interior shells). The solid 𝑠􏷠
is thus not valid but 𝑠􏷡 is since the hole in the top surface is ‘filled’ with other faces.

The second assertion implies that each shell must be simple, i.e. that it is a 2-manifold.
The third assertion means that the boundaries of shells can intersect each others, but the in-

tersection between the shells can only contain primitives of dimensionality 0 (vertices) and 1
(edges). If a surface or a volume is contained, then the solid is not valid. The solid 𝑠􏷢 is an ex-
ample of a valid solid: it has two interior shells whose boundaries intersect at one point (at the
apexes of the tetrahedra), and the apex of one of the tetrahedra is coplanarwith the exterior shell.
If the interior of the two interior shells intersects (as in 𝑠􏷣) the solid is not valid; this is also re-
lated to the sixth assertion stating that each cavity must define one connected component: if the
interior of two cavities are intersecting they define the same connected component. Notice also
that 𝑠􏷤 is not valid since one surface of its cavity intersects with one surface of the exterior shell
(they “share a surface”); 𝑠􏷤 should be represented with one single exterior shell (having a ‘dent’),
and no interior shell.

The fourth assertion states that a shell is a 2-manifold and that no dangling pieces can exist
(such as that of 𝑠􏷥); it is equivalent to the regularisation of a point-set in ℝ􏷢.

The fifth assertion states that the interior of a solid must form a connected point-set (in ℝ􏷢).
Consider the solid 𝑠􏷦, it is valid since its interior is connected and it fulfils the other assertions;
notice that it is a 2-manifold but that unlike other solids in Figure 3 (except 𝑠􏷧) its genus is 1. If
we move the location of the triangular prism so that it touches the boundary of the exterior shell
(as in 𝑠􏷧), then the solid becomes invalid since its interior is not connected anymore, and also
since its exterior shell is not simple anymore (2 edges have 4 incident planar faces, which is not
2-manifold). It is also possible that the interior shell of a solid separates the solid into two parts:
the interior shell of 𝑠􏷨 is a pyramid having four of its edges intersecting with the exterior shell,
but no two surfaces are shared, thus these interactions are allowed. However, the presence of the
pyramid separates the interior of the solid into two unconnected volumes (violating assertion
5); for both 𝑠􏷧 and 𝑠􏷨, the only possible valid representation is with two different solids.

Notice also that for a solid to be valid, all its lower-dimensionality primitives must be valid.
That is, each surface of the shells (represented with polygons) has to be individually valid ac-
cording to the assertions in Figure 2. Since these are embedded in ℝ􏷢, they first have to be pro-
jected to a plane. An example of an invalid surface would be one having a hole (an inner ring)
overlapping the exterior ring (see 𝑠􏷠􏷟).
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s1 s2 s3 s4

invalid (1) invalid (3, 6)valid valid

s9 s10 s11 s12
invalid (3 in 2D) invalid (2)validinvalid (5)

s5 s6 s7 s8
invalid (6) invalid (2, 5)invalid (4) valid

Figure 3: Twelve solids with the numbers in parentheses next to each indicating which OGC as-
sertions are broken if invalid. For solid 𝑠􏷨, which is conceptually similar to the 2D poly-
gon in Figure 4a, the colour of the exterior shell is not shown to highlight the interior
shell.

The implications of the definition for the validation. To implement the validation rules and asser-
tions in 3D, appropriate data structures must be used. Structures for 2-manifold modelling are
not appropriate since non-manifold objects must be represented and checked. Furthermore, the
data structure must permit us to represent and detect volumes so that the fifth assertion in Fig-
ure 2 can be tested; 2D structures such as the half-edge are not appropriate. The methodology
described in Section 4 uses one such data structure.

It should also be noticed that when validating a solid both the combinatorial consistency and
the geometric consistency of the representation should be valid. A solid such as 𝑠􏷠􏷠 is valid, but if
the location of only one of its vertices ismodified (for instance if the apex of the pyramid of 𝑠􏷠􏷠 is
moved downwards to form 𝑠􏷠􏷡) then it becomes invalid. Both 𝑠􏷠􏷠 and 𝑠􏷠􏷡 can be represented with
a graph having exactly the same topology (which is valid for both), but if we consider the geom-
etry then the latter solid is not valid since its exterior shell is not simple. Enforcing simplicity
requires calculating the intersections between the surfaces.

3 Relatedwork
Many application domains where solids are modelled use their own definition of a solid, and
often this definition is driven by the data structure used. In the computer-aided design (CAD)
world, when a boundary representation (b-rep) is used, often 2-manifoldness is enforced. An
example is Mäntylä [1988] who uses half-edges and Euler operators to construct and enforce
the validity of a solid. The validity constraints are such that if a non-manifold solid needs to
be represented, the geometry of the solid is slightly modified so that it becomes a 2-manifold
(the triangular prism of the solid 𝑠􏷧 in Figure 3 would not touch the exterior shell along one of
the 2 edges for instance, but be infinitesimally close to it). Fortune [1997] takes this approach
one step further and performs symbolic perturbations of the equation of the planes bounding a
non-manifold polyhedron so that the representation is 2-manifold. The modified polyhedron
contains 0-volume parts, which need to be processed with care depending on the application.
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(a) (b)

Figure 4: (a) A polygon in 2D whose inner ring separates the polygon (and it is thus not valid),
the polygon is conceptually the same as the solid 𝑠􏷨 in Figure 3. (b) A so-called handle
is added to connect the interior of two cubes sharing an edge.

In engineering applications where laser-scanners are used, often triangles are used as the only
primitive for surfaces, and no interior shells are allowed; this is primarily because the size of the
models can be large and one wants to ensure efficiency. To ensure validity of such models, and
to repair them, different techniques exist (see for instance Nooruddin and Turk [2003] or Liepa
[2003]).

In GIS-related applications, the definitions are also more restrictive than these of the inter-
national standards. Bogdahn and Coors [2010] and Wagner et al. [2012] discuss the validation
of solids for city modelling, but do not consider holes in surfaces and totally omit that interior
shells are possible. Gröger and Plümer [2011] give axioms to validate 3D city models, but also
do not consider holes in primitives of dimensions 2 and 3; what they define as solids are in fact
shells without holes in surfaces. I use their work on the validity of shells as a building block of
the methodology presented in this paper.

Most commercialGIS companies also ignore interior shells, ESRI (withArcGIS10) andBentley
being two examples. Oracle Spatial considers interior shells in their validation function, but do
not allow holes in surfaces [Oracle, 2012]. Also, while they claim to validate according to the
international rules, in practice there are several inconsistencies since they use a graph-approach
and perform graph-traversal algorithms to validate, see Kazar et al. [2008]. This approach is
suitable for 2-manifold objects, but for solids having interior shells interacting with other shells
it is not sufficient. One consequence is that it is impossible to detect that the solid 𝑠􏷨 in Figure 3
is not valid (since the configuration of the interior shell makes it such that the solid should be
split in two solids). Observe that the configuration is akin to that in Figure 4a, but in 3D. In 2D,
a planar graph can represent the topological relationships between the rings and permits us to
detect that the polygon is not connected, but the same data structure cannot be used in 3D. We
need one that permits us to represent non-manifold cases, and that permits us to navigate and
identify connected parts.

To overcome the problems with a graph-based approach, a space-filling data structure should
be used. Verbree and Si [2008] decompose the solid into tetrahedra and use the properties of the
tetrahedralization to perform validation. However they do not consider holes in faces, interior
shells and do not discuss how to verify that a shell is a 2-manifold. Ledoux et al. [2009] extend
that methodology to solids as defined in Section 2, but their work has not been implemented.

Finally, Thompson and van Oosterom [2011] give axioms for the validation of solids (taking
into account holes in faces and interior shells), but do not follow the international standards. Ac-
cording to their definition, shells do not have to be 2-manifold (an edge is allowed to be incident
tomore than 2 surfaces), the only criterion is that a solidmust have an interior that is connected.
Figure 4b shows one example of a valid solid according to their definition, notice that one edge
has 4 surfaces incident to it and thus this solid is not valid according the international standards.
To be valid, one would have to split the solid into (at least) two solids.

4 Amethodology to validate the geometry of a solid
The international standard ISO19107, as described in Section2, states that for a three-dimensional
primitive to be valid, all its lower-dimensionality primitives should also be valid. The method-
ology proposed in this paper for the validation of a solid is thus performed in a hierarchical
way, starting from the lowest dimensionality primitives. Figure 5 shows the workflow used, with
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Figure 5: Workflow of the methodology proposed.

some of the verifications that need to be performed.
I describe in this section a methodology to validate each of these primitives. Rings and poly-

gons are validated together with a graph-based data structure since it permits us to represent
both the rings and the interactions between them. The validation of a shell is a topic that has
been extensively discussed, and I report on the main existing techniques and I highlight pitfalls.
The novelty of this paper lies in the Sections 4.3 and 4.5.

4.1 Validation of 2D surfaces with a planar graph
The validation rules for 2D polygons are defined by the ISO [ISO, 2003], but there exists an im-
plementation specification [OGC, 2006]. The problem is considered as solved, although some
implementation issues related to the tolerance (shortest distance allowed between points and
lines, which is called the robustness of a polygon) are still problematic. VanOosteromet al. [2004]
highlight that fact, which has not been solved yet in consistent manner. There exist several im-
plementations of these implementation rules (GEOS and JTS are two open-source examples),
these usually build a planar graph of all the rings of a polygon and enforce topological and ge-
ometrical constraints. To deal with floating-point arithmetic, these two libraries snap all ver-
tices to an integer grid, which can cause sliver polygons to collapse to lines. Other methods
are also known, for instance the use of a constrained triangulation combined with robust arith-
metic [Ledoux et al., 2012].

To use the existing algorithms, each surface of a solid will be processed individually and be
projected to a plane so that a two-dimensional coordinate system is used. It is possible to find
the equation of the plane supporting the surface, but that requires unnecessary and expensive
computations. Indeed, if we ensure that a projected polygon does not become a line, then the
topology of a polygon is preserved after being projected to a surface. It suffices to project a poly-
gon to either the 𝑥 − 𝑦, the 𝑥 − 𝑦 or the 𝑦 − 𝑧 plane.

4.2 Validation of individual shells with a 2-manifold data structure
The validation of 2-manifold models is a well-studied topic. Most algorithms employ a graph-
based data structure to ensure that the topology between the faces is correct and that the surface
of the 2-manifold doesnot have a boundary (in the topological sense of the term) [Kettner, 1999].
The geometric consistency is ensured in another step: pair-wise intersection tests for all the faces
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must be performed. Ensuring that a 2-manifold is valid (combinatorially and geometrically) can
be done with 13 axioms, as Gröger and Plümer [2011] demonstrate. However, to implement
these onemustfirst build a graph representationof the object, and if this object is not valid then it
mightnot bepossible (dependingon thedata structureused). Inpractice, building incrementally
a 2-manifold with Euler operators (which are topological operators) is a better alternative. It is
known that orientable 2-manifold models are closed under Euler operations [Mäntylä, 1988].
If the construction of a 2-manifold object has succeeded with a series of Euler operators, the
resulting object is not necessarily closed (a surface could have been created). To ensure that the
object is closed, it suffices to ensure that each edge has 2 incident faces.

Both Gröger and Plümer [2011] and Mäntylä [1988] assume that the graph representing the
2-manifold object is connected, which is not always the case with ISO solids. Braid et al. [1978]
first presented a modification to handle holes and to use Euler operators, but a simpler solution
is to triangulate the surfaces having holes. To be triangulated, a polygon must first be projected
to a plane; the same method as presented in Section 4.1 can be used. The triangulation itself can
be performed with known algorithms for constrained triangulation, see for instance Shewchuk
[1997].

Verifying the geometric consistencyof a 2-manifoldmodel has a quadratic behaviour. To speed
up the process, auxiliary data structures and algorithms have been designed: in Zhou and Suri
[1999] and Zomorodian and Edelsbrunner [2002] only surfaces whose bounding boxes overlap
are tested for intersection.

I discuss in the following two further requirements that are part of the ISO definition: (1)
planarity of surfaces; (2) orientation of surfaces.

Planarity of surfaces. The ISO 19107 standards state that a surface must be planar, i.e. all its ver-
tices (exterior and interior rings) must lie on a plane. Interestingly, the concept of tolerance is
not mentioned in the standards, nor is any algorithm describing how planarity should be tested.
A naïve implementation (without tolerance) with real-world data (using floating-point arith-
metic) will almost in all cases return that the face is not planar. Wagner et al. [2012] investigate
three differentmethods to ensure flatness of a surface, and they report that with their test dataset
the method that catches the most errors is the one where a triangulation of the surface is per-
formed, and then the orientation of the normal of each triangle is compared. Other methods
where a plane is fitted through the points is not robust for small and sharp variations. Since the
methodology I propose already triangulates all surfaces, this is the method chosen for the im-
plementation. It should however be noticed that in mechanical engineering there are specific
standards to verify the flatness of a surface (see for instance ASME [2009]), and that these use
more complex methods—Hossein Cheraghi et al. [1996] and Lee [1997] are two examples.

Orientation of surfaces A surface used to represent a shell must be oriented in such as way that
when viewed from outside the shell its vertices are ordered counterclockwise [ISO, 2003]—in
other words, the normal of the surface point outwards if a right-hand system is used. If the poly-
gon used to represent the surface has interior rings, then these have to be ordered clockwise.
Given a simple surface, it is not possible to define if its orientation is correct since this is an
operation requiring a global view on the shell. Therefore, if the previous validation tests are
successful then either the normals are all in the correct direction, or all in the wrong direction
(if only one surface had a wrong orientation, then the data structure used to validate the topol-
ogy would be invalid). It suffices to test if the normal (the vector) of one surface incident to the
lowest-right vertex intersects another surface. This can be performed efficiently if the auxiliary
data structure used for the geometry consistency tests is used. Observe that for interior shells, the
orientation of the surfaces must be the opposite: the normals must point inwards (but outwards
for the solid).

4.3 Validation of solids with the Nef polyhedron
From a point-set topology point-of-view, a shell is a point set 𝐻 ⊆ ℝ􏷢 (i.e. the planar faces of the
shell represent 𝜕𝐻 ; 𝐻 is both the boundary of the shell and its interior 𝐻𝑜), and a solid is a point
set 𝑆 ⊆ ℝ􏷢 such that 𝑆 = 𝐺 ⧵ (𝐻𝑜

􏷠 ∪ 𝐻𝑜
􏷡 ∪ … ∪ 𝐻𝑜

𝑛), where 𝐺 is the exterior shell, and 𝐻𝑜
𝑖 the interior

of interior shells (for 𝑖 = {1, 2, … , 𝑛}).
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(a) (b)

Figure 6: (a) A Nef polyhedron composed of a tetrahedron, a dangling triangular face incident
to the tetrahedra and an unconnected vertex. (b) The sphere map used to store the
local neighbourhood of one corner of a cube. The grey part of the sphere represents
the interior of the cube, obtained from oriented half-spaces.

If 2 shells overlap or touch, we need to be able to detect it to validate a solid. Simply testing for
intersections of the primitives of different dimensionality is not enough since the boundaries of
shells are allowed to intersect (solid 𝑠􏷢 in Figure 3 is valid) but if they intersect at several locations
the solid might become unconnected (𝑠􏷨 in Figure 3 is not valid). A global view of the 2 shells is
thus needed.

Nef polyhedra. To understand and extract the topological relationships between the different
shells forming a solid, I propose using the concept of Nef polyhedra. Nef [1978] and Bieri and
Nef [1988] describe a three-dimensional Nef polyhedron as follows.

Definition 4 A Nef polyhedron in dimension 3 is a point-set 𝑆 ⊆ ℝ􏷢 generated from a finite number of
open half-spaces by set complement and set intersection operations.

The fact that they are obtained by intersecting oriented half-spaces implies that they are very
general. Unbounded solids, primitives of different dimensionalities (for instance a single point),
non-manifold objects, and the empty set are allowed. Figure 6a shows one example, notice that
the Nef polyhedron has one dangling surface, and also one unconnected vertex forms the poly-
hedron. Each half-space is oriented: one side is labelled as IN and the other as OUT. Also, the
Nef polyhedra are solids closed under Boolean operations. Observe that it is not possible to use
2-manifold objects to perform a series of Boolean operations since the result of one operation
can be one or several non-manifold objects.

An important concept is that of a face, which is defined as a maximal subset of ℝ􏷢 such that
all its points have the same local neighbourhood. Based on that concept, we can partition a Nef
polyhedron into faces of different dimensionalities: a 0-face is a vertex, a 1-face is an edge, a
2-face is a planar surface, and a 3-face is a volume (defined as a connected point-set in ℝ􏷢).

The generality of Nef polyhedra is not per se needed for the validation of ISO solids. How-
ever, I exploit two of their characteristics to analyse the topological relationships between shells.
First, non-manifold objects can be represented, and second, we can construct and manipulate
Nef polyhedra with a series of Boolean operations. It should be stressed that validating solids re-
quires representing and storing invalid solids too. In brief, the generality of the Nef polyhedra
permits us to identify invalid solids, which is the purpose of this paper.

4.4 Storing and manipulating Nef polyhedra
To perform Boolean operations, we first need to represent a Nef polyhedron with an appropriate
data structure. Bieri and Nef [1988] describe a potential data structure, but it does not support
Boolean operations. Granados et al. [2003] improve on that structure to support Boolean oper-
ations. For the methodology presented in this paper, I make use of this structure (without any
modifications). What follows is a summary of the data structures used by Granados et al. [2003],
for all the details the reader is referred to the original paper.

While aNef polyhedron is a three-dimensional object that is potentially non-manifold, Grana-
dos et al. [2003] represent one with a set of 2D data structures. Indeed, two different data struc-
tures are used, both of these being similar to an edge-based data structure for 2-manifold objects.
The two data structures are inter-connected, and are as follows.
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svertex sedge

edge-use

oriented surface

Figure 7: The two interconnected data structures, used to store Nef polyhedra, for the top surface
of the sphere map shown in Figure 6b. Figure after Granados et al. [2003].

Sphere maps: the local neighbourhood of a given point in a Nef polyhedron is represented with
an infinitesimally small sphere called a sphere map. Figure 6b shows an example for one
vertex of a cube. Notice that each oriented half-space partitions the boundary of the sphere
and creates an edge (called a sedge, it is a great circle if only one half-space intersects a
sphere map); vertices on the sphere are svertices representing the intersection of at least
two half-spaces (thus an edge in a Nef polyhedron); faces (sfaces) of the sphere represent
volumes in the Nef polyhedron. As is the case for half-spaces, each sface will have either
an IN or an OUT label to keep track of the interior of the Nef polyhedron. The partition-
ing of the sphere is stored with an edge-based structure similar to the half-edge [Mäntylä,
1988]. Not all the points of ℝ􏷢 need to be represented with a sphere map, but only the ver-
tices of the Nef polyhedron. This permits us to detect non-manifold cases of vertices lying
directly on another face, as 𝑠􏷢 in Figure 3 shows (the apex of one interior shell is coplanar
with one side surface of the exterior shell). Other non-manifold data structures such as
the radial-edge [Weiler, 1988] encode non-manifold situations for edges, but would need
modifications to explicitly represent the cases arising at vertices (and thus cannot be used
directly for the validation of solids).

b-rep for surfaces: another data structure, also inspired by the half-edge, is used for the surfaces,
and that structure is linked to the incident sphere maps. Each half-edge belonging to one
orientation of a surface (an edge-use) is stored, and is linked to the incident edge-uses on the
face. It is furthermore linked to the svertex of the sphere map it represents, and vice-versa.

Figure 7 shows the two data structures for one 2-face of a Nef polyhedron.
ABoolean operation is performed by either updating the spheremaps, or by creating newones

at the locations of the intersections of half-spaces.
These two inter-connected data structures permit us to navigate and keep track of the primi-

tives (including the connected parts), which allows us to identify, for instance, the fact that solid
𝑠􏷨 in Figure 3 contains more than one volume. The incident surfaces of a given edge can for
instance be obtained by identifying the incident sedges to the svertex that the edge represents.
And the sphere maps allow us to navigate to all the primitives around a vertex, even if it is non-
manifold.

The unconnected components of a Nef polyhedron are maintained with a kd-tree, which per-
mits fast point location (to detect that one volume is located inside another one for instance).

4.5 Boolean operations to analyse the topological relationships
between shells

At this point of the validation each shell is individually valid. The invalid solid of Figure 4b
would therefore not be processed at this step because the validation rules of Section 4.2 would
fail.

The algorithm to extract the topological relationships between the different shells of a solid is
based on the fact that we can navigate in a Nef polyhedron and report on its primitives (the two
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Figure 8: Three invalid solids formed by an exterior shell 𝐺 and two interior shell(s) (𝐻􏷠 and𝐻􏷡).
The resulting number of volumes in the Nef polyhedron for each 𝐺 ⧵ 𝐻𝑜

𝑖 is shown. (a)
three of the vertices of 𝜕𝐻􏷡 intersect 𝜕𝐺, thus the interior of the solid is unconnected.
(b) 𝐻􏷡 is face adjacent with 𝐺 (𝜕𝐺 ∩ 𝜕𝐻􏷡 returns a triangle surface). (c) 𝐻􏷡 makes the
interior of the solid unconnected (as in (a)).

inter-connected data structures permit that). It is based on a series of Boolean operations, which
are expressed with the following three axioms. 𝐺 is the exterior shell of a solid 𝑆 containing 𝑛 in-
terior shells, and𝐻𝑖 is an interior shell. The operator 𝑑𝑖𝑚() returns themaximumdimensionality
of a set of primitives.

1. 𝐺′ ∩ 𝐻𝑖 = ∅

2. 𝑑𝑖𝑚(𝐻𝑖 ∩ 𝐻𝑗) < 2

3. 𝑆𝑖 = 𝐺 ⧵ (𝐻𝑜
􏷠 ∪ 𝐻𝑜

􏷡 ∪ … ∪ 𝐻𝑜
𝑖 ), for each 𝑖 in {1, 2, … , 𝑛}, contains exactly 𝑖 + 1 volumes.

The first axiom ensures that no interior shell is located outside, or partially outside, the ex-
terior shell. The second axiom ensures that the intersection of two interior shells returns only
primitives of dimensionality 0 or 1—as described in Section 2 two interior shells can only ‘touch’
along vertices and edges. The third axiom ensures that the intersections between the different
shells respect the ISO definition of a solid, and that they do not create, among others, a discon-
nected volume. Verifying the third axiom involves doing a set difference on 𝐺 and each interior
shell 𝐻𝑖 incrementally, ensuring that the number of volumes is increased by 1 at each step. Fig-
ure 8 shows the idea for three solids; the figure is in two dimensions for the sake of clarity, but
since Nef polyhedra can be manipulated using topological operators the result is the same. In
three dimensions, a square becomes a cube, and a triangle a tetrahedron. The number of shells
determines the number of volumes that the solid should have, according to assertion 6 in Fig-
ure 2. Notice that none of the solids have the correct amount of volumes, and thus none are
valid. Observe also that it is not necessary to have an axiom verifying if 𝐺 and one shell 𝐻𝑖 have
adjacent faces, since the third axiom implicitly does that.
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5 A robust C++ implementation using CGAL

Themethodologydescribed in this paperhas been implemented in aprototype, called val3dity6,
that is freely available under a GPL-license. The code is written in C++ and is mostly based on
the CGAL library7. The only other library used is GEOS8 which performs the two-dimensional
validation with the approach described in Section 4.1.

CGAL was chosen because it contains several of the building blocks required to implement
a validator for ISO solids: (i) a package for constructing shells and representing them with the
half-edge data structure; (ii) the algorithm of Zomorodian and Edelsbrunner [2002] to avoid a
quadratic behaviour when performing the geometric tests for the shells is implemented; (iii) a
constrained triangulator [Boissonnat et al., 2002]; (iv) and the Nef polyhedra data structures
and Boolean operators described in Granados et al. [2003]. Because the building blocks are
available, the code for the validation is rather short: about 2500 lines of code, which makes it
easy to maintain and modify.

I describe briefly in this section some of the engineering choices that were made for the de-
velopment of the prototype. Some were made to ensure that the prototype runs correctly and
efficiently, and some to provide meaningful feedback to the users of the prototype. A trade-off
between speed and the granularity of the error returned to the user had to be made.

5.1 Robustness
The implementation of geometric algorithms is known to be a time-consuming and error-prone
task because of the several degeneracies arising and because of floating-point arithmetic, espe-
cially for three-dimensional operations [Hoffmann, 1989]. CGAL offers the possibility to use
exact arithmetic [Yap and Dubé, 1995] for all the packages and val3dity makes use of it to en-
sure that it is robust. All the important steps make use of it: the constrained triangulator and the
polyhedra use robust predicates, and the Nef polyhedra use a robust kernel for all the Boolean
operations. Hachenberger et al. [2007] show that the Nef polyhedra implementation in CGAL
is in practice fast (comparable speed as a commercial kernel), but it is also more robust. Filter-
ing of the floating-point numbers is performed so that exact computations only take place when
needed [Pion and Fabri, 2011].

5.2 Errors returned to the user
The validator for solids in Oracle Spatial permits us to validate solids (although, as explained
in Section 3 it is neither according to the ISO rules nor complete) but returns only one error
when the solid is not valid: the first one encountered (even if a given solid contains hundreds of
errors). The error comes with a code explaining its nature and, when suitable, its location (for
example if a shell is not closed the centre of the hole is given). This means that a user has to fix
the solid for the error mentioned, and to run again the validation function. This step has to be
followed for all the errors present, which can be a rather long and painful process for the user.

Ideally, all the errors in a solid should be reported so that a user can fix them in one opera-
tion. However, cascading effects when validating should be avoid—one example is if a surface is
not a valid polygon in 2D, then the validation of the shell whose boundary contains that surface
should not be attempted as it will most likely not be valid. In the prototype val3dity, a “hier-
archical validation” is used and efforts are made to avoid cascading errors. As Figure 9 shows,
first the surfaces of every shell are validated, if all of them are valid then the shells are validated
individually, and finally only when all the shells of a solid are valid is the validation of the solid
with the Nef polyhedron data structure performed.

Informing the user about the nature of the error and having the most efficient code are con-
tradictory goals. In val3dity, a trade-off has been made for the implementation. For instance,
it is relatively easy to report that a given shell is not a 2-manifold object if a batch construction
is performed and exited as soon as an error is encountered. Reporting on the exact error often
makes the process slower (andmore cumbersome to program); it was nevertheless chosen for the

6https://github.com/tudelft3d/val3dity
7Computational Geometry Algorithms Library: http://www.cgal.org
8Geometry Engine—Open Source: http://trac.osgeo.org/geos/
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Surface level
=============
200 : exterior ring and interior rings have same orientation
210 : surface is not planar
220 : surface is not valid in 2D (its projection)

221 : interior ring intersect exterior ring
222 : interior ring outside exterior ring
223 : interior rings intersect
224 : interior not connected

Shell level
===========
300 : is not a 2-manifold

301 : surface is not closed
302 : dangling faces
303 : one(several) face(s) not connected to the 2-manifold
304 : orientation of one/several face(s) not correct
305 : surface self-intersect

310 : normals not pointing in correct direction (all of them)

Solid level
==========
400 : shells are face adjacent
410 : interior of shells intersect
420 : interior shell outside the exterior shell
430 : interior not connected

Figure 9: Error codes used in the prototype.

prototype as it was deemed more useful for the user. In this case, it means that if a dangling face
exists (let us assume there is only one), then the identifier of the face in the input dataset should
be reported. An incremental construction of the shell should therefore be used, with verification
of the validity at each step.

6 Experiments with real-world datasets
The prototype has been tested with different datasets, both real-world and synthetic. It takes as
input a set of shells, the first one being the exterior one and the others the interior shells. Each
shell is represented with a simple ASCII file following the format POLY9, which can be seen as
a generalisation of a simpler format for representing a simple polyhedron—this is needed since
holes in surfaces must be explicitly stored.

“Unit test” solids. Figure 3 contains some of the unit test solids that were tested. These are pur-
posefully constructed solids that represent extreme and special cases. They are meant as a sort
of unit testing solids to evaluate the methodology and its implementation [Burns, 2001]. All the
solids shown in the figure, and other similar ones, have been used during the development and
are validated correctly.

3D city models. City models are often stored in the CityGML format [OGC, 2012], which uses
GML [OGC, 2007, the Geography Markup Language]10. This representation does not store any
topological relationships between the surfaces forming a shell, i.e. a cube is represented with 6
faces and for each one of these the coordinates of the 4 vertices are enumerated. Snapping must
thus be performed to extract unique vertices in one shell; a user-defined tolerance must be used.
To validate the solids in a city model, they are first converted to POLY files (where vertices have
labels and faces of shells are represented by enumerating labels), and then validated.

One experiment was performed with a test dataset available on the CityGML webpage11, it is
from the UK’s Ordnance Survey and it contains 567 buildings, all obtained by extrusion. Fig-
ure 10a shows an overview of the dataset. A snapping of 0.01m was used, and each building was
validated independently. Probably because the algorithm/implementation used to construct the
dataset contained errors, none of the buildings are valid. Figure 10b and Figure 10c show the

9http://tetgen.berlios.de/fformats.poly.html
10It should be noticed that CityGML does not use the latest version, but version 3.1.1.
11http://www.citygml.org
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(a)

Wrong orientation of faces

(b)

Dangling face

(c)

Figure 10: (a) Overview of a CityGML test dataset, in Great Britain. (Figure from
http://www.citygml.org) (b–c) Two examples of validation errors in the dataset.

Figure 11: The CityGML data “Berlin Alexanderplatz”, the darker solids are invalid.

two most common errors: surfaces (which were all triangulated by the provider of the dataset)
do not have the correct orientation, and some shells contain dangling surfaces (probably caused
by a faulty triangulator for non-convex surfaces). Another error that was present in the dataset:
surfaces were not planar.

Another experiment was performed with the dataset “Berlin Alexanderplatz” available from
the same website, it contains 1123 solids, 237 of them being invalid. The errors present were
(from Figure 9): 210, 301, 302, 304 and 305. The prototype val3dity can also return a CityGML
filewhere the invalid solids arehighlighted, with the error code for each solid, as Figure11 shows.

Larger datasets. Most of the solids in real-world datasets obtained by extrusion have very few
surfaces (usually less than 30), so experiments were made with larger dataset. One example
is shown in Figure 12 it contains 1696 faces (triangles), and 836 vertices. The validation was
performed in about 1.5s on a standard laptop.

Figure 12: A mechanical piece, already triangulated.
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Other software. For the reasons elaborated in Section 3, other tools could not be tested in amean-
ingful manner with the previous datasets. Some would be suitable (e.g. for the simple extrusion
dataset of the UK’s Ordnance Survey), but if holes and cavities were present, these would not be
able to handle them.

7 Discussion and conclusions
Having validation tools that respect the international standards help foster interoperability and
help applicationswhere citymodels form the input tomodels. Examples arefloodmodelling [Schulte
and Coors, 2008], 3D navigation [Lee and Zlatanova, 2008], disaster management [Kolbe et al.,
2008] and urban planning [Köninger and Bartel, 1998]. Having invalid primitives could pre-
vent these models from running properly.

While for years therehavebeen implementation specifications and tools to validate two-dimensional
primitives, three-dimensional volumetric primitiveshavebeen represented and stored indatabases
according to different rules and definitions. Particularly problematic is the fact that holes in sur-
faces and cavities are ignored, while they are allowed according to the ISO/OGC abstract spec-
ifications and there exists several datasets containing them. It is expected that more and more
datasets having holes and cavities will become available in the near future. Two concrete ex-
amples are the interior of buildings obtained from IFC models [Lee et al., 2003] and geological
datasets [Adams, 1994].

The results of this paper are two-fold:

1. the implementation specifications for 3D geometric primitives have been proposed, and
concrete examples of these have been shown. The main issue with solids represented with
the ISO/OGC standards is that cavities require the use of non-manifold data structures.

2. a methodology for validating solids has been proposed, and I have shown that it is possible
to implement it in a robust and efficient manner. The prototype implementation reuses
many of the building blocks developed in other research about the representation and the
validation of 3D data, but goes one step further as solids having interior shells are consid-
ered, which is consistent with the international standards ISO 19107 [ISO, 2003]. As the
developed prototype is available under an open-source license, I hope that it will encourage
software vendors and others to adhere to the international standards.

The methodology, and its implementation, presented in this paper permits us to verify that
an individual solid respects the ISO/OGC definition. However, it does not permit us to detect
that two solids touch or overlap each other. That is useful in different applications where the
topological consistency of a whole city model is needed, for instance for analysing the energy
consumption of buildings the area shared between buildings is one factor to model [Krüger and
Kolbe, 2012]. Ledoux and Meijers [2011] propose a methodology to construct by extrusion such
a dataset from two-dimensional footprints, but I am not aware of any methodology for already
available datasets. One potential solution would be to use Nef polyhedra (and Boolean opera-
tions), but that would be costly for big datasets.

At this moment, only the geometry and the topology of a solid is considered when validat-
ing. However, as Bogdahn andCoors [2010] state, validation rules are often application-specific.
Wagner et al. [2012], for the modelling of 3D buildings, discuss the use of semantics informa-
tion when validating, i.e. if for instance one surface is labelled as the roof of the building, then
an extra validation rule (over the geometry) would be to ensure that the roof is located ‘above’
the surface labelled as the ground floor. Since the methodology I present in this paper is hierar-
chical and it uses data structures supporting Boolean operations, the implementation of similar
rules should be straightforward.

Finally, one obvious extension of the work presented in this paper is the automatic repair of in-
valid solids. At this moment, the prototype informs the user—as best as it can—about the nature
of the errors and of their locations, but the user has to manually modify the faulty primitives,
which is tedious and time-consuming. The automatic filling of holes in 2-manifold objects is a
well-studied topic of research, and the existing techniques developed could be reused. Noorud-
din and Turk [2003] fill the object with voxels, but this method could introduce errors depend-
ing on the resolution used. Liepa [2003] and Attene and Falcidieno [2006] attempt the same by
modifying the triangles on the surface; their approach require a triangulated surface but this is
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inline with the methodology presented in this paper. Other useful automatic repair functions
for shells are the flipping of surface when their orientation are wrong, and the triangulation of a
non-planar surface so that only planar surfaces exists. Shells having several holes and intersect-
ing surfaces are more problematic to repair, although work done in surface reconstruction could
be used, see for instance Chauve et al. [2010]. To automatically repair solids whose shells do not
interact according to the international standards is in theory possible since with the Nef polyhe-
dra we can perform Boolean operations. However, how to repair is also application-dependent:
if for instance one solid has an interior shell located outside its exterior shell, what should be the
outcome of a repair operation? Two solids or only the exterior solid? When two or more interior
shells overlap, it is however trivial to union them and return one interior shell.
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