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Abstract

Real-world phenomena have traditionally
been modelled in a GIS in two and three di-
mensions. However, powerful insights can be
gained by the integration of additional non-
spatial dimensions, such as time and scale, in
a higher dimensional spatial model. While
this theory is conceptually sound, there is
a lack of understanding of its consequences
when applied to real world geographic in-
formation. In this paper we therefore ana-
lyse these consequences, as well as the tech-
niques that are necessary in order to extract
meaningful 2D/3D information from it, which
can be used with existing algorithms and soft-
ware.
Keywords: nD GIS, slicing, intersection,
scale, time

1 Introduction

There is substantial interest in the use of higher-
dimensional (≥4D) digital objects that are built
from real-world data. Within GIS, such objects can
be produced when existing 2D/3D data is integ-
rated with temporal information [17] or scale [20],
among others. If these characteristics are con-
sidered as fully independent spatial dimensions
(axes), objects in higher dimensional space are cre-
ated. This powerful technique, explained fully in
Section 2, is more complex than other representa-
tions [3, 13, 18], but it is easily extensible to integ-
rate other dimensions, and preserves all topological
relationships within and between objects down to
the vertex level. Doing so makes it possible to store
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continuously changing objects in time and scale,
as well as other complex object relationships, and
at the same time reduces redundancy and helps to
avoid inconsistencies [19].

Conceptually, these objects are hypervolumes of
arbitrary shape. They can be closed (bounded) or
open (unbounded), connected or not, with flat or
curving boundaries, with or without holes, of equal
or different dimension than the space they are con-
tained in, orientable or unorientable, etc. However,
in practical terms we are mostly interested in relat-
ively simple orientable objects with flat geometry
(polytopes), possibly with holes and possibly open
(to support objects extending to infinity e. g. in
time), in Euclidean space of the same or higher
dimension than the objects. This is but an exten-
sion to higher dimensions of the typical objects cur-
rently found in 2D/3D GIS. We have therefore lim-
ited our scope to this class of objects, and within
this paper, we will therefore only be concerned with
them.

Since it is difficult to visualise and analyse ob-
jects in more than three dimensions, we are also
interested in extracting 2D or 3D objects from a
higher dimensional representation. This is easily
done at a conceptual level by computing the inter-
section of two sets of objects. However, computing
these intersections for the general case is extremely
difficult and computationally expensive. In fact,
to the best of our knowledge, there is no software
that is able to compute the intersection of two ar-
bitrary polytopes in more than three dimensions.
We have therefore defined a simplified ‘slicing’ op-
eration for this purpose—a limited form of point
set intersection—which could realistically be imple-
mented, and is covered in detail in Section 3.

The goal of this paper is to establish a foundation
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for handling n-dimensional (nD) spatial informa-
tion in a GIS context: a description of the nD geo-
metries involved and how to reduce its dimension-
ality to 2D/3D. For this, we describe the necessary
concepts, terms and definitions, both those com-
mon in 2D/3D GIS, and those derived from geo-
metric modelling and mathematics (especially to-
pology), and present their significance in the frame
of reference of higher dimensional GIS. We finalise
by showing some examples in Section 4, and our
conclusions and plans for future work in Section 5.

2 Higher dimensional spatial models

To understand what we mean by considering all
characteristics as independent (orthogonal) dimen-
sions, let us first consider a case with 2D space,
and time as the third dimension. At any one point
in time, an object would be represented as a poly-
gon in 3D space, parallel to the 2D space plane
(x, y) and orthogonal to the time axis. Every ob-
ject existing (and not moving or changing shape)
during a time period would then be prism shaped,
with identical base and top facets parallel to the 2D
space plane and the other facets orthogonal to it.
An example of this situation is shown in Figure 1.

Figure 1: A 2D space (x, y) + time (vertical axis)
view of the footprint of two separate buildings at
time t0, which were connected by a corridor (red)
from time t1 to time t2 and then became discon-
nected again when the corridor was removed until
time t3. The moments in time are shown along the
thick line representing the front right corner of the
right building.
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Extending this to a 4D representation of 3D
space and time, every 3D object at one point in
time would be a (3D) polyhedron in 4D space, and

an object that exists for a period of time would be
a polychoron, i. e. the four-dimensional analogue of
a polygon/polyhedron. If this object is not mov-
ing or changing shape, it would take the form of
a prismatic polychoron, i. e. the four-dimensional
analogue of a prism.

Another relevant application is the integration of
scale as a spatial dimension. This concept is intro-
duced in [11] in the variable-scale geo-information
technique, and it is shown in Figure 2. Such ap-
proach enables the generation of an infinite number
of continuous levels of detail, and provides a more
consistent structure. The integration of scale can
extend this concept to higher dimensions, e. g. to
4D in 3D city modelling [15, 16].

Figure 2: A 3D representation of 2D space (hori-
zontal plane) and scale (vertical axis). The vertical
edges connecting corresponding features have been
omitted for legibility reasons. Adapted from [11].

An d-dimensional spatial model is thus defined
by a set of spatial objects embedded in d-
dimensional space. This notion has been extens-
ively studied and is universally used in GIS for
d ≤ 3, but its logical consequences in d ≥ 4 have
not been sufficiently explored. In particular, the
distinction between the dimension of a spatial ob-
ject and that of the space it is embedded in is not
widely used or known in the GIS domain1. Even
worse, 4D is often used as a catchphrase for 3D +
time modelling, regardless of whether time is actu-
ally treated as an additional spatial dimension or
not, and generally without creating any 4D objects.

To understand the difference between the dimen-
sion of a spatial object and that of the space it is
embedded in, it is useful to consider the manner

1See Gold [7] for an exception
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in which a topology-based approach is used in geo-
metric modelling. In such an approach, two semi-
independent models are used:

• A combinatorial or topological model that
describes the topological relationships between
and within spatial objects. To do this, cer-
tain assumptions about the topology of the
objects are made, e. g. homeomorphism of an
n-dimensional cell (n-cell), representing the to-
pology of an n-dimensional spatial object, to
an n-dimensional ball.

• An embedding or geometric model that de-
scribes how these objects are embedded into
geometrically defined space. Analogously, as-
sumptions about the geometry of the objects
are made as well, e. g. a closed polytope having
no self-intersections.

For instance, a cube could be represented in a
combinatorial model as a 3-cell in a cell complex,
described by its boundary of six 2-cells, each of
those with a boundary composed of four 1-cells,
each of them with a boundary composed of two
0-cells. A corresponding simple embedding model
could relate each vertex (0-cell) to a tuple of co-
ordinates and assume a linear geometry. More com-
plex embedding models could contain explicit equa-
tions of curves, surfaces, etc.

The distinction between the combinatorial and
embedding models is useful from a scientific per-
spective since it separates the problems of the
fields of geometric modelling and computational
geometry [10]. When creating higher dimensional
spatial models, the dimension of the spatial objects
is given by the combinatorial model used, while the
dimension of the space is given by its embedding
model. Using this distinction, subtle differences
can be recognised between different data models.
For instance, both the winged-edge [1] and the
facet-edge [4] data structures can be used to de-
scribe three dimensional models (sets of objects em-
bedded in three dimensional space), but while the
former is actually a 2D data model representing the
(2D) manifold surface of the 3D objects within the
model, the latter is a 3D data model fully capable of
storing more complex objects and volume-volume
relationships.

Since different combinatorial models are usually
able to represent mathematically different classes

of objects, giving a precise definition of the dimen-
sion of a combinatorial model is complex and out
of the scope of this paper. For the purposes of this
discussion, we will therefore simplify it by assuming
that an n-dimensional model is able to store every
possible spatial object of dimension n.

The dimension of a spatial object a, dim(a) ∈ N,
is then given by the minimum dimension of a com-
binatorial model that is able to store it. Mean-
while, the dimension of a set of spatial objects A =
{a0, a1, . . . , an} is given by the minimum dimen-
sion of a combinatorial model that is able to store
all of these objects and the topological relation-
ships between them, and is thus given by dim(A) =
max(dim(a0), dim(a1), . . . , dim(an)) + adj, where
adj = 1 if any two spatial objects of the highest
dimension in the model are adjacent2, adj = 0
otherwise. Since this might be difficult or expens-
ive to compute, one can safely assume dim(A) ≤
max(dim(a0), dim(a1), . . . , dim(an)) + 1 instead.

This reinforces the intuitive notion of the dimen-
sion of a set of isolated points being zero, line seg-
ments one, polygons two, polyhedra three, and so
on, regardless of the dimension of the space they
are embedded in. At the same time, this definition
also clarifies dubious cases, such as a polyline being
of dimension two or a planar partition of dimension
three, not surprising considering that a (non self-
intersecting) polyline is akin to an open polygon,
or a planar partition an open polyhedron. Note
however that this also entails that a single line seg-
ment implicitly described by its endpoints can have
dimension zero, a polygon one, a polyhedron two,
and so on. A single point cannot be implicitly de-
scribed by its (null) boundary, and thus still has
dimension zero.

Meanwhile, the dimension of a space S in which
the objects are embedded is also dim(S) ∈ N, and
is given by the dimension of the embedding model
used. In a strict sense, the dimension of this model
can be defined in terms of the dimension of the vec-
tor space defined in it. In the most common case,
where it consists of a tuple of coordinates in a co-
ordinate system whose axes are linearly independ-
ent, the dimension of the embedding model is the
simply given by the number of coordinates used.
Thus, when Rd is used3, in practice it means that

2Adjacency between n-dimensional objects being defined
as (n− 1)-adjacent.

3Conceptually Rd is often used, but due to limitations
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dim(Rd) = d.
It is worth noting that the dimensions of the ob-

jects and the space are independent of each other.
As mentioned previously, topological models of one
dimension lower than their corresponding geometry
can be used, generally by representing an object im-
plicitly by its boundaries. This saves on memory
when the highest dimensional topological relation-
ships are not required. On the other hand, it is
also possible to have topological models of higher
dimension than their actual geometric embedding,
such as when 3D models are displayed on screen (or
on paper), and are thus given a 2D geometry. How-
ever, this imposes considerable constraints, such as
not being able to visualise the higher dimensional
primitives, e. g. when drawing a 3D object in a 2D
perspective view in a piece of paper, not all of its fa-
cets can be seen at the same time. For most GIS ap-
plications the dimension of the space is thus higher
or equal to that of the objects within it.

3 Reducing the dimension of spatial
objects

Starting from a higher dimensional spatial model
where a set of higher dimensional spatial objects
are stored, being able to extract meaningful 2D/3D
objects is a valuable operation. These simpler
types are both easier to visualise and are possible
to use with existing algorithms and software. In
order to reduce the dimension of spatial objects,
(point set) intersections of the original data in the
model and purposefully designed lower dimensional
objects can be used. This procedure works in a
analogous manner as the generation of 2D cross-
sections from 3D objects, such as is commonly done
with isolines from elevation data.

In the most general form, any two sets of ob-
jects A,B can be intersected (∩), resulting in a
new set of objects A ∩B, such that dim(A ∩B) ≤
min(dim(A), dim(B)). Since the intersection res-
ult is, by definition, the common part of the two
sets of objects, it cannot be of a higher dimension
than the lower dimensional set. In fact, it can be of
a lower dimension than both, since they can touch
at a lower dimensional primitive, e. g. a common
point edge, or polygon. When the objects are dis-

inherent in computer representations, most likely something
else is used when it is actually implemented [8].

joint, A ∩B is empty (∅) and its dimension is not
well defined, although 0 [12] and −1 [6] can be ar-
guably justified mathematically, based on different
definitions of the topological dimension of a set.
Note however that even in the case of the intersec-
tion of two single objects, the result might not be
a single object, i. e. single polytopes are not closed
under the intersection operator. This is the reason
why for our purpose, intersection is best treated
directly based on sets of objects.

Computing the intersection of two arbitrary sets
of objects is a very complex problem. This can
be somewhat ameliorated by restricting the objects
that are allowed, such as for the convex case [9]; or
by using techniques to subdivide the objects into
more manageable ones, such as constrained trian-
gulations [14] or the alternate hierarchical decom-
position [2]. However, these techniques fail to fully
overcome what is still an intricate problem with a
very high computational complexity. Even in the
convex case, it is likely analogous to the problem of
computing an arrangement of hyperplanes, which
is O(nd−1) in the worst case [5], with n the total
number of faces ((d − 1)-cells) in the two objects
together.

Since we are mostly interested in very specific
cases of intersections, this problem can be often
avoided by using the properties of the particular ob-
jects that need to be intersected. For this, we have
defined the ‘slicing’ operator. Slicing is an intersec-
tion where a higher dimensional set of objects, gen-
erally consisting of a spatially indexed and rather
large data set, is intersected with another lower-
dimensional object—often half-open, box-shaped
and parallel to an axis—which we have dubbed as
the ‘slicing element’. The end result is then of-
ten given in terms of the lower dimensional space
induced by the slicing element itself, which is equi-
valent to an orthographic projection of the intersec-
tion to a coordinate system describing the vector
space where the slicing element lies. An example
of slicing is shown in Figure 3.

This operation can be expressed as follows.
Given a data set object A ∈ x1 × x2 × x3, where
dim(A) = 3 and a specific value c of x3 along which
we want to slice it, it is possible to generate the sli-
cing element B : x3 = c, where dim(B) = 2. The
result is given by A ∩ B ∈ x1 × x2 × x3, where
dim(A ∩ B) = min(dim(A),dim(B)) = 2, and it
can be expressed as a two dimensional object in the
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Figure 3: Slicing a prism with a plane in 3D space. The data set object (blue prism) is sliced with the
plane x3 = c (green slicing element), which is an open range along both x1 and x2, and orthogonal to
the axis x3. The resulting object (red) is a triangle in 3D space. This triangle can also be expressed as
a triangle in the 2D space x1 × x2 induced by the slicing element.
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4 Example

Consider now what would happen in a practical
example using a four dimensional model with 3D
space and scale (level of detail), as shown in Fig-
ure 4. The model consists of a single 4D object rep-
resenting a house at different levels of detail along
the scale axis (l). Every d-dimensional primitive
in the house is thus a (d + 1)-dimensional one in
the model, stretching from the minimum level of
detail where it is visible up to the maximum level
of detail, its geometry becoming increasingly com-
plex and joined appropriately. For instance, the
vertex at the apex in the front of the house is a
(poly)line connecting the apices at different scale
levels. Similarly, the edge between the roof of the
house and its façade is a (set of adjacent) planes
joining these edges at different scales. For this pa-
per we ignore how these are joined, but work is
ongoing to achieve this purpose. An alternative
view is considering that a 3D object at a fine level
of detail (l3) has been generalised (using general-
isation algorithms) in several steps up to a coarse
level of detail (l1), and these have been joined ap-
propriately. By slicing this space-scale 4D object,
it is possible to generate 3D models at intermediate
levels of detail, such as the house at an arbitrary
value, e. g. l = l2.

Unlike other models with fixed representation
levels, there are an infinite number of differently de-
tailed 3D models that can be extracted from this 4D

Figure 4: A schematic view showing the results of
slicing a 4D model consisting of 3D space (x, y, z)
and 1D scale l (red axis). The model contains a
house at levels of detail ranging from coarse (l1)
to fine (l3) An intermediate level of detail can be
obtained from the model by slicing it at the scale
value of l = l2 and projecting it to the hyperplane
of the slicing element.
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one, allowing for smooth zooming operations [20] or
obtaining levels of detail that are optimised for the
screen in which they are viewed.

5 Discussion

The simple example from the previous section does
not show all the advanced capabilities that can be
achieved using a true 4D spatial model. For in-
stance, using a slicing element with linear geomet-
ries, but that is not orthogonal to the scale axis, it
is possible to obtain mixed-scale levels of detail for
applications where different levels of detail across
the view are required, e. g. having more detail close
to the viewer or in an area where a detailed simula-
tion is needed (perspective view). Slicing with mul-
tiple disjoint planes (a discontinuous embedding)
can generate views of the same object at different
levels of detail or points in time. Animations can
be generated by moving the slicing element along a
meaningful path. Advanced representation can be
obtained using curving objects, such as bell shaped
surfaces for mixed scale that depends on the dis-
tance to the viewer.

These possibilities are currently difficult to visu-
alise, but we believe their implementation to be
within reach, and the capabilities offered by true
higher dimensional models open new and concrete
possibilities for analysis. Having access to the full
topological information means that the connectiv-
ity between in within objects is never lost, e. g. an
object disappearing and then reappearing in time,
which allows for topological queries along all di-
mensions and avoids expensive computations to de-
termine whether two objects are actually the same.
For these reasons, the concepts presented in this
paper are important as a foundation for the manip-
ulation of higher dimensional spatial information.
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