
Using Extrusion toGenerate
Higher-dimensional GIS Datasets

Ken Arroyo Ohori Hugo Ledoux

This is an author’s version of the paper. The authoritative version is:

Using extrusion to generate higher-dimensional GIS datasets. Ken Ar-
royo Ohori and Hugo Ledoux. In Craig Knoblock, Peer Kröger, John Krumm,
Markus Schneider and Peter Widmayer (eds.), SIGSPATIAL’13: Proceedings of
the 21st ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ACM, November 2013, pp. 398–401. ISBN: 978-1-4503-
2521-9.
doi: 10.1145/2525314.2525447

Related source code is available at:
https://github.com/kenohori/lcc-tools

While there is a growing interest in the use of higher-dimensional (≥4D) digital
objects built from complex real-world data, their construction is in practice ham-
pered by a lack ofmethods and algorithms. Wepresent in this paper a dimension-
independent extrusion algorithm for linear geometries using generalised maps.
It permits us to create an (𝑛 + 1)-dimensional model from an 𝑛-dimensional one
by assigning it a range along the (𝑛 + 1)-th dimension. We present our algorithm,
which both optimal and straightforward to implement, using generalised maps
as a base, and report on experiments in which 2D real-world GIS datasets were
extruded to 3D and 4D.

1

http://dx.doi.org/10.1145/2525314.2525447
https://github.com/kenohori/lcc-tools

1 Introduction

There is substantial and growing interest in
the use of higher-dimensional (≥4D) digi-
tal objects that are built from complex real-
world data. This form of representation is
popular in the literature as a conceptually
straightforward extension of 2D/3Dmodels.
In geographic information systems (GIS),
these can be generated through the integra-
tion of 2D/3D space with time [Worboys,
1994] and/or scale [vanOosterom andMei-
jers, 2011], among others. However, actual
use of these higher-dimensional objects has
not yet been widely realised.

From a modeller’s perspective, the first ob-
stacle that is found is a general lack of high-
level techniques to create these higher di-
mensional objects. For construction, ex-
isting techniques for higher-dimensional
data are mostly limited to data composed
of points, or geometric simplicial com-
plexes [Karimipour et al., 2010] that are
built with only points as input. This signif-
icantly restricts the class of objects that can
be modelled.

We are therefore interested in operations
that allow the representation of cellular
complexes, which are far less restrictive. A
cellular complex, or cell complex, is a sub-
division of space into cells, so that an 𝑖-
dimensional cell (𝑖-cell) is an object home-
omorphic to an 𝑖-ball (e.g. point, segment,
disk, ball, etc.). Every 𝑖-cell in the complex
has a number of (𝑖 − 1)-cells (faces) as its
boundary, and these faces are also part of
the complex.

Within the range of possible data structures
to represent cell complexes, ordered topo-
logical models are particularly useful since
the ordering information kept within them
can be used to efficiently traverse the struc-
ture. In particular, we use here one such
model: generalisedmaps [Lienhardt, 1994],
which are briefly presented in Section 2.
These allow us to represent a wider range of
objects than cell complexes: objects of het-
erogeneous dimensions can be modelled.
While there are other structures that are
able to represent even larger classes of ob-
jects, such as non-manifolds [Bieri andNef,

1988], these are significantly more com-
plex, and are very difficult to implement in
a dimension-independent manner. More-
over, we limit ourselves to cellular com-
plexes consisting solely of unique linear ge-
ometries (i.e. points, line segments, poly-
gons, polyhedrons, etc., from which no two
are identical), which allow us to make as-
sumptions that simplify their use signifi-
cantly.

For GIS datasets, we believe that two con-
struction techniques cover the majority of
the cases found in practice: incremental
construction and extrusion. Both are part
of our ongoing work. The first one, in-
cremental construction, builds individual 𝑖-
cells in a cell complex from their uncon-
nected (𝑖 − 1)-dimensional faces, which in-
volves correctly generating the topological
relationships that exist between the differ-
ent dimensional objects.

The second one, extrusion, is the focus of
this paper and is presented in Section 3. In
GIS, extrusion ‘lifts’ a 𝑛-dimensional model
into (𝑛 + 1)-dimensional space by assign-
ing each 𝑛-dimensional object a range along
which it exists, generating a set of prismatic
polytopes. A commonuse is in 3D citymod-
elling, where a 3D model of a building is
commonly constructed from its footprint
and a height value [Ledoux and Meijers,
2011], data that are easy to obtain in practice
(e.g. cadastral parcels + airborne laser). An
example of this is shown inFigure 1. If other
dimensions are added, such as the construc-
tion and the demolition dates, the 3D mod-
els can be extruded into a four- or higher-
dimensional model.

Within this paper, we limit ourselves to ex-
truding all objects along the same range,
something that in generalisedmaps is com-
binatorially equivalent to a cartesian prod-
uct with an edge [Lienhardt et al., 2004].
However, unlike a cartesian product, our
approach works on both geometry and
topology, is simple to implement, and is de-
signed to be extended to support extrusion
to different ranges (per object), as expected
in 2D/3D GIS. Like the cartesian product,
ourmethod is optimal in time and works in
any dimension.

2

A
B

C

(a) Building footprints (b) After extrusion

Figure 1: Extruding a set of three building footprints by their heights is used to generate a
3D city model [Ledoux and Meijers, 2011].

We report on experiments that demonstrate
how our algorithm works in Section 4, cre-
ating topologically consistent objects in any
dimension. We finish with our conclusions
and discussion in Section 5.

2 Generalisedmaps

Generalised maps (G-maps) are an ordered
topological model in arbitrary dimensions
developed by Lienhardt [1994] based on the
concept of a combinatorial map, which is
used to describe the 2D surfaces of 3D ob-
jects. They are roughly equivalent to the
cell-tuple structure of Brisson [1989], but
have been shown to be able to represent
a wider class of objects known as cellular
quasi-manifolds—a combinatorial simplicial
decomposition of a quasi-manifold1 which
has been structured into cells. Note that un-
like in a geometric simplicial decomposi-
tion (i.e. 𝑛D triangulation), constraints are
not needed tomake the decomposition con-
form to the shape of the object.

A generalised map is composed of two ele-
ments: darts and involutions between them
(𝛼). The precise definition of a dart is re-
lated to the underlying simplicial decompo-
sition of the object, each dart being equiv-
alent to a simplex in it. However, a dart
canbe intuitively seen as aunique combina-
tion of a specific cell of each dimension, all

1A specific combinatorial interpretation of the con-
cept of amanifold. See Lienhardt [1994] for details.

of which are incident to each other. Invo-
lutions are bijective operators connecting
darts that are related along a certain dimen-
sion. In this manner, 𝛼 joins darts into
edges,𝛼 connects consecutive edgeswithin
a facet, 𝛼 connects adjacent facets within a
volume, and so on.

More formally, a 𝑛-dimensional gener-
alisedmap (𝑛-G-map) is defined by a (𝑛+2)-
tuple 𝐺 = (𝐷, 𝛼, … , 𝛼𝑛), where 𝐷 is a non-
empty set of darts, 𝛼𝑖 is an involution (i.e.
∀𝑑 ∈ 𝐷, ∀0 ≤ 𝑖 ≤ 𝑛, 𝛼𝑖(𝛼𝑖(𝑑)) = 𝑑), and
∀𝑑 ∈ 𝐷, ∀0 ≤ 𝑖 < 𝑖 + 2 ≤ 𝑗 ≤ 𝑛, 𝛼𝑖(𝛼𝑗(𝑑))
is also an involution. These conditions re-
spectively enforce symmetry and complete-
ness when joining darts.

The aforementioned elements are sufficient
to represent the combinatorial structure of
a generalised map. However, to represent
the geometry and other characteristics of
the model, additional embedding structures
are needed. Each of these structures stores
the information of one cell of a certain di-
mension, so that an 𝑖-embedding contains
the pertinent information of an 𝑖-cell. Since
only linear geometries are required, only
the 0-embeddings (point embeddings) are
strictly necessary, which store the coordi-
nates of each vertex [Arroyo Ohori et al.,
2013].

3 Extrusion

Our extrusion algorithm takes two input ar-
guments: an (𝑛 − 1)-G-map, representing

3

a set of (𝑛 − 1)-polytopes as a cell complex
embedded into (𝑛 − 1)-dimensional space,
and a given range [𝑟, 𝑟] where these
will exist along an 𝑛-th dimension, which
is orthogonal to all others. Its result is an
𝑛-G-map representing a set of prismatic 𝑛-
polytopes, the 𝑛-dimensional analogue of
a set of prisms. Intuitively, this new cell
complex consists of ‘base’ and ‘top’ (𝑛 − 1)-
cells (faces) constructed from the original
cell complex, with 𝑟 and 𝑟 respectively
added as 𝑛-th coordinates in their point em-
beddings. These ‘base’ and ‘top’ are joined
by a set of additional prismatic faces link-
ing corresponding (𝑛−2)-cells (ridges) of the
base and top cells.

As stated previously, the use of G-maps
makes it possible to separate the combinato-
rial (topological) and embedding (geomet-
ric) aspects of an algorithm. Our extrusion
algorithm follows this approach, operating
on the combinatorial and embedding struc-
tures separately.

Combinatorially, the end result is an 𝑛-
dimensional cell complexwhere every 𝑖-cell
∀0 ≤ 𝑖 < 𝑛 in the input cell complex
has been converted into two 𝑖-cells, respec-
tively belonging to the base and top, and a
prismatic (𝑖 + 1)-cell lying between them.
Therefore, extruding an 𝑖-th dimensional
embedding (𝑖-embedding) results in two 𝑖-
embeddings (base and top) and one (𝑖 + 1)-
embedding. In the case of linear geome-
tries this is simpler: only when extruding a
0-embedding two additional 0-embeddings
are created, one with an appended 𝑟 co-
ordinate, and one with an 𝑟 one. The ex-
trusion algorithm for embeddings then re-
ceives a set of embeddings 𝐸 and a range
[𝑟, 𝑟], and returns a set of extruded
embeddings 𝐸′, as well as three functions
𝐸 → 𝐸′ linking corresponding unextruded
(input) and extruded (output) embeddings:
𝑏𝑎𝑠𝑒, 𝑡𝑜𝑝 and 𝑒𝑥. It is presented in Algo-
rithm 1.

Our algorithm to generate the combina-
torial structure then works by iteratively
generating ‘layers’ of darts, assigning them
their correct embeddings, and linking them
appropriately. The relationships between
the darts and their corresponding embed-
dings are expressed in terms of the input

Algorithm 1: EmbeddingsExtrusion
Input : 𝐸, [𝑟, 𝑟]
Output: 𝐸′, 𝑏𝑎𝑠𝑒, 𝑡𝑜𝑝, 𝑒𝑥
foreach 𝑒 ∈ 𝐸 do

𝑏𝑎𝑠𝑒(𝑒), 𝑡𝑜𝑝(𝑒), 𝑒𝑥(𝑒) ← 𝑒
if 𝑒.𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = then

Append 𝑟 to 𝑏𝑎𝑠𝑒(𝑒)’s coordinates
Append 𝑟 to 𝑡𝑜𝑝(𝑒)’s coordinates

𝑒𝑥(𝑒).𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← 𝑒𝑥(𝑒).𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 +
Put 𝑏𝑎𝑠𝑒(𝑒), 𝑡𝑜𝑝(𝑒) and 𝑒𝑥(𝑒) in 𝐸′

(unextruded) generalisedmap. In thisman-
ner, the input consists of an (𝑛 − 1)-G-map
𝐺 = (𝐷, 𝛼, … , 𝛼𝑛−), the sets of embeddings
𝐸 and 𝐸′, the previously generated func-
tions 𝑏𝑎𝑠𝑒, 𝑡𝑜𝑝 and 𝑒𝑥, and functions 𝑒𝑖 ∶
𝐷 → 𝐸 and 𝑒′𝑖 ∶ 𝐷′ → 𝐸′ connecting
darts to their corresponding 𝑖-embeddings.
The output then consists of an 𝑛-G-map
𝐺′ = (𝐷′, 𝛼′, … , 𝛼′𝑛). Observe that 𝐺′ has
one more involution than 𝐺. The proce-
dure to extrude the combinatorial structure
is presented in Algorithms 2 (complete) and
3 (for one layer), and a layer-by-layer exam-
ple is shown in Figure 2.

If we denote the embedding of an in-
put 𝑖-cell as 𝑒, we will identify the base
𝑖-embedding of the output as 𝑏𝑎𝑠𝑒(𝑒), the
top 𝑖-embedding as 𝑡𝑜𝑝(𝑒), and the (𝑖 + 1)-
embedding between them as 𝑒𝑥(𝑒). If we
denote an input dart as 𝑑, we will denote
its corresponding dart in the last layer of
the output as 𝑙𝑎𝑠𝑡(𝑑), the one in the current
layer as 𝑐𝑢𝑟(𝑑), the dart linked to 𝑑 by an 𝑖-
involution as 𝛼𝑖(𝑑), and the 𝑖-embedding of
𝑑 as 𝑒𝑖(𝑑).

Algorithm 2: GMapExtrusion
Input : 𝐺 = (𝐷, 𝛼, 𝛼, … , 𝛼𝑛−), 𝐸, 𝐸′, 𝑏𝑎𝑠𝑒, 𝑡𝑜𝑝, 𝑒𝑥, 𝑒, 𝑒′
Output: 𝐺′ = (𝐷′, 𝛼′, 𝛼′, … , 𝛼′𝑛)
for 𝑑𝑖𝑚 ← 𝑛 to do

GMapLayer(𝐺,𝐺′, 𝑑𝑖𝑚, , 𝑙𝑎𝑠𝑡, 𝐸, 𝐸′, 𝑒, 𝑒′, 𝑏𝑎𝑠𝑒, 𝑒𝑥)
𝑙𝑎𝑠𝑡 ← 𝑐𝑢𝑟

for 𝑑𝑖𝑚 ← to 𝑛 do
GMapLayer(𝐺,𝐺′, 𝑑𝑖𝑚, , 𝑙𝑎𝑠𝑡, 𝐸, 𝐸′, 𝑒, 𝑒′, 𝑡𝑜𝑝, 𝑒𝑥)
𝑙𝑎𝑠𝑡 ← 𝑐𝑢𝑟

Extruding an𝑛-G-map into an (𝑛+1)-G-map
involves the creation of 2𝑛 + 2 layers, each
of which has the same number of darts as
the input generalised map. Also, every em-
bedding is extruded into 3 new embeddings
(top, base and ex).

4

(a) 1. input (𝑑𝑖𝑚 =) (b) 2. new layer with 𝑑𝑖𝑚 =

(c) 3. new layer with 𝑑𝑖𝑚 = (d) 4. new layer with 𝑑𝑖𝑚 =

(e) 5. new layer with 𝑑𝑖𝑚 = (f) 6. new layer with 𝑑𝑖𝑚 =

(g) 7. new layer with 𝑑𝑖𝑚 = (h) 8. output (𝑑𝑖𝑚 =)

Figure 2: The steps in the lifting of a 2-G-map of two adjacent triangles into a 3-G-map
of two adjacent triangular prisms. Every step represents a new layer of 12 darts
(which is the number of darts in the input triangles).

5

Algorithm 3: GMapLayer
Input : 𝐺 = (𝐷, 𝛼, 𝛼, … , 𝛼𝑛−), 𝐺′ = (𝐷′, 𝛼′, 𝛼′, … , 𝛼′𝑛), 𝑑𝑖𝑚,

𝑜𝑓𝑓𝑠𝑒𝑡, 𝑙𝑎𝑠𝑡, 𝐸, 𝐸′, 𝑒, 𝑒′, 𝑒𝑙, 𝑒𝑥
Output: 𝐺′ = (𝐷′, 𝛼′, 𝛼′, … , 𝛼′𝑛), 𝑙𝑎𝑠𝑡, 𝑐𝑢𝑟, 𝑒′
foreach 𝑑 ∈ 𝐷 do

𝑐𝑢𝑟(𝑑) ← new dart
Put 𝑐𝑢𝑟(𝑑) in𝐷′

foreach 𝑑 ∈ 𝐷 do
for 𝑖𝑛𝑣 ← to 𝑑𝑖𝑚 − do

𝛼′𝑖𝑛𝑣(𝑐𝑢𝑟(𝑑)) ← 𝑐𝑢𝑟(𝛼𝑖𝑛𝑣(𝑑))
𝛼′𝑑𝑖𝑚+𝑜𝑓𝑓𝑠𝑒𝑡(𝑐𝑢𝑟(𝑑)) ← 𝑙𝑎𝑠𝑡(𝑑)
𝛼′𝑑𝑖𝑚+𝑜𝑓𝑓𝑠𝑒𝑡(𝑙𝑎𝑠𝑡(𝑑)) ← 𝑐𝑢𝑟(𝑑)
for 𝑖𝑛𝑣 ← 𝑑𝑖𝑚 + to 𝑛 do

𝛼′𝑖𝑛𝑣(𝑐𝑢𝑟(𝑑)) ← 𝑐𝑢𝑟(𝛼𝑖𝑛𝑣−(𝑑))
for 𝑒𝑚𝑏 ← to 𝑑𝑖𝑚 do

𝑒′𝑒𝑚𝑏(𝑐𝑢𝑟(𝑑)) ← 𝑒𝑙(𝑒𝑒𝑚𝑏(𝑑))
for 𝑒𝑚𝑏 ← 𝑑𝑖𝑚 + to 𝑛 do

𝑒′𝑒𝑚𝑏(𝑐𝑢𝑟(𝑑)) ← 𝑒𝑥(𝑒𝑒𝑚𝑏−(𝑑))

Since we generate only the required num-
ber of darts and embeddings, and since ev-
ery one of these is generated in constant
time (assuming constant time access to spe-
cific darts in the base, last and current layers
of darts), our algorithm is optimal in time.
Indeed, it is linear in the number of darts
in the input (and thus output) generalised
map.

4 Examples and experiments

We have implemented the extrusion algo-
rithm in Python and tested it with a few 2D
datasets in the area ofDelft. Thesewere read
using the Python Shapefile Library (pyshp)2
and put into a 2-G-map.

For the first test, an area of the TOP10NL3
dataset comprising the footprints of the 183
buildings in the Delft city centre with no
elevation (Fig. 3a) was extruded along the
range [0, 15] (Fig. 3b). This created a pseudo
3D city model of the area, where all build-
ings have a height of 15 metres. We have
experimentally verified that our algorithm
and its implementation are correct by us-
ing the procedure described in Ledoux and
Meijers [2011]. The model was thus writ-
ten into a TetGen4 .poly file and tetrahe-
dralised using the same software. Since the
2http://code.google.com/p/pyshp/
3http://www.kadaster.nl/top10nl/
4http://tetgen.berlios.de

tetrahedralisation algorithm [Si and Gärt-
ner, 2005] reports intersecting cells and re-
moves the facets that do not bound a 3-
cell, we are able to validate our model using
thismethod. Themodelwas tetrahedralised
successfully with no buildings missing.

For the second test, we used the footprint
of the Aula Congress Centre in the TU Delft
campus from theGBKN5 dataset (Fig. 4a). It
was put into a 2-G-map with 28 darts, 14 0-
cells, 14 1-cells and 1 2-cell, which was ex-
truded along the range [0, 25]𝑚 to construct
a 3D model (Fig. 4c), and extruded again
along the range [1960, 2060] years for a 4D
(3D+time) model. The model was created
with no reported errors, resulting in 1344
(28 × 6 × 8) darts, 56 0-cells, 112 1-cells, 74
2-cells, 18 3-cells and 1 4-cell. We tested it by
verifying that the number of darts and em-
beddings in it matched the theoretical val-
ues, by performing simple validation tests
on its geometry and topology, and visually
using a 4D to 3D parallel projection.

5 Discussion

We have shown that it is possible to use our
algorithm to extrude (𝑛 − 1)-dimensional
cell complexes represented as G-maps into
𝑛-dimensional ones. Our algorithm is op-
timal in time and easy to implement. It
has important benefits over the only other
known algorithm (a cartesian product with
an edge [Lienhardt et al., 2004]): (i) both
geometry and topology are addressed; (ii)
it can be extended so that multiple ranges
are considered when extruding (by detect-
ing overlapping ranges between neighbour-
ing darts); (iii) it can handle datasets that
are larger thanmemory since only three lay-
ers of darts need to be kept inmainmemory
at a time.

6 Acknowledgments

This research is supported by the Dutch
Technology Foundation STW, which is part
5http://www.gbkn.nl

6

http://code.google.com/p/pyshp/
http://www.kadaster.nl/top10nl/
http://tetgen.berlios.de
http://www.gbkn.nl

(a) In the TOP10NL dataset (b) After extrusion and tetrahedralisation (perspective projec-
tion of 0-, 1- and 2-cells only)

Figure 3: Extruding the Delft city centre.

(a) Input footprint

(b) After the second extrusion (double perspective projection of 0-
and 1-cells only)

(c) After the first extrusion

Figure 4: Extruding the Aula Congress Centre in the TU Delft campus.

7

of the Netherlands Organisation for Scien-
tific Research (NWO), and which is partly
funded by theMinistry of Economic Affairs
(Project code: 11300).

References
Ken Arroyo Ohori, Hugo Ledoux, and
Jantien Stoter. Modelling higher di-
mensional data for GIS using generalised
maps. In B. Murgante, S. Misra, M. Car-
lini, C. Torre, H.Q. Nguyen, D. Taniar,
B. Apduhan, and O. Gervasi, editors,
Computational Science and Its Applications
— ICCSA 2013, volume 7971 of Lecture
Notes in Computer Science, pages 526–539.
Springer BerlinHeidelberg, HoChiMinh
City, Vietnam, June 2013.

H. Bieri and W. Nef. Elementary set op-
erations with d-dimensional polyhedra.
In Computational Geometry and its Appli-
cations, volume 333 of Lecture Notes in
Computer Science, pages 97–112. Springer
Berlin / Heidelberg, 1988.

Erik Brisson. Representing geometric struc-
tures in d dimensions: topology and or-
der. In Proceedings of the 5th annual sym-
posium on Computational geometry, pages
218–227, New York, NY, USA, 1989. ACM.

Farid Karimipour, Mahmoud R. Delavar,
and Andrew U. Frank. A simplex-based
approach to implement dimension in-
dependent spatial analyses. Computers

&Geosciences, 36(9):1123–1134, September
2010.

HugoLedouxandMartijnMeijers. Topolog-
ically consistent 3D city models obtained
by extrusion. International Journal of Ge-
ographical Information Science, 25(4):557–
574, 2011.

Pascal Lienhardt. N-dimensional gener-
alized combinatorial maps and cellular
quasi-manifolds. International Journal of
Computational Geometry and Applications,
4(3):275–324, 1994.

Pascal Lienhardt, Xavier Skapin, and An-
toine Bergey. Cartesian product of sim-
plicial and cellular structures. Interna-
tional Journal of Computational Geometry
and Applications, 14(3):115–159, 2004.

Hang Si and Klaus Gärtner. Meshing piece-
wise linear complexes by constrained
delaunay tetrahedralizations. In Pro-
ceedings of the 14th International Meshing
Roundtable, September 2005.

Peter van Oosterom and Martijn Meijers.
Towards a true vario-scale structure sup-
porting smooth-zoom. In Proceedings of
the 14th ICA/ISPRS Workshop on General-
isation and Multiple Representation, Paris,
2011.

Michael F. Worboys. A unified model for
spatial and temporal information. The
Computer Journal, 37(1):26–34, 1994.

8

	Introduction
	Generalised maps
	Extrusion
	Examples and experiments
	Discussion
	Acknowledgments

