
Edge-matching in data harmonisation

Hugo Ledoux
h.ledoux@tudelft.nl

Ken Arroyo Ohori
g.a.k.arroyoohori@tudelft.nl

is technical report was written for the HUMBOLDT project (http:
//www.esdi-humboldt.eu/).

e code of the project is available at
https://github.com/tudelft-gist/pprepair

One of themain challenges of data harmonisation is that of edge-matching, ie man-
aging the connections of geographical objects at international, regional or dataset-
dependent boundaries, to ensure that objects on both sides are coherent. We present
in this chapter the work that has been done during the HUMBOLDT project. First,
a conceptually simple algorithm has been implemented and made freely available to
the public as a Web Processing Service. During the testing of this service with various
datasets, it appeared that the method used—snapping of vertices based on a user-
defined threshold—was error-prone and oen lead to geometries that were invalid.
Wehave therefore developed anovel algorithmwhere vertices are notmoved (no snap-
ping is involved); instead gaps and overlaps between polygons are corrected by using
a constrained triangulation as a supporting structure. We present in the paper our
novel algorithm and our implementation, which is based on the stable and fast trian-
gulator in CGAL. We also present some experiments we have made with real-world
cross-boundary datasets in Europe, and we compare the two implementations. Our
experiments demonstrate that our novel algorithm is highly efficient and permits us to
avoid the tedious task of finding the optimal threshold for a dataset, for the polygons
are properly edge-matched and we can prove that no gaps/overlaps are le.

1 Introduction

With the HUMBOLDT project, and within this book, the harmonisation of geographical infor-
mation is mostly tackled from a data modelling point-of-view, but one should be aware that other

1

h.ledoux@tudelft.nl
g.a.k.arroyoohori@tudelft.nl
http://www.esdi-humboldt.eu/
http://www.esdi-humboldt.eu/
https://github.com/tudelft-gist/pprepair


(a) (b)

Figure 1: (a)Part of the polygons representing theArribes delDueroNatural Park in Spain (orange)
and the International DouroNatural Park in Portugal (green). Since the border is defined
as a river, the two datasets do not match perfectly (there are gaps and overlaps). (b) e
polygons aer edge-matching has been successfully performed.

issues were also tackled during the project. is chapter discusses one of these: edge-matching,
which is also part of a bigger process called geometric conflation. It refers to the management of
the connections of geographical objects at boundaries (to ensure that objects on both sides are
coherent), and it is one of the main challenge when dealing with datasets produced by different
organisations or countries. It involves combining multiple datasets in order to make a new one,
usually to improve either the spatial extent or the accuracy of the data (Lynch and Saalfeld, 1985).
Yuan and Tao (1999) and Davis (n.a.) make a distinction between three types of conflation:

Horizontal conflation refers to edge-matching of neighbouring datasets to eliminate discrepan-
cies at the border region. Country borders defined based on natural features of the terrain
are a good example since their continuous nature basically ensures that independently pro-
duced data will not match at the border (Burrough, 1992). Figure 1 shows an area along the
Spanish-Portuguese border with this problem.

Vertical conflation involves combining datasets covering the same area.

Internal conflation refers to the “cleaning” of a single dataset so that it does not contain gaps or
that its polygons do not overlap.

As further explained in Section 3, the edge-matching problemhas traditionally been tackled almost
exclusively by using the concept of a threshold (a tolerance). In other words, if two objects (edges
or vertices) are closer to each other than a given tolerance (which is usually defined by the user)
then they are considered “equal” and can be snapped together so that they become the same object
in the resulting dataset.

Two implementations of an edge-matching algorithm have been performed during the HUM-
BOLDT project. e first one, described in Section 2 and called the Edge Matching Service (EMS),
is based on the threshold concept, is freely available as a Web Processing Service (WPS), and can

2



be used for lines and polygons. During the evaluation of the first implementation of the EMS, we
noticed that while snapping yields satisfactory results for simple problems, for complex ones it was
oen impossible or impractical to find a tolerance applicable to the whole dataset, and furthermore
the output geometries of the EMS were oen invalid. Such invalid geometries might not be visible
to the user (for instance tiny gaps and overlaps might be remaining, or a line might self-intersect),
but further processing with a GIS requires that datasets be valid. We review in Section 3 the previ-
ous edge-matching algorithms and we highlight the main pitfalls when snapping geometries.

To solve the problems caused by snapping and the use of a threshold, we have also developed a
novel algorithm to perform edge-matching, and we have implemented it. It avoids the pitfalls of
snapping but it is at thismoment limited to polygons, ie the edge-matching of lines is not supported
yet (although we plan to add it in the future). As explained in Section 4, our algorithm differs from
the previous ones, since vertices of the geometries are never moved, ie no snapping of geometries
and no thresholds are involved. Instead, we fill the gaps and fix the overlaps between datasets by
using a constrained triangulation (CT) as a supporting structure and assigning values to triangles.
is approach has in our opinion several advantages: (i) no user-defined tolerance needs to be
defined (the triangles permit us to find matching polygons locally); (ii) we can control locally how
the edges should be matched (in contrast to snapping, which oen involves a global tolerance);
(iii) we guarantee that the resulting edge-matched polygons will be valid. We report in Section 5
on our implementation of the algorithm (it is based on the stable and fast triangulator in CGAL1)
and on the experiments we havemade with some real-world datasets in Europe. Finally, we discuss
in Section 6 the shortcomings of our method and future work.

2 Edge-matching as implemented in HUMBOLDT

e most common method for edge-matching is based on the concept that objects approximately
match each other at their common boundaries (this approximation is based on a threshold). is
implies that they should always be within a certain distance of each other along those borders. If,
additionally, all parts further apart than this value are known not to be common boundaries, it is
possible to snap together objects that are closer to each other than this threshold, while keeping
the rest untouched. Most commercial GISs implement the method (eg ArcGIS, FME, GRASS and
Radius Topology, albeit the algorithms used differ in the order inwhich points are snapped together
and to what geometries: only to points or also to lines), and the INSPIREDirective is explicit about
the use of threshold (INSPIRE, 2008):

It will be to each “ematic Working Group” to define the appropriate thresholds, if re-
quired, in a given data product specification, for each case of edge-matching.

During theHUMBOLDT project, the EMSwas developed and implemented. It permits us to edge-
match both lines and polygons, and it is based on snapping of points (to other points, snapping
between points and lines is not supported) that are within a user-defined threshold. It can be used
for horizontal conflation of polygons (as shown in Figure 1), for vertical conflation of lines (as

1e Computational Geometry Algorithms Library: http://www.cgal.org

3

http://www.cgal.org


Figure 2: e administrative boundaries of Italy (scale 1:25,000), Ligure (scale 1:5,000) and of some
river datasets (scale 1:10,000) do not fit and have to be edge-matched

Figure 3: e Arribes del Duero Natural Park in Spain has several holes and spikes which causes
its geometry to be valid.

shown in Figure 2), and for internal conflation. Indeed, several datasets for the HUMBOLDT
scenarios contained “spiky” holes (as shown in Figure 3) and the EMS was used to remove them.

Moreover, when snapping geometries, the EMS allows us to either use one dataset as a reference
dataset, or to distribute the errors equally between the datasets. e former implies that one of
the two input datasets has higher accuracy, and therefore other datasets should be snapped to it;
this can also be used when for instance the boundary between two countries is known and cannot
be modified, other objects (provinces or regional boundaries) should be moved to fit the higher
accuracy boundary, and not the other way around. e latter way of snapping is used when the
accuracy of both datasets is the same, or is not known. Two or more points that are within a user-
defined threshold will then be snapped “in the middle” as Figure 4 illustrates.

A WPS implementation of the EMS is available2. It permits users to use a desktop GIS as there are
plug-ins for both OpenJUMP GIS3 and uDig⁴; Figure 5 shows the EMS WPS plug-in for Open-
JUMP in action

2Details can be obtained at http://community.esdi-humboldt.eu/projects/show/ems.
3http://www.openjump.org
⁴http://udig.refractions.net

4

http://community.esdi-humboldt.eu/projects/show/ems
http://www.openjump.org
http://udig.refractions.net


(a) (b)

Figure 4: (a) Two lines to edge-match. e grey circles represent the threshold to apply. (b) e
result of the edge-matching process where the erros are distributed: the new points are
half-way between the points to snap. (e original lines are dashed)

Figure 5: Example of the HUMBOLDT’s EMS accessed from a plug-in of the open-source GIS
OpenJUMP.

5



minimum
distance
threshold

maximum
distance
threshold

(a) Gaps between polygons

minimum
distance
threshold

maximum
distance
threshold

(b) Overlapping polygons

Figure 6: Defining a threshold for vertex and edge snapping. e threshold to use should be larger
than the largest minimum distance between the matching boundaries, and smaller than
the minimum distance between vertices of a single polygon.

3 Problems arising when edge-matching with snapping

e main problem of an edge-matching algorithm based on threshold/snapping lies in finding an
appropriate threshold value for a given dataset. While in theory this value is linked to the accu-
racy of a dataset, in practice users do not always know how to translate the accuracy into a value,
and if they choose the wrong value then their resulting dataset will not be properly edge-matched.
Notice that while INSPIRE clearly states that each ematic Working Group will define the appro-
priate threshold (INSPIRE, 2008), this is in our experience wishful thinking since the geographical
datasets related to one theme usually come from different sources that have very different accura-
cies.

In brief, for a successful edge-matching based on snapping, here are some rules:

1. Adjacent polygons should not be further apart than this threshold along any part of their
common boundaries (shown as the minimum threshold in Figure 6(a)). Otherwise, gaps
are not able to be fixed.

2. Adjacent polygons should not overlap each other in areas which are further inwards than this
threshold from their commonboundaries (shown as theminimum threshold in Figure 6(b)).
Otherwise, overlaps are not able to be fixed.

3. No vertices of a polygon should be closer to each other than this threshold, including non
consecutive vertices (shown as themaximum thresholds in Figure 6). Otherwise, theymight
be snapped together, creating repeated vertices, disjoint regions, or various topological prob-
lems.

4. No vertices of a polygon should be closer than this threshold to any non incident edge. Oth-
erwise, theymight be snapped together, creating disjoint regions or various topological prob-
lems.

6



Furthermore, the threshold value is usually used for a complete dataset while the sizes of the gaps
and overlaps between polygons might be different at different locations. What is worse is that
sometimes such a “one-size-fits-all threshold” does not even exist (eg because point spacing might
be in some places smaller than the width of the gaps and overlaps present); in Section 5 we present
one such dataset.

Even if the aforementioned conditions for a threshold are frequently not met (or are not checked
beforehand), snapping is in practice still performed with a trial-and-error tolerance value. We
highlight in this section the potential problems that snappingmight create, ie the creation of invalid
polygons and the changes in the topology of existing geometries.

Two examples are shown in Figures 7 and 8.

(a) Before snapping (b) Aer snapping

Figure 7: Spikes and punctures can be created by snapping, since the bases of these elongated forms
(encircled) might be narrower than the threshold, but their lengths not.

(a) Before snapping (b) Aer snapping

Figure 8: Polygons can be split by snapping, since some parts might be narrower than the threshold
(encircled). While this result does not create an invalid result, it can change the number
of polygons present and their topological relations, and can therefore be undesirable.

While these examples prove that snapping is not problem-free, it should be said that commercial
GIS packages oen implement more complex snapping options (such as point-to-edge, edge-to-

7



edge, or using a reference dataset). ese options can help solve a problematic case, but can also
complicate it by changing the topology of the polygons. One example is the post-processing oper-
ations to clean resulting polygons (eg disposing of polygons with small areas, removing redundant
lines, thresholds for minimum angles, etc.) which might create new gaps and overlaps themselves,
requiring an iterative cleaning process.

Another problem is that snapping is an intricate problem in itself, since there are many possible
criteria that can be followed for both points and edges (eg points to the closest line, points to the
closest point, points orthogonally to the closest line). Figure 9 illustrates one example where the

High resolution 
data

Low resolution 
data

Figure 9: Snapping to the closest line can cause topologically invalid configurations. When two
datasets of differing levels of detail are joined together by snapping the vertices of the
high resolution dataset to the edges of the low resolution one, a situation where the line
reverses on itself is created.

resulting polygon is not valid anymore (and thus cannot be processed with a GIS).

Finally, it is worth mentioning that although the edge-matching of two or more polygons could be
done by snapping and splitting polygons, it might require the use of thresholds so large so as to have
no physical basis, and result in polygons that are substantially different from the original data.

4 An alternative edge-matching algorithm based on constrained
triangulations

Our approach to the edge-matching of polygons uses a constrained triangulation (CT) as a sup-
porting structure because, as explained below, a CT permits us to fill the whole spatial extent of
polygons with triangles, and then these allow us to identify easily the gaps and overlaps between
different polygonal datasets. We use the idea of labelling each triangle with the label of the polygon

8



(a) (b)

(c) (d)

Figure 10: (a)Original dataset with two polygons. Notice the gaps (white) and the overlaps (darker
green). (b) e CT of the input polygons; white triangles have no label, and red ones
have > 1. (c) Triangles are re-tagged such that each triangle has one and only one label.
(d) e resulting edge-matched polygons.

it decomposes: gaps will have no labels and regions where polygons overlaps will have more than
one label.

e workflow of our approach is illustrated in Figure 10 and is as follows:

1. the CT of the input segments forming the polygons is constructed;

2. each triangle in the CT is labelled with the label of the polygon inside which it is located (see
Figure 10(b));

3. problems are detected by identifying triangles with no label or more than one label, and by
verifying the connectivity between the triangles;

4. gaps/overlaps are fixed locally with the most appropriate tag (see Figure 10(c));

5. edge-matched polygons are returned in a GIS format (eg a shapefile).

9



Figure 11: (a) A polygon with 4 holes. (b) e constrained triangulation of the segments of this
polygon.

To construct the CT, tag the triangles, repair the problems and recover polygons, we use results
we recently obtained for the validation and the automatic repair of planar partitions (such as the
CORINE2000 land cover dataset). In Arroyo Ohori (2010) and Ledoux and Meijers (2010) we de-
scribe in detail the algorithms used to construct the CT of a set of polygons, to repair automatically
planar partitions and to recover the polygons aer the repair. We have modified slightly the al-
gorithms and code so that we can perform the edge-matching of different polygons. We discuss
below the main ideas, and we present in the next section some results.

Constrained triangulations. Aconstrained triangulation (CT) permits us to decompose an object
(a polygon) into non-overlapping triangles, Figure 11 shows an example. Notice that no edges of the
triangulation cross the constraints (the boundaries of the polygon). It is known that any polygon
(also with holes) can be triangulated without adding extra vertices (de Berg et al., 2000; Shewchuk,
1997). In our approach, the triangulation is performed by constructing a CT of all the segments
representing the boundaries (outer + inner) of each polygon. If two polygons are adjacent by one
edge e, then e will be inserted twice. Doing this is usually not a problem for triangulation libraries
because they ignore points and segments at the same location (as is the case with the solution we
use, see Section 5). Likewise, when edges are found to intersect, they are split with a new vertex
created at the intersection point.

Labelling triangles. e labels are assigned to the triangles by tagging the triangles adjacent to
the edges of each polygon, and then visiting all the possible triangles with graph-based algorithms
(ie depth-first search). See Arroyo Ohori (2010) for the details.

Identifying problems: gaps and overlaps. If the set of input polygons forms a planar partition,
then all the triangles will be flagged with one and only one label. Problems (gaps and overlaps) are
easily identified: all the triangles are visited and the ones having less or more than one label are
returned.

10



overlapping region 

before after 

Figure 12: Regions are defined as adjacent triangles with equivalent sets of tags. In this example,
the overlapping region between the red and blue polygons is repaired by the tag present
along the longest part of the boundary surrounding the region (red).

Fixing problems: re-labelling triangles. Fixing a problem simply involves re-tagging triangles
with an appropriate label. Arroyo Ohori (2010) proposes different repair operations that can be
used to successfully fix gaps and overlaps. Four of them use triangles as a base (ie the label assigned
is based on that of the 3 neighbouring triangles), which is faster and modifies the area of each
input polygon the least. Two of them use regions of adjacent triangles with equivalent sets of tags
(Figure 12), which is slower but yields results that are expected when edge-matching polygons.

e most interesting repair operation for edge-matching is the one in which a priority of labels is
used to repair regions, ie in case of gaps/overlaps the labels of adjacent polygons are ordered ac-
cording to a user-defined priority, and the highest priority is assigned to the problematic triangles.
We have adapted this operation so that the concept of reference datasets for edge-matching can be
used. When a reference dataset is used, all the other datasets (we call them slaves) are snapped to
it, and the reference dataset is not modified. When using a priority list, that means:

1. gaps should be filled with slave labels

2. overlaps should be fixed with the label of the master polygon.

Notice that in Figure 10(d) this technique was applied, and that the reference dataset (the green
polygon) has not been modified. Figure 13 shows the result of edge-matching the polygons of
Figure 10 with another criterion.

e main advantage of this approach is that the edge-matching can be performed with a local cri-
teria, instead of a global one (the tolerance used is usually for the the whole dataset). It is also an
efficient algorithm since only re-tagging triangles is involved to repair gaps and overlaps (which is
a local operation).

Internal conflation. Observe that internal conflation, as described in the Introduction and in Sec-
tion 2, is also elegantly performed with a triangle-based approach since the aim is to avoid gaps and
overlaps within one dataset. Triangulating it and filling its holes with appropriate labels is easy, and
moreover guarantees that valid geometries are returned.

11



(a) (b)

Figure 13: (a)e same dataset as Figure 10(a). (b) Edge-matching performed with a repair opera-
tionwhere the label assigned to a problematic region is the one of the adjacent neighbour
having the longest common boundary. Notice the differences with Figure 10(d).

Validation of results. If each triangle in the CT has one and only one label, then by definition
there are no gaps and/or overlaps between triangles. Observe that triangles not located “between”
polygons are ignored; they form the “universe”, you can see some at the top-right of Figure 10(d)
for instance. e greatest benefit of using a tagged triangulation for edge-matching polygons stems
from the fact that while modification operations are performed, the validity of the polygons is
always kept, together with the integrity of the data. is comes as a contrast to other methods,
where care needs to be taken to ensure that the (geometric or topological) validity is not broken.
For instance, if a zero width corridor that joins two regions is created, it should be detected and
removed.

5 Experiments

We have implemented the algorithm described in this paper with the C++ programming language,
using external libraries for some functionality: the OGR Simple Features Library, which allows
input and output from a large variety of data formats common in GIS, and CGAL which has sup-
port for many robust spatial data structures and the operations based on them, including polygons
and triangulations (Boissonnat et al., 2002). e developed prototype is open source and freely
available⁵.

We have tested our implementation with two datasets:

1. Figure 14(a): e border between Portugal and Spain along one national park is defined by
a river. e Portuguese and the Spanish datasets do not match, see Figure 1 for one example
at a larger scale. e two polygons have together about 12 000 points.

⁵On the GDMC website: http://www.gdmc.nl

12

http://www.gdmc.nl


(a) (b)

Figure 14: (a) Border region between Portugal (green) and Spain (orange). (b) NUTS regions on
the east of France (green), and some of its neighbouring countries (blue is Belgium;
orange is Luxembourg; purple is Germany; grey is Italy).

2. Figure 14(b): e NUTS boundaries datasets of France and its neighbours. For France, we
used the GEOFLA® dataset⁶, and for Belgium, Luxembourg, Germany and Italy we used the
dataset from UNEP/GRID-Geneva⁷. e larger-scale examples from Figures 10 and 13 are
with these datasets. e polygons have together about 6 000 points.

As expected, we have been able to edge-match successfully these datasets, ie our output polygons
were valid and no gaps/overlaps were present. Because we use an highly-optimised triangulation
library, we could obtain results in about 0.3 s for the France dataset, and about 1 s for the Portugal-
Spain dataset.

5.1 Comparison with other tools

As a comparison, we used FME⁸ and the HUMBOLDT EMS to perform snapping.

FME could perform the matching with a given tolerance in about the same time (about 2 s), since
it uses auxiliary data structures to speed up the process. EMS uses a brute-force implementation,
where all the coordinates are compared with each other for snapping (thus 12 000 times 12 000
comparisons for the Portugal-Spain dataset; a quadratic behaviour), and took around 8 min to
edge-match the Portugal-Spain dataset. It should be pointed out here that EMS is aWeb-Processing

⁶Freely available from the website of the French IGN: www.ign.fr
⁷Available at http://gcmd.nasa.gov/records/GCMD_GNV00159.html
⁸www.safe.com

13

www.ign.fr
http://gcmd.nasa.gov/records/GCMD_GNV00159.html
www.safe.com


tolerance

(a) (b)

Figure 15: (a) Original dataset, with the tolerance used for snapping. (b) Collapsing of part of an
polygon.

Service and that this time includes the conversion to GML and the uploading/downloading of the
datasets to a server (we could not evaluate how much of the time was spent for these steps).

However, with both solutions, for both datasets, we could not find an appropriate tolerance with
which valid geometries are produced and no gaps/overlaps remain. We applied a trial-and-error
method, but as can be seen from Figure 10(a), the size of gaps and overlaps differ substantially.
Some tolerance values could fix the gaps, but then other problemswere created at different locations
in the dataset. One such problem for the dataset Portugal-Spain is illustrated in Figure 15. To fix the
gaps/overlaps, a large enough tolerance was needed, but this tolerance was also creating topological
problems. Notice in Figure 15(b) that the area has been partially collapsed to a line because its
width is smaller than the tolerance used; using a smaller tolerance solves that problem but creates
others.

Since no snapping is used in the method we propose, such a problem cannot occur.

6 Conclusions

We have proposed a new algorithm to perform the edge-matching of polygons and we have shown
that in practice it is highly efficient (since it is based on a highly optimised triangulator and only
the labelling of triangles is involved), it avoids the pitfalls of choosing the appropriate threshold (if
it even exists), and, perhaps more importantly, it guarantees that valid geometries are constructed,
which permits practitioners to use the output for further analysis. Anyone who has tried—and
perhaps failed—to find the appropriate threshold for a given dataset by using trial and error will
recognise that our approach has great benefits.

However, it should be said that not everything is perfect, as Figure 16 illustrates. If two polygons do
not touch or overlap, then the area connected to the universewill not be filledwith labelled triangles
and the resulting polygons will not be matched. ese will happen at the “top” and the “bottom”
of the edge-matching edge for two polygons. We are looking for a solution to this problem. One

14



Figure 16: Same dataset as Figure 15, edge-matched with our approach. When polygons do not
touch or overlaps, gaps can remain since these are considered part of the universe.

approach involves identifying thin or elongated triangles, and another involves snapping vertices
as a pre-processing step to our approach (but since we use triangles aerwards, we should avoid
the problematic cases, eg topological errors).

We plan in the future to add more repair functions, particularly one where we can edge-match two
polygons without the notion of a master and a slave, ie as in Figure 4. Triangles can be used to
find the centreline of a region, as Bader and Weibel (1998) showed. We also plan to modify the
algorithm so that the edge-matching of lines is possible: these would be edge-matched, or “linked”,
with edges of the CT, although the use of a tolerance would still be necessary.

Acknowledgements

We would like to thank Roderic Molina for providing the Portugal-Spain dataset and, Jose Ignacio
Gisbert for discussion about the implementation of the HUMBOLDT Edge Matching Service.

References

Arroyo Ohori K (2010). Validation and automatic repair of planar partitions using a constrained tri-
angulation. MSc Geomatics, GIS technology group, Del University of Technology, the Nether-
lands.

Bader M and Weibel R (1998). Detecting and resolving size and proximity conflicts in the gener-
alization of polygonal maps. In Proceedings 18th International Cartographic Conference. Stock-
holm, Sweden.

Boissonnat JD, Devillers O, Pion S, Teillaud M, and Yvinec M (2002). Triangulations in CGAL.
Computational Geometry—eory and Applications, 22:5–19.

15



Burrough PA (1992). Are GIS data structures too simple minded? Computers & Geosciences,
18(4):395–400.

Davis M (n.a.). Java conflation suite. Technical report, Vivid Solutions. Available at http://www.
vividsolutions.com/jcs/.

de Berg M, van Kreveld M, Overmars M, and Schwarzkopf O (2000). Computational geometry:
Algorithms and applications. Springer-Verlag, Berlin, second edition.

INSPIRE (2008). Methodology for the development of data specifications. Annex I Data Specifi-
cations. Document D 2.6, version 3.0.

Ledoux H and Meijers M (2010). Validation of planar partitions using constrained triangulations.
In Proceedings Joint International Conference oneory, Data Handling andModelling in GeoSpa-
tial Information Science, pages 51–56. Hong Kong.

Lynch MP and Saalfeld AJ (1985). Conflation: Automated map compilation—a video game ap-
proach. In Proceedings Auto-Carto VII, pages 343–352.

Shewchuk JR (1997). Delaunay Refinement Mesh Generation. Ph.D. thesis, School of Computer
Science, Carnegie Mellon University, Pittsburg, USA.

Yuan S andTaoC (1999). Development of conflation components. InProceedings of Geoinformatics,
pages 1–13. Ann Harbour, USA.

16

http://www.vividsolutions.com/jcs/
http://www.vividsolutions.com/jcs/

	Introduction
	Edge-matching as implemented in HUMBOLDT
	Problems arising when edge-matching with snapping
	An alternative edge-matching algorithm based on constrained triangulations
	Experiments
	Comparison with other tools

	Conclusions

