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Planar partitions are frequently used tomodel, among others, land cover, cadas-
tral parcels and administrative boundaries. In practice, they are often stored as
a set of individual polygons to which attributes are attached (e.g. with the Sim-
ple Features paradigm), causing different errors and inconsistencies (e.g. gaps,
overlaps anddisconnectedpolygons), which are introducedduring their creation,
manipulation and exchange. These errors severely hamper the use of planar par-
titions in other software (e.g. due to false assumptions causing erroneous calcu-
lations). Existing approaches to validate planar partitions involve first building
a planar graph of the polygons and enforcing constraints, then repair is done by
snapping vertices and edges of this graph. We argue that these approaches have
many shortcomings in terms of complexity, numerical robustness and difficulty
of implementation, and do not guarantee valid results. Furthermore, they are
semi-automatic, requiring manual user intervention. We propose in this paper
a novel method to validate and automatically repair planar partitions. It uses a
constrained triangulation of the polygons as a base—which by definition is a pla-
nar partition—and only simple operations are needed (i.e. labelling of triangles)
to both validate and repair. Perhaps the biggest advantage of our method is that
we can guarantee that a planar partition is valid after repair. In the paper we de-
scribe the details of our method, our implementation, and the experiments we
have done with real-world datasets. We show that our implementation scales to
big datasets and that it offers better capabilities and overall performance than ex-
isting solutions.

1

http://dx.doi.org/10.1127/1432-8364/2012/0143
https://github.com/tudelft3d/pprepair


1 Introduction

Planar partitions are frequently used in
GIS to model concepts such as land cover,
the cadastre, or the administrative bound-
aries of a given country. As shown in Fig-
ure 1, a planar partition is a subdivision of
a polygonal subset of the plane into non-
overlapping polygons. In practice, planar
partitions are often represented, and stored
in a computer, as a set of individual poly-
gons to which one or more attributes are
attached, and the topological relationships
between polygons are not explicitly stored
(shared boundaries are thus represented
and stored twice). The preferred method
of practitioners is representing polygons
according to the Simple Features specifica-
tion [OGC, 2006], for instance as an ESRI
Shapefile [ESRI, 1998] or in a database, such
as PostGIS1.

Figure 1: Part of the Corine Land Cover
dataset for the region around
Delft, The Netherlands.

If a planar partition is stored as a set of
individual polygons, then in practice er-
rors, mistakes and inconsistencies will of-
ten be introduced when the planar parti-
tion is built, updated or exchanged. Ex-
amples of common errors are: overlapping
polygons, gaps between polygons, and poly-
gons not connected to the others. This can
be, among others, due to human error, the
use of floating-point arithmetic, or limited
precision [Schirra, 1997]. These errors can
have catastrophic consequences for practi-
tioners since most software and algorithms
using planar partitions as input assume that
this input is valid. At best erroneous results
1http://postgis.refractions.net/

are returned, at worst it causes a software
failure, often without any warning to the
user. Moreover, such problems are often
not visible at the scale that the data is usu-
ally viewed, exacerbating the problem [Lau-
rini and Milleret-Raffort, 1994].

Solving that issue entails working on two
related problems: (1) how to identify er-
rors in a planar partition; and (2) how to
repair these errors. As described in Sec-
tion 2, both problems have been tackled in
the past with the creation of a planar graph
of the input. The validation, the simpler of
the two problems, is usually implemented
as a set of topological and geometrical con-
straints that the planar graphmust have. As
for the repair, it is usually performed by
snapping together the vertices and edges of
the graph, or by using topological informa-
tion. As we discuss in Section 2, both ap-
proaches have drawbacks for users: the for-
mer method is error-prone (topological in-
consistencies can be created), and the lat-
ter is only semi-automatic (and in practice
real-world datasets can easily contain sev-
eral hundred errors).

We present in this paper a novel method to
both validate and automatically repair pla-
nar partitions stored according to the Sim-
ple Features specification. Our method,
which is an extension of our preliminary
results [Ledoux and Meijers, 2010], uses a
constrained triangulation (CT) of the poly-
gons as a support—which is by definition
a planar partition—and both the valida-
tion and the repair functions are performed
with relatively simple operations. These
are the labelling of triangles, and standard
graph traversal algorithms (such as depth-
first search). Since errors are repaired
by re-labelling triangles (vertices are never
moved), we can guarantee that a given re-
pair operation will preserve the topological
consistency of the whole planar partition.
We describe in Section 3 how the CT is used,
how the polygons are labelled, how the val-
idation is performed, and how we can auto-
matically repair a planar partition. More-
over, we describe six different repair oper-
ations that can be used to obtain different
output.

We have implemented the method in C++,
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and its most relevant details are discussed
in Section 4. Our software takes as in-
put polygons stored according to the Sim-
ple Features specification, validates them,
repairs them if they contain errors, and re-
turns a new set of polygons that is guar-
anteed to be a valid planar partition. We
also report in that section our experiments
with several real-world datasets (some of
them rather large), and we compare our
method and its implementation to alterna-
tives, both for validation and for repair. Fi-
nally, we discuss the advantages and disad-
vantages of using our method and the con-
clusions drawn from this in Section 5.

2 RelatedWork

Since a planar partition is formed by a set
of individual polygons, wefirst discusswhat
a valid polygon is in our context, and then
we review existing methods to validate and
repair planar partitions.

2.1 Simple Features and validity of
simple polygons

While there are several definitions of
what constitutes a valid polygon (see
van Oosterom et al. [2004] for an exten-
sive discussion), we use in the following
the international standard Simple Fea-
tures [OGC, 2006], with the addition of the
ISO 19107 [ISO, 2003] polygon orientation
rules. Simple Features defines a polygon
as follows: “A Polygon is a planar Surface
defined by 1 exterior boundary and 0 or
more interior boundaries. Each interior
boundary defines a hole in the Polygon.”.
In the specification, six assertions are
given that together define a valid polygon.
Essential for a valid polygon is that the
boundaries of the polygon must define one
connected area. Additionally, a polygon
can contain holes. We say that the exterior
boundary of the polygon is the outer ring,
and a hole is an inner ring. These holes can
be filled by one or more polygons, which
can recursively contain holes, which are
filled by other polygons. Observe also that

holes are allowed to interact with each other
and the outer boundary under certain con-
ditions, e.g. they are allowed to touch at one
point, as long as the interior of the polygon
stays one connected area. Each polygon is
stored independently from other polygons,
and it is not possible to store topological
relationships between the polygons. The
ISO 19107 specification [ISO, 2003] is more
ambiguously defined, but it does establish
orientation rules (counterclockwise for the
outer ring, clockwise for the inner ones),
which we use in our output.

The validation of a single polygon is possi-
ble with different libraries, GEOS2 and JTS3
being two widely used open-source exam-
ples.

The repair of single polygons is a less
documented topic than their validation.
Different software vendors offer tools
to help identify and semi-automatically
repair broken polygons. Examples are
ST_MakeValid() from PostGIS and the con-
straints in 1Spatial Radius Topology. The
method we present in this paper has been
adapted to automatically repair common
errors in individual polygons, e.g. wrong
ring orientation, or holes that split the inte-
rior of a polygon (see Ledoux et al. [2012]).
However, we focus in this paper on the
validation and repair of planar partitions
only andwe assume that the input polygons
are individually valid.

2.2 Validation of a Planar Partition
Using a Planar Graph

Assuming that individual polygons have
been deemed to be valid, it is possible to test
the validity of a planar partition by identify-
ing the two types of invalid configurations:
overlaps and gaps.

If individual polygons are checked with-
out building a planar graph (or an index-
ing structure), finding overlaps involves

2Geometry Engine Open Source: http://trac.
osgeo.org/geos/

3Java Topology Suite: http://www.vividsolutions.
com/jts/jtshome.htm
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checking whether any possible pair of poly-
gons overlap. This is a computationally ex-
pensive operation to make (quadratic be-
haviour), even when heuristics to speed
up the process are used [Badawy and Aref,
1999; Kirkpatrick et al., 2002]. Additionally,
robustness issues are significant in polygon
intersection tests [Hoffmann et al., 1988].
Finding the potential gaps in a planar par-
tition is even more problematic. For this,
computing the union of the entire set of
polygons is required, which is also compu-
tationally expensive [Margalit and Knott,
1989; Rivero and Feito, 2000].

The validation process can be sped up by
first building a planar graph of the in-
put polygons, which is afterwards checked
for consistency. It should first be noticed
that while different approaches are avail-
able to construct a planar graph [Shamos
andHoey, 1976; van Roessel, 1991], it is still
sometimes difficult, especially if the poly-
gon contains holes. The graphof the bound-
ary can then be unconnected and extra ma-
chinery is necessary to represent the knowl-
edge of holes in the graph structure. The
fact that holes are also allowed to touch com-
plicates the task of validation even further,
since holes cannot be assumed to form an
unconnected planar graph.

Based on this graph, Plümer and Gröger
[1997] specify a list of minimal mathemat-
ical axioms that can be used to check the
validity of a planar partition: no dangling
edges, no zero-length edges, planarity, no
holes, no self-intersections, no overlaps,
and having a connected graph. It is impor-
tant to note that Plümer and Gröger base
their axioms on concepts from graph the-
ory, but they also highlight the fact that a
graph-based approach alone is not enough:
the graph has to be augmented with geo-
metrical knowledge (each vertex has geom-
etry attached, i.e. the coordinates of points
have to be stored). Validation is thus under-
pinned by both geometrical and topological
concepts and systems thus have to deal with
those two concepts at the same time. The
method we propose in this paper —using
a constrained triangulation— permits us to
do exactly this: to embedbothgeometry and
topology in the same structure.

2.3 Repair Using Point and Edge
Snapping and Splitting

Themost commonmethod for planar parti-
tion repair is based on the assumption that
polygons approximatelymatch each other at
their common boundaries. This implies
that they should be within a certain dis-
tance of each other along those edges. If,
additionally, all parts further apart than
this value are known not to be common
boundaries, it is possible to “snap” together
polygons that are closer to each other than
this threshold, while keeping the rest un-
touched. This method of planar partition
repair is available inmanyGIS packages, in-
cludingArcGIS4, FME5, GRASS6 and Radius
Topology7.

Since thresholds are central to this method,
it is of utmost importance to select a good
threshold value, something that is com-
pletely different in each dataset. For planar
partition repair to be successful using this
method, such a threshold should be cho-
sen in a careful manner, and always com-
ply with a few conditions. These have been
summarised as follows:

1. Adjacent polygons should not be fur-
ther apart than this threshold along
any part of their common boundaries
(shown as the maximum threshold in
Figure 2(a)). Otherwise, gaps cannot be
fixed.

2. Adjacent polygons should not overlap
each other in areas which are fur-
ther inwards than this threshold from
their common boundaries (shown as
themaximumthreshold inFigure 2(b)).
Otherwise, overlaps cannot be fixed.

3. None of the vertices of a polygon
should be closer to each other than
this threshold, including non consec-
utive vertices (shown as the minimum
thresholds in Figure 2). Otherwise, they

4http://www.esri.com/software/arcgis/index.
html

5http://www.safe.com/fme/
6http://grass.osgeo.org/
7http://www.1spatial.com/software/radius_
topology/
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might be snapped together, creating re-
peated vertices, disjoint regions, or var-
ious topological problems.

4. None of the vertices of a polygon
should be closer than this threshold
to any non incident edge. Otherwise,
they might be snapped together, creat-
ing disjoint regions or various topolog-
ical problems.

This threshold value is usually manually
determined, either by trial and error, or
by analysing certain properties of the
dataset(s) involved (e.g. point spacing, pre-
cision, or map scale). However, it is often
hard to find an optimal threshold for a
certain dataset, since ensuring that it works
well for every part of a dataset is unrealistic.
Moreover, sometimes such a threshold does
not even exist (e.g. because point spacing
in some places might be smaller than the
width of the gaps and overlaps present).

Since the aforementioned conditions are
frequently not met or are not checked be-
forehand, and it is still necessary to perform
repair of a dataset, snapping is often per-
formed nevertheless, possibly creating in-
valid polygons and/or planar partitions, or
significantly changing the topology of the
existing features. Two examples of this phe-
nomenon are shown in Figures 3 and 4.

(a) Before snapping (b) After snapping

Figure 3: Spikes and punctures can be cre-
ated by snapping, since the bases
of these elongated forms (encir-
cled) might be narrower than the
threshold, but its length not.

While these examples show that snap-
ping is not problem-free, it is important
to note that commercial GIS packages of-
ten implement more complex snapping
options (such as point-to-edge, edge-to-
edge, or using a reference dataset). These

(a) Before snapping (b) After snapping

Figure 4: Polygons can be split by snapping,
since some parts of themmight be
narrower than the threshold (en-
circled). While this result does not
create an invalid planar partition,
it can change the number of poly-
gons present and their topologi-
cal relations, and can therefore be
undesirable.

options can help to solve a problematic
case, but can also have undesired conse-
quences, such as changing the topology of
the polygons. Another problem is that
post-processing operations to clean result-
ing polygonsmight be required (e.g. dispos-
ing of polygons with small areas, removing
redundant lines, thresholds for minimum
angles, etc.), which could again create in-
valid configurations, requiring iterative val-
idation or repair processes.

2.4 Repair Using Topological
Information

Adifferent approach for planar partition re-
pair, based on topological information, is
available in some software.

GRASS also creates a graph, using edges as
a base structure instead of triangles, and
could be used to (manually) detect overlaps
and gaps based on the number of labels us-
ing the functions v.what and d.what.vect.
However, there is no simple automated pro-
cedure to get the number of labels at a cer-
tain point, which makes it very cumber-
some and time consuming to use GRASS for
this purpose.

Meanwhile, ArcGIS provides a more com-
plete solution, using a method similar in
some ways to the one developed and de-
scribed in Section 3. It involves using the
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minimum
distance
threshold

maximum
distance
threshold

(a) Gaps between polygons

minimum
distance
threshold

maximum
distance
threshold

(b) Overlapping polygons

Figure 2: Defining a threshold for vertex, edge and face snapping. The threshold to
use should be larger than the largest minimum distance between the matching
boundaries, and smaller than the minimum distance between vertices.

Geodatabase feature of the software with
some combined validation rules (e.g. must
not overlap and must not have gaps). How-
ever, fixing every problematic area in an ap-
propriate manner requires extensive user
intervention (see Figure 5), since the best
choice for each case depends on the specific
configuration of the error.

Since both the aforementioned programs
do not offer an automated process to cor-
rectly solve this problem (and GRASS lacks
the ability to visualise problem areas), they
are not really comparable to our solution.
A planar partition can easily contain tens
of thousands of polygons, possibly generat-
ing thousands of errors, which need to be
checked and repaired semi-automatically.

3 Validation andAutomatic
Repair Using a Constrained
Triangulation

Our approach to validation and automatic
repair of planar partitions uses a con-
strained triangulation (CT) as a supporting
structure because it has many good proper-
ties, including the following:

• It is by definition a planar partition.
Therefore, as long as we keep the in-
formation about which polygon each
triangle belongs to, the reconstructed
polygons will be either a valid planar
partition, or multiple ones.

• It can be built quickly, in 𝑂(𝑛 log 𝑛)
with a variety of approaches [Guibas
and Stolfi, 1985; Mücke et al., 1999;
Clarkson et al., 1992]8.

• Changes to the triangulation (e.g.
adding a new constrained edge) are
local, and therefore fast.

• Constrained edges canusually be added
in constant time, being only signif-
icantly slower (and more complex)
when there is an intersection with an
existing constrained edge [Shewchuk,
1997b].

• Implementation-wise, several stable
and fast triangulation libraries exist,
including CGAL [CGAL, 2011], Trian-
gle [Shewchuk, 1997a] and GTS [GTS,
2006].

The general workflow of our approach to
both validate and repair a planar partition
is as follows:

1. the CT of the input segments forming
the polygons is constructed;

2. each triangle in the CT is labelled with
the label of the polygon inside which it
is located;

3. problems are detected by identifying
triangles having no or multiple labels,

8The actual computational complexity can be
𝑂(𝑛 􏸋􏸎􏸆 𝑛+𝑘), with 𝑘 being the number of edge-edge
intersections, which could conceivably even be 𝑛􏷫.
However, 𝑘 ≪ 𝑛 for most GIS datasets.
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(a) Viewing a topology error in ArcGIS. (b) Assigning an overlapping region to one of the
polygons involved.

Figure 5: Planar partition repair in ArcGIS. The user is expected to zoom in to a particular
error, analyse the situation (e.g. by looking at the properties from the surround-
ing polygons), and make a decision to assign the problematic region to a certain
polygon. More than 11 000 errors were detected in this tile of the Corine dataset.

and by verifying the connectivity be-
tween triangles;

4. repairing of the problems ismade by re-
labelling triangles to ensure that each
triangle has exactly one label;

5. extracting the polygons from the trian-
gulation (polygons modelled with the
Simple Features specification).

As mentioned previously, for this workflow
we assume that each input polygon is indi-
vidually valid. We describe in the following
section the concepts needed and we give a
detailed description of the different steps.

3.1 Triangulation of a polygon and
constrained triangulation

A triangulation subdivides an area into
non-overlapping triangles. Using a con-
strained triangulation, every line segment
that defines the boundary of a polygon, is
ensured to appear as an edge in the tri-
angulation. It is known that any polygon
(also with holes) can be triangulated with-
out adding extra vertices [de Berg et al.,
2008; Shewchuk, 1997a]. Figure 6 shows an
example.

In our approach, the triangulation is per-
formed by constructing incrementally a CT

Figure 6: (a) A polygon with 4 holes. (b)
The constrained triangulation of
the segments of this polygon.

of all the segments representing the bound-
aries (outer + inner) of each polygon. If
the set of input polygons forms a planar
partition, then each segment will be in-
serted twice (except those forming the outer
boundary of the set of input polygons). This
is usually not a problem for triangulation li-
braries because they ignore points and seg-
ments at the same location (as is the case
with the solution we use, see Section 4).
When segments are found to intersect, they
are split with a new point created at the
intersection. This is the only situation in
which the generation of new points is re-
quired.

Notice that our approach requires only a
constrained triangulation, and not one that
fulfils the Delaunay criterion [Shewchuk,
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1997a]. However, having well-shaped tri-
angles is useful for repair purposes and
does not significantly increase the process-
ing time. Therefore our implementation ac-
tually constructs and uses a constrainedDe-
launay triangulation.

3.2 Labelling the triangles of a
Planar Partition

Labelling a triangle means assigning it la-
bel(s) for the polygon(s) that it belongs to (if
two input polygons overlap, each triangle in
the overlapping region should have the la-
bels of the two polygons).

In our previous work on validation [Ledoux
and Meijers, 2010], we used the centroid of
a polygon to start the labelling process, but
this method is prone to errors (if for in-
stance the calculated centroid is outside or
on the boundary of the polygon) and does
not permit us to differentiate gaps from
overlaps.

To solve these problems, we store informa-
tion about the constrained edges of the CT.
Since it is known that the input rings are
closed and have a known orientation (ac-
cording to the ISO 19107 orientation rules),
it is also known on which side of a cer-
tain line segment the interior of the poly-
gon lies. This property is used for robust
labelling of each polygon. Triangles adja-
cent to the outer ring of the polygons are
labelled first, and this is later expanded
to triangles further in the interior of the
polygon, recursively labelling adjacent un-
labelled faces as long as no constrained
edges are crossed. After this operation, all
triangles that are part of any polygon are
labelled, with overlapping regions having
multiply labelled triangles. However, holes
are then indistinguishable from triangles
outside theplanar partition, since bothhave
zero labels. Therefore, a special label is cre-
ated for all the triangles outside the planar
partition, referred to as the “universe” label,
which are labelled by recursively labelling
adjacent triangles from any triangle known
to lie in the exterior of the planar parti-
tion. Weexploit the concept of the “far-away
point” to achieve this [Liu and Snoeyink,

2006]; which is used by several implemen-
tations and is also known as the “big trian-
gle” [Facello, 1995].

3.3 Validation

If the set of input polygons forms a planar
partition then all the triangles will be la-
belled with one and only one label. The
problems are easily detected:

• Gaps are detected by finding triangles
without any labels.

• Overlaps are detected by finding trian-
gles with two or more labels.

• Disjoint regions are detected by iden-
tifying regions separated by the “uni-
verse” label. This is done by starting at
a given triangle, and doing a breadth-
first search on the dual of the triangu-
lation, without visiting the triangles la-
belled as “universe”. If all the triangles
can be reached, then no polygons of the
planar partition are disjoint.

3.4 Repair Operations

The greatest benefits of using a labelled tri-
angulation for planar partition repair stem
from the fact that while repair operations
are performed, the validity of the planar
partition is always kept, together with the
integrity of the data. Unlike with snapping,
vertices are not required to be moved dur-
ing the process, and unlike snapping, repair
is performed using local criteria, instead of
global ones (in snapping, the threshold is
usually fixed for the whole dataset). This
comes as a contrast to othermethods, where
care needs to be taken to ensure that the (ge-
ometric or topological) validity is kept.

Figure 7 shows the standard steps required
in a repair operation. In order to avoid or-
der dependency when repairing, the repair
operation itself is always performed after all
the choices for which label to assign have
been made.

In particular, we propose six different re-
pair operations that can be used to fix gaps

8



Table 1: The repair operations currently implemented in our software. The types of oper-
ations are defined in the map algebra classification [Tomlin, 1994].

Repair operation Type Criteria

Triangle by priority list Varies Label that has the highest priority according to
a predefined priority list

Triangle by number of Focal The label present in the largest number of
neighbours adjacent faces, overlaps included.
Triangle by absolute majority Focal Label present in two or more valid

adjacent faces
Triangle by longest boundary Focal Label present along the longest portion of

the boundary of the adjacent faces
Regions by longest boundary Focal of Label present along the longest portion of

zonal the boundary of the adjacent faces
Regions by random neighbour Focal of Random label from the adjacent faces

zonal

and overlaps. These are shown in Table 1
and all imply re-labelling triangles. Four
of them use triangles as a base (i.e. the la-
bel assigned is based only on that of its
three neighbouring triangles), which is fast
and modifies the area of each input poly-
gon the least. Despite their simplicity, they
offer substantial control over the results.
For instance, the first two operations only
differ from each other in their handling
of overlapping faces; but triangle by num-
ber of neighbours is better for large over-
lapping regions, while triangle by absolute
majority is better in fixing small problems.
Having well-shaped (Delaunay) triangles is
most useful for triangle-based repair func-
tions. Two of them use regions of adja-
cent triangles with equivalent sets of la-
bels, which is slower than a triangle-based
method but yields results that can be car-
tographically more pleasing. An interest-
ing repair operation for practicioners is the
one in which a priority of labels is used, i.e.
in case of gaps/overlaps the labels in the
triangle (overlap) or in the adjacent poly-
gons (gap) are ordered according to a user-
defined priority, and the highest priority is
assigned to the problematic triangles. No-
tice that these repair operations can be used
one after the other (in a hierarchical man-
ner), for instance if first the repair accord-
ing to the longest boundary is used but one
zone has two or more boundaries with ex-
actly the same length, then the deadlock can

be solved by choosing one randomly. A
sample of the results obtained with differ-
ent repair operators is also shown in Fig-
ure 8.

More repair operations basedonextensions
to the idea of labelling triangles/regions can
be further developed. For instance, tri-
angles could be split to subdivide an area
with problems (as in Bader and Weibel
[1997]), or sliver triangles/regions could be
discarded (and then filled during repair).

3.5 Extraction of Polygons From a
Triangulation

Starting from a labelled triangulation, it
is possible to reconstruct the individual
polygons of a planar partition to conform
to valid polygons according to the ISO
19107 and the Simple Features specifica-
tions, which allows users to incorporate au-
tomatic validation and repair in their work-
flow.

We do this operation polygon by polygon.
We start at anunprocessed triangle and visit
all the connected triangles having the same
label (to reconstruct the polygon), mark-
ing the triangles as processed as we visit
them. Note that since all these triangles
are connected, the outer and inner bound-
aries of a polygon are all simple (non self-
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Figure 7: The steps in a generic repair
operation.

intersecting). We repeat this operation un-
til all the triangles have been processed.

For each polygon, we have to recover not
only its outer boundary, but also its in-
ner boundaries, which are not connected.
Observe that we cannot simply follow the
original constrained edges as these do not
have any meaning after a planar partitions
was repaired; the boundaries of the repaired
polygons are instead formed by edges in-
cident to two triangles having different la-
bels.

For each polygon, we walk at a triangle, and
move on to triangles having the same label.

(a) The original poly-
gons.

(b) Repaired each
triangle using the
label adjacent along
the longest boundary
from the neighbouring
triangles.

(c) Repaired each region
using a random label
from the neighbouring
triangles.

(d) Repaired each region
using the label adjacent
along the longest bound-
ary from the neighbour-
ing triangles.

Figure 8: Different repair operations used
in the twopolygons for theArribes
del Duero Natural Park in Spain
(red/darker grey) and the Inter-
national Douro Natural Park in
Portugal (green/lighter grey). All
of them can be considered best
by a certain criterion, like pre-
serving the area ratio between the
two polygons (b), smoothness of
the boundary (d), or a balance be-
tween the two (c).

As the process goes, a single polyline that
runs along all the boundaries of the poly-
gon is generated. This involves a depth-first
search (clockwise) that recursively reaches
until the boundary of a polygon, return-
ing a long chain of edges in a procedure
similar to following the boundary edge by
edge. The procedure is shown step by step
in Figure 9. The polyline created with this
method has “bridges”, which allow us to
keep all inner boundaries (holes) connected
with the outer one, in a manner that keeps
the interior connected as well. These help
to preserve connectivity and the relations
between different (outer and inner) bound-
aries, but are removed later in the process
(to conform to the Simple Features specifi-
cation). Also, its orientation conveys the in-
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Figure 9: The traversal order when navigating through triangles in a clockwise manner.
Starting at △𝐴 and the edge between △𝐴 and △𝐵, the operations occur according
to the encircled numbers. Black arrows denote when an unprocessed triangle is
found, red arrowswhen it is not. Notice how the traversal is performed clockwise
(shown in dark blue arrows) for both cases, despite starting from different sides.

formation of whether a section of it is part
of an inner or an outer boundary.

This polyline is processed with a stack-
based algorithm that generates separate
closed rings for the outer boundary and
each of the inner boundaries, collapsing the
“bridges” that were generated. In order to
do this, the polyline is cut at the places
where more than two edges join, and these
are joined in the correct order by keeping
track of (yet) unclosed rings. When a new
segment is being processed, it can be one
of three options: one that completes a ring,
one that is part of a bridge, or one that
is not yet closed. Closed rings are stored
and bridges are removed, while unclosed
rings are saved in the stack until they can be
popped to forma closed ring togetherwith a
new segment. This is shown in Figure 10.

4 Implementation and
Experiments

4.1 Implementation

An implementation of the algorithms de-
scribed in Section 3 was written in the C++

programming language, using external li-
braries for some functionality. The de-
veloped software is called pprepair, and is
open source and freely available at http:
//tudelft3d.github.com/pprepair/. C++
was selected in order to have plenty of con-
trol with regards to low level details and
to achieve good performance, which makes
it possible to compare it with existing so-
lutions. The libraries used are: the OGR
Simple Features Library9 (which allows in-
put and output from a large variety of
data formats common in GIS); and CGAL10
(which has support for many robust spatial
data structures and the operations based on
them; we use its constrained triangulation
module).

4.2 Experiments with real-world
planar partition datasets

We havemade experiments with four freely
available real-world datasets, i.e. we have
validated and automatically repaired them
with our implementation; the overview of
these datasets is shown in Figure 11 and
9http://www.gdal.org/ogr/
10Computational Geometry Algorithms Library:

http://www.cgal.org/
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Figure 10: Processing the polyline shown starting from vertex 𝑎 and moving to-
wards polyline 𝐴, the following operations occur: (1) 𝐴 unclosed→push,
(2) 𝐵 unclosed→push, (3) 𝐶 unclosed→push, (4) 𝐷 unclosed→push, (5)
𝐸 unclosed→push, (6) 𝐹 closed→store, (7) pop→ 𝐸𝐺 closed→store, (8)
pop→ 𝐷𝐻 degenerate→erase, (9) pop→ 𝐶𝐼 closed→store, (10) pop→ 𝐵𝐽
degenerate→erase, (11) pop→ 𝐴𝐾 closed→store.

(a) E41N27 (b) 4tiles

(c) 16tiles (d) Mexico

Figure 11: Overview of the four datasets.

their properties in Table 2. The datasets are
the following:

E41N27 Corine 200011 tile E41N27, which
contains a shifted polygon (by about
10 cm), creating many small gaps and
overlaps in the dataset. The snapping

11Corine is a land cover dataset for 32 Eu-
ropean countries. It is freely available at
http://www.eea.europa.eu/data-and-maps/data/
corine-land-cover-2000-clc2000-seamless-vector-database.

threshold has been set at 1 m.

4tiles Corine 2000 tiles E39N32, E39N33,
E40N32 and E40N33, which are known
to have long and thin overlapping re-
gions (< 1 mm) with each other. The
snapping thresholdhas been set at 1 cm.

16tiles 16 adjacent Corine 2000 tiles:
E39N30, E39N31, E39N32, E39N33,
E40N30, E40N31, E40N32, E40N33,
E41N30, E41N31, E41N32, E41N33,
E42N30, E42N31, E42N32, E42E33.
Some have gaps between one another,
some overlap, but match within a few
centimetres. The snapping threshold
has been set at 10 cm.

Mexico 1:1 000 000 scale land cover dataset
from INEGI consisting of over 26 000
polygons. Interestingly, it is mostly al-
ready valid (according to the Shapefile
specification), but contains some very
large polygons, with tens of thousands
of vertices.

As a comparison, we have also tried to per-
form the same operations with other avail-
able software. While the capabilities for
planar partition repair among the software
tested vary considerably, with full topolog-
ical repair only available in ArcGIS (using
manual operations only), it is also impor-
tant to consider how different repair im-
plementations scale to large datasets. For
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Table 2: Properties of the datasets used for the experiments.

# pts avg # pts
# polygons # pts largest polygon per polygon

E41N27 14 969 496 303 26 740 33.7
4tiles 4 984 365 702 16 961 74.7
16tiles 63 868 6 622 133 95 112 103.7
Mexico 26 866 4 181 354 117 736 155.6

this, a few performance tests were made in
our implementation, and three planar par-
tition repair tools that perform this process
using snapping and splitting. The testing
methodology for each tool is as follows:

ArcGIS In ArcCatalog, a multiple feature
dataset is created in a Geodatabase, set
with XY resolution values equal to the
snapping threshold. The features are
imported into it and themerge and dis-
solve operations are used tomerge adja-
cent polygons with the same ID. Topol-
ogy is then generated to check that the
planar partition is valid. Everything is
finally exported to a single Shapefile.
The individual parts of the process are
timed and the total is recorded. Mem-
ory usage is calculated as the differ-
ence between the just loaded ArcCata-
log application and itsmaximummem-
ory usage throughout the process.

FME A reader is created for each input file,
which serve as input to a Snapper trans-
former; features with the same IDs are
then dissolved, and finally they are out-
put into a new Shapefile writer. The
topology generator is used to be able
to tell whether the result is a valid pla-
nar partition. Results are timed and the
maximum memory allocation of the
fme.exe process is recorded.

GRASS Input files are imported with
v.in.ogr, with all polygon cleaning op-
erations performed and snapping set to
the correct values. Boundaries between
features with the same IDs are then
dissolved using v.dissolve. Files are
then exported with v.out.ogr. Times
reported by GRASS are added together
to give the total, while memory usage

by the v.in.ogr.exe, v.dissolve.exe
and v.out.ogr.exe are monitored and
their maximum is recorded.

pprepair Files are read and put into the
triangulation, the triangulation is la-
belled, the repair is performed with
the longest boundary first (see Table 1),
with ambiguous cases resolved with a
random choice. Polygons are then ex-
tracted from the triangulation and out-
put to a single Shapefile. The entire
process is timed, and the maximum
amount of memory used is recorded.

Notice that we are somewhat comparing
apples with oranges here since our imple-
mentation is able to repair more cases than
other methods, keeps topological consis-
tency, and does not require finding out the
appropriate threshold value (if it exists).
More importantly, it is able to directly state
whether the result is a planar partition, un-
like the three other solutions (with these
snapping is performed but that does not
guarantee that the output is a valid planar
partition). The results of the experiments
are shown in Table 3.

We have made the experiments in order
to have an idea of the processing time
and the memory usage involved. Only
cases that are acceptably solved by snapping
and splitting have been considered, since
there is no other comparable automated
topological repair tool among those stud-
ied that would also work for more complex
cases, such as those that require a snapping
threshold too high to be practical (e.g. hor-
izontal conflation of independently gener-
ated datasets [Yuan and Tao, 1999; Davis,
2003]).

13



Table 3: Planar partition repair comparison using large datasets.

pprepair ArcGIS FME GRASS

memory time memory time memory time memory time

E41N27 145 MB 19s 145 MB 1m3s 158 MB 31s 59 MB 3m9s
4tiles 116 MB 17s 113 MB 37s 105 MB 31s 49 MB 53s
16tiles 1.45 GB 4m47s crashes – 636 MB 15m48s crashes –
Mexico 1.01 GB 3m31s 216 MB >1d 264 MB 2m45s 408 MB 11m38s

All tests have been run 5 times in a ma-
chine just booted and the results averaged
to account for the small variations that oc-
curred, except in the case where the execu-
tion was cancelled after one full day, due to
time limitations, or when it causes the pro-
gram to crash. The hardware is a 2.66 GHz
Core 2DuoMacBookProwith 4GBofRAM.
ArcGIS 9.3, FME 2010 SP1 and GRASS 6.4
were run in Windows 7, while pprepair was
run in Mac OS X 10.7.1.

As Table 3 shows, our approach uses some-
what more memory than other solutions.
This is explained by the extra (uncon-
strained) edges that are added to the input
over when triangulating them. It should
however be noticed that both ArcGIS and
GRASS crashed with the biggest dataset
16tiles. Our implementation is the fastest
of the four tested, being for instance around
three times faster than FME for the biggest
datasets. Only for the Mexico dataset is
our implementation slower than FME. This
is (probably) explained by the fact that its
polygons already form a valid planar parti-
tion, and therefore very few snapping op-
erations have been performed by FME; the
planar graph of the input was basically
built, and then the polygons saved back to
disk. We believe that ArcGIS and GRASS
struggled with the dataset because it con-
tains several very large polygons (withmore
than 10 000 vertices). Our implementa-
tion took 3m31s, but, as Table 4 shows, it
took CGAL 3m02s to simply triangulate the
input edges. This table also demonstrates
the efficiency of our approach: for the four
datasets, around 85% of the time of our ap-
proach was used—by the CGAL library—to
read the input fromdisk and triangulate the

Table 4: Timed steps of the planar partition
repair procedure, rounded down to
the nearest second. The percentage
is the triangulation time over the
total time.

E41N27 4tiles 16tiles Mexico

Triangulate 0:17 0:15 4:00 3:02
Label 0:01 0:01 0:27 0:16
Repair 0:00 0:00 0:00 0:00
Reconstruct 0:01 0:01 0:11 0:07
Output 0:00 0:00 0:10 0:06

Total 0:19 0:17 4:47 3:31
triangulate % 89% 88% 83% 86%

input edges.

During the implementation, we took sev-
eral engineering decisions to optimise our
program. One of them was to favour disk
space over computation time, as we wanted
to be able to process large datasets. This is
why we always reconstruct polygons, even if
they not modified by the repair process. Al-
though possible, it would require us to keep
in memory the original polygons (which
would significantly increase the memory
consumption) and to keep track of which
labels have been modified. And, as Table 4
shows, the reconstruction is very efficient as
it only takes around 3–4% of the total time
for the 16tiles and Mexico datasets.
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5 Discussion and
Conclusions

We have presented a new method for re-
pairing polygonal area partitions, ensur-
ing that the output partition is valid, i.e.
all individual polygons are conforming to
the ISO 19107 [ISO, 2003] and Simple Fea-
tures [OGC, 2006] specifications and no
gaps nor overlaps are present between any
pair of polygons. Thenovelty of ourmethod
lies in the fact that repair is performed ac-
cording to user defined criteria, but then
takes place without any human interven-
tion. Automatic repair is becoming increas-
ingly an important topic due to data in-
tegration, e.g. data collected for the differ-
ent themes of the European INSPIRE Ini-
tiative will finally have to fit together and
data could eventually bematched fully auto-
matically by dedicated web service compo-
nents [INSPIRE, 2009]. Our approach could
be at the heart of such a web service.

The proposed approach excels in auto-
mated repair at the cost of increased mem-
ory usage compared to a pure graph-based
approach—this difference is mainly caused
by the unconstrained edges introduced by
the triangulation. While it would be possi-
ble to use our repair rules together with a
(primal/dual) graph-based approach, these
additional edges in the triangulation give
fine-grained control over the repair oper-
ations, and ensures that the graph is con-
nected, which facilitates the reconstruction
of polygons.

We have implemented our algorithm over
a numerically robust triangulator (CGAL)
and since repair operations are expressed
solely in terms of re-labelling of triangles
(no geometric computation is involved), the
approach is also fully robust. Since, during
our experiments, most of the time was used
to compute the constrained triangulation,
another library could also be tested to im-
prove the implementation.

For the future, we plan to:

• Improve the scalability of the approach
and process and repair datasets with
more than 10 million polygons. It is

known that using divide-and-conquer
techniques triangulation algorithms
can handle big datasets [Amenta et al.,
2003; Blandford et al., 2005]. We will
investigate whether it is possible to
automatically repair each divided part
individually and ‘glue’ the repaired
parts together.

• Investigate snap rounding [Hobby,
1999; de Berg et al., 2007] as a pre-
processing step—or embeddeddirectly
in the triangulation — to guarantee
that repaired planar partitions have no
vertices that are closer than a certain
𝜀 threshold. However, snap rounding
may change the topology of the input,
but the output will nevertheless be a
valid partition (as the topology will
be repaired). Apart from topological
changes, snap rounding can also lead
to removed polygon parts that are too
small to be preserved based on the
chosen 𝜀.

• Add more advanced repair operations
to our repair toolkit, e.g. repair could
take place based on splitting a collec-
tion of triangles.

• Extend our work to include the third
dimension to validate and repair 3D
city models using a constrained tetra-
hedralisation [Si, 2008]. Notice that
the tetrahedralisation of a given poly-
hedron does not always exist, and thus
extra (Steiner) points might need to
be added. The main concepts of our
approach, (re)labelling and reconstruc-
tion, extend naturally to 3D. How-
ever, appropriate repair operations for
3D city models would need to be de-
fined, and some application-specific
constraints (e.g. right angles at corners)
are not trivial to implement in our cur-
rent approach.
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