
Automatically repairing polygons and
planar partitionswith prepair and

pprepair
Hugo Ledoux Ken Arroyo Ohori Martijn Meijers

This is an author’s version of the paper. The authoritative version is:

Automatically repairing polygons and planar partitions with prepair
and pprepair. Hugo Ledoux, Ken Arroyo Ohori and Martijn Meijers. In
Proceedings of the 4th Open Source GIS UK Conference, September 2012.

Related source code is available at:
https://github.com/tudelft3d/prepair
https://github.com/tudelft3d/pprepair

1

https://github.com/tudelft3d/prepair
https://github.com/tudelft3d/pprepair


1 Introduction

Planar partitions are frequently used in GIS
to model concepts such as land cover, the
cadastre, or the administrative boundaries
of a given country. As shown in Figure 1,
a planar partition is a subdivision of a re-
gion into non-overlapping polygons. In

Figure 1: Part of the Corine Land Cover
dataset for the region around
Delft, The Netherlands.

practice, planar partitions are often rep-
resented, and stored in a computer, as a
set of individual polygons to which one or
more attributes are attached, and the topo-
logical relationships between polygons are
not explicitly stored (shared boundaries are
thus represented and stored twice). The
preferred method of practitioners is rep-
resenting polygons according to the Simple
Features specification [OGC, 2006], for in-
stance as an ESRI Shapefile [ESRI, 1998] or
in a database, such as PostGIS1.

Polygons are frequently built from imper-
fect data (e.g. line segments with over-
shoots and undershoots), or digitised semi-
manually in a variety of CAD software, such
as the example in Figure 2. Thus, invalid
polygons continue to be prevalent in prac-
tice despite the existence of a variety of
validation tools (see Van Oosterom et al.
[2004]), causing errors such as: duplicate
vertices, and unclosed or self-intersecting
polygons. Similar issues occur with pla-
nar partitions. If they are stored as a set
of individual polygons, then in practice er-
rors, mistakes and inconsistencies will of-
ten be introduced when they are built, up-
1http://postgis.refractions.net/

Figure 2: Two invalid (self-intersecting)
polygons in a municipality
dataset.

dated or exchanged. Examples of com-
mon errors are: overlapping polygons, gaps
between polygons, and polygons not con-
nected to others. Figure 3 shows exam-
ples of a gap and an overlap in the Corine
dataset. Notice that suchproblems are often

10 cm

CORINE E41N27

(a) A gap between two
polygons.

0.3 mm

CORINE E39N33 CORINE E40N33

CORINE E39N32 CORINE E40N32

(b) An overlapping re-
gion between four tiles of
the dataset.

Figure 3: Examples of errors in the Corine
dataset.

not visible at the scale that the data is usu-
ally viewed, exacerbating the problem [Lau-
rini and Milleret-Raffort, 1994]. These er-
rors can be, among others, due to human er-
ror, the use of floating-point arithmetic, or
limited precision [Schirra, 1997]. They can
have catastrophic consequences for practi-
tioners since most software and algorithms
using planar partitions as input assume that
this input is valid. At best erroneous re-
sults are returned, at worst it causes a soft-
ware failure, often without any warning to

2

http://postgis.refractions.net/


the user.

Solving this problem involves repairing er-
rors that occur both at the polygon and pla-
nar partition levels. Doing so automatically
is highly desirable, since real-world datasets
can easily contain thousands of polygons
and millions of vertices, sometimes result-
ing in hundreds of errors. Automatic poly-
gon repair has been tackled in the past with
a variety of ad hoc tricks (see Ramsey [2010]
for an excellent overview). Meanwhile, au-
tomatic planar partition repair is usually
based on snapping nearby vertices (up to a
user-defined threshold). However, these ap-
proaches are limited (they cannot recover
from any situation), and do not guarantee
that the validity of their output. As for com-
mercial tools (e.g. ArcGIS), they offer only
semi-automatic methods.

We have developed a method—and imple-
mented it—to automatically repair poly-
gons and planar partitions stored accord-
ing to the Simple Features specification. It
uses a constrained triangulation (CT) of the
polygons as a support, which is by defini-
tion a planar partition. This structure al-
lows us to give a consistent interpretation
to invalid polygons. Repair is performed by
simple operations on the CT: (re)labelling
the triangles, and standard graph traver-
sal algorithms (such as depth-first search).
Since vertices are nevermoved, we can guar-
antee that a given repair operation will pre-
serve the topological consistency of both in-
dividual polygons and the entire planar par-
tition. We give in Section 2 an overview of
the method.

Wehave created a robust implementationof
our method, and have made it open source
and publicly available at https://github.
com/tudelft3d. Our software takes as in-
put polygons stored according to the Sim-
ple Features specification, automatically re-
pairs them if they contain errors, and re-
turns a new set of valid polygons that is
guaranteed to be a valid planar partition.
We also report in Section 3 our experiments
with several real-world datasets (some of
them rather large), and we compare our
method and its implementation to alterna-
tives, both for validation and for repair.

2 Our implementations:
prepair and pprepair

Our approach to automatically repair poly-
gons and planar partitions uses a con-
strained triangulation (CT) as a supporting
structure, and as Figure 4 indicates, it has
four steps:

(a) A set of partially
overlapping polygons
that needs to be re-
paired. There is also
a gap between the
polygons.

(b) The polygons are
triangulated and each
triangle is labelled
with the polygons it
belongs to.

(c) The triangles are
re-labelled so that each
triangle has exactly
one label.

(d) The now valid poly-
gons are reconstructed
from the triangulation.

Figure 4: The steps to repair a planar
partition.

(a) The CT of the line segments forming
the boundaries of the polygon(s) is con-
structed. For a (valid) planar partition,
each segment will be present twice (ex-
cept those forming the outer boundary
of the set of input polygons), and these
duplicates should be ignored. When
segments are found to intersect, they
are split with a new point created at the
intersection. Both of these operations
are available in triangulation libraries,
such as CGAL [CGAL, 2011], Trian-
gle [Shewchuk, 1997] and GTS [GTS,
2006].

(b) Each triangle in the CT is labelled ap-
propriately. For the polygon case, two
labels representing its interior and ex-
terior are used, labelling by starting

3

https://github.com/tudelft3d
https://github.com/tudelft3d


from a triangle known to be in the ex-
terior of the polygon, e.g. using the “big
triangle” concept [Liu and Snoeyink,
2005; Facello, 1995], and switching
labels when passing through a con-
strained edge. For the planar partition
case, each triangle is labelled with the
the polygon inside which it is located,
so that gap triangles have zero labels,
and overlap triangles have two or more.

(c) To repair a planar partition, triangles
are re-labelled to ensure that each tri-
angle has exactly one label. This oper-
ation is based on local criteria, such as
the length of its boundarywith adjacent
features, which can be done triangle by
triangle, or by first selecting regions of
contiguous triangles with the same set
of labels.

(d) The polygon(s) are extracted from the
triangulation, one by one and accord-
ing to their labels. To do this, we
use a depth-first clockwise search, and
a stack-based algorithm that gener-
ates separate closed rings for the outer
boundary and each of the inner bound-
aries.

Basedon this process, wehave implemented
two software tools that are able to auto-
matically repair polygons and planar par-
titions. These are called prepair (for poly-
gons), and pprepair (for planar partitions),
which are open source and freely available
under a BSD license (although we use GPL
libraries).

Our implementation is written in C++ and
uses the OGR Simple Features Library2 for
input and output, and CGAL’s3 2D Triangu-
lations package to triangulate the polygons.
It can use either floating point or exact (lazy
evaluated) representations of the points in
the triangulation. The different classes in
our software and how they use OGR and
CGAL classes are shown in Figure 5.

More details are available in Ledoux et al.
[2012] and in Arroyo Ohori et al. [2012].

2http://www.gdal.org/ogr/
3Computational Geometry Algorithms Library:
http://www.cgal.org/

We have also implemented different repair
operations, which are based on local prop-
erties of a triangle, a region of triangleswith
the same labels, or using a list of feature
classes with different priorities. Figure 6
presents some of the available repair oper-
ations.

(a) The original poly-
gons.

(b) Repaired each
triangle using the
label adjacent along
the longest boundary
from the neighbouring
triangles.

(c) Repaired each re-
gion using a random
label from the neigh-
bouring triangles.

(d) Repaired each
region using the label
adjacent along the
longest boundary from
the neighbouring
triangles.

Figure 6: Different repair operations used
in the twopolygons for theArribes
del Duero Natural Park in Spain
(red) and the International Douro
Natural Park in Portugal (green).
All of them can be considered best
by a certain criterion, like pre-
serving the area ratio between the
two polygons (b), smoothness of
the boundary (d), or a balance be-
tween the two (c).

3 Experiments

We have tested our software with sev-
eral datasets, such as Corine4, Mexican
and Canadian land cover data, and edge-
matching datasets.
4Corine is a European land cover dataset.
It is freely available at http://www.
eea.europa.eu/data-and-maps/data/
corine-land-cover-2000-clc2000-seamless-vector-database.

4

http://www.gdal.org/ogr/
http://www.cgal.org/
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database


 
 

FaceInfo

+ isMultiPolygonHandle() : bool

# originalFile : char *
# layer : unsigned int
# schemaIndex : unsigned int

PolygonHandle

 
 
MultiPolygonHandle

 
 

Field

 
# contents : char *

StringField

 
# contents : int

IntField

 
# contents : double

DoubleField

 

+ file : char *
+ layer : int
+ field : int

FieldDescriptor

+ matches(FieldDefinition *) : bool

+ name : char *
+ type : OGRFieldType
+ justification : OGRJustification
+ width : int
+ precision : int

FieldDefinition

+ addToTriangulation(file : char *, schemaIndex : unsigned int = 0) : bool
+ tagTriangles() : bool
+ makeAllHolesValid() : bool
+ splitRegions(ratio : double) : bool
+ repairTrianglesByNumberOfNeighbours(alsoUniverse : bool) : bool
+ repairTrianglesByAbsoluteMajority(alsoUniverse : bool) : bool
+ repairTrianglesByLongestBoundary(alsoUniverse : bool) : bool
+ repairRegionsByLongestBoundary(alsoUniverse : bool) : bool
+ repairRegionsByRandomNeighbour(alsoUniverse : bool) : bool
+ repairByPriorityList(file : char *) : bool
+ repairEdgeMatching(file : char *) : bool
+ matchSchemata() : bool
+ reconstructPolygons(outputPolygons : std::vector<OGRPolygon>) : bool
+ exportPolygons(outputPolygons : std::vector<OGRPolygon>, file : char *) : bool
+ exportTriangulation(file : char *) : bool

# triangulation : CGAL::Constrained_Delaunay_triangulation_2<...>
# edgesToTag : std::vector<OGRPolygon>
# outputPolygons : std::vector<OGRPolygon>

PlanarPartition
# tag 0...1 1...*

# fields 0...*

- handles

0..*

1

- universe

- polygons

- fields

0...*

- fieldEquivalencies

+ addToTriangulation(file : char *, schemaIndex : unsigned int = 0) : bool
+ tagTriangles() : bool
+ makeAllHolesValid() : bool
+ splitRegions(ratio : double) : bool
+ repairTrianglesByNumberOfNeighbours(alsoUniverse : bool) : bool
+ repairTrianglesByAbsoluteMajority(alsoUniverse : bool) : bool
+ repairTrianglesByLongestBoundary(alsoUniverse : bool) : bool
+ repairRegionsByLongestBoundary(alsoUniverse : bool) : bool
+ repairRegionsByRandomNeighbour(alsoUniverse : bool) : bool
+ repairByPriorityList(file : char *) : bool
+ repairEdgeMatching(file : char *) : bool
+ matchSchemata() : bool
+ reconstructPolygons(outputPolygons : std::vector<OGRPolygon>) : bool
+ exportPolygons(outputPolygons : std::vector<OGRPolygon>, file : char *) : bool
+ exportTriangulation(file : char *) : bool

- fileNames : std::vector<char *>
- schemaFieldType : OGRFieldType

IOWorker

0...*

1- io

Figure 5: A simplified UML diagram of pprepair.

5



Our software has been able to successfully
repair every dataset that we have tested, in-
cluding some very large ones. Figure 7
shows two such examples, with the time and
memory it took to repair them. These tests
were run on a Intel Core 2 Duo 2.66 GHz
MacBook Pro under Mac OS X 10.7.3.

(a) The largest polygon
of the Corine dataset,
consisting of 1 189 903
vertices and having 7672
holes. It was repaired in
1m4s using 940 MB of
memory.

(b) 25 tiles of the Corine
dataset, consisting of 105
712 polygons and 5 122
108 vertices. It was re-
paired in 6m10s using
2.34 GB of memory.

Figure 7: Examples of large datasets suc-
cessfully repaired by prepair and
pprepair.

References
Ken Arroyo Ohori, Hugo Ledoux, and Mar-
tijn Meijers. Validation and automatic
repair of planar partitions using a con-
strained triangulation. Journal of Pho-
togrammetry, Remote Sensing and Geoinfor-
mation Processing, 2012. Accepted for pub-
lication.

CGAL. CGAL 3.8 User and Reference Manual.
CGAL Editorial Board, 2011.

ESRI. Shapefile technical description.
White paper, ESRI, July 1998.

Michael A. Facello. Implementation of a
randomized algorithm for Delaunay and
regular triangulations in three dimen-
sions. Computer Aided Geometric Design, 12
(4):349–370, 1995.

GTS. GTS Library Reference Manual, 2006.
URL http://gts.sourceforge.net/
reference/book1.html.

Robert Laurini and Françoise Milleret-
Raffort. Topological reorganization of
inconsistent geographical databases: A
step towards their certification. Comput-
ers & Graphics, 18(6):803–813, December
1994.

Hugo Ledoux, Ken Arroyo Ohori, and Mar-
tijn Meijers. Automatically repairing in-
valid polygons with a constrained trian-
gulation. In Proceedings of the 15th AGILE
International Conference on Geographic In-
formation Science, 2012.

Yuanxin Liu and Jack Snoeyink. The “far
away point” for Delaunay diagram com-
putation in 𝔼𝑑. In Proceedings 2nd In-
ternational Symposium on Voronoi Diagrams
in Science and Engineering, pages 236–243,
Seoul, Korea, 2005.

OGC. OpenGIS Implementation Specification
for Geographic Information - Simple Feature
Access - Part 1: Common Architecture, 1.2.0
edition, October 2006.

Paul Ramsey. PostGIS: Tips for power users.
Presentation at the FOSS4G 2010 Confer-
ence, Barcelona, Spain, 2010. http://s3.
opengeo.org/postgis-power.pdf.

Stefan Schirra. Precision and Robustness in
Geometric Computations, volume Algorith-
mic Foundations of Geographic Informa-
tion Systems of Lecture Notes in Computer
Science, chapter 9, pages 255–287. Springer
Berlin / Heidelberg, 1997.

Jonathan Richard Shewchuk. Delaunay Re-
finement Mesh Generation. PhD thesis,
School of Computer Science, Carnegie
Mellon University, Pittsburg, USA, 1997.

Peter van Oosterom,Wilko Quak, and Theo
Tijssen. About invalid, valid and clean
polygons. In Peter F. Fisher, editor, Devel-
opments in Spatial Data Handling—11th In-
ternational Symposium on Spatial DataHan-
dling, pages 1–16. Springer, 2004.

6

http://gts.sourceforge.net/reference/book1.html
http://gts.sourceforge.net/reference/book1.html
http://s3.opengeo.org/postgis-power.pdf
http://s3.opengeo.org/postgis-power.pdf

	Introduction
	Our implementations: prepair and pprepair
	Experiments

