
Automatically repairing invalid polygons with a
constrained triangulation∗

Hugo Ledoux
h.ledoux@tudelft.nl

Ken Arroyo Ohori
g.a.k.arroyoohori@tudelft.nl

Martijn Meijers
b.m.meijers@tudelft.nl

March 2012

Abstract

Although the validation of single polygons has received considerable atten-
tion, the automatic repair of invalid polygons has not. Automated repair methods
can be considered as interpreting ambiguous or ill-defined polygons and giving
a coherent and clearly defined output. At this moment, automatic tools are not
satisfactory and repairing is thus mostly a semi-automatic task. We present in this
paper a novel method, based on a constrained triangulation, to automatically repair
invalid polygons. We describe our method, highlight some implementation details
and describe an experiment with highly degenerate input for which predictable
output is obtained. We believe our approach is superior to other tools since it is
simple, intuitive and scales to big polygons.

1 Introduction
While there are different definitions for a polygon, most GIS packages now use that of
the Open Geospatial Consortium (OGC) and the International Organization for Stan-
dardization (ISO)1 (OGC, 2006; ISO, TC211), and provide validation functions to en-
sure that a given polygon conforms to the definition. There are small variations be-
tween different implementations (van Oosterom et al., 2004), but we can consider the
validation of a two-dimensional polygon a solved problem. Having one definition to-
gether with validation tools ensures that practitioners can now exchange datasets and
use spatial analysis operations with their data (i.e. valid input is a prerequisite for most
operations).

However, if a polygon is invalid—that is, it does not comply with the definition—
then one has to repair it. Most validation tools give the user a list of errors and locations,
but the user has to manually fix them (see for instance Figure 1). This is a very tedious
and time-consuming task.
∗Draft of a long abstract published in the Proceedings of Agile 2012 in Avignon, France (http://

agile2012.imag.fr)
1These are almost identical, see Section 2.

1



Figure 1: JTS interface that helps users to locate and manually fix errors in invalid
polygons.

We investigate in this paper automatic methods for repairing polygons. Surpris-
ingly, it is a topic that so far has received little attention. As we discuss in Section 3,
most GIS packages perform some form of cleaning/repairing (e.g. deleting “unwanted
parts” for display purposes) when reading invalid input, but how this is done is (often)
not documented. An example of this cleaning, and of how the interpretation of the
input can differ, is shown in Figure 2 for two packages.

To automatically repair polygons, practitioners often resort to ad hoc solutions and
tricks, the most known being the “buffer-by-0” operation. A buffered geometry is built,
but the original lines are offset by nothing (zero). To construct a buffer, the planar graph
of the input is built; in other words the topology is built, which will be structurally iden-
tical to the original input. While this trick works fine for solving a few problems, parts
of a polygon can disappear for some inputs (see Ramsey (2010) for some examples),
and perhaps worse, its use is almost not documented, making the output unpredictable.
To our knowledge, the only automatic repair tool is ST_MakeValid, which will be
available in the next version of PostGIS (version 2.0, which is already available as a
beta version at the time of writing). As explained in Section 3, the function is not doc-
umented (one has to read the code and try with different input) and is based on a series
of tricks: buffer-by-0 is used for some inputs, for others another function is used, a
given configuration triggers the use of another function, etc.

We present in this paper a novel method to automatically repair invalid polygons.
As described in Section 4, it is conceptually simple and is based on the properties of a
constrained triangulation of the input polygon. It permits us to formalise and document
how we perform the repair (and permits a practitioner to predict the behaviour of our
implementation). It should be said that repairing is not an exact science (different
persons could repair an invalid polygon in different way), but we clearly define what
situations we handle and how we fix them. We have implemented our algorithm (only
about 300 lines of code, without the code to triangulate) and we report in Section 5
on some experiments we ran with problematic polygons and some real-world complex
polygons. We also compare our implementation to that of ST_MakeValid; we show

2



Figure 2: Different interpretations of the polygon p3, as shown in Figure 3. (a) ArcGIS
considers the overlapping region as a hole, but the non-overlapping part of the hole as
a new polygon (QGIS and FME do this as well). (b) GRASS removes the overlapping
part from the polygon, becoming a new polygon with a different shape.

(a) (b)

that our approach scales better to big polygons, and that it outperforms ST_MakeValid
by several orders of magnitude. Finally, in Section 6, we elaborate on the advantages
of our method and discuss future work.

2 What is a polygon?
For the validation and repair of a polygon, we follow the definition of the Simple Fea-
ture specifications (SFS): “a planar Surface defined by 1 exterior boundary and 0 or
more interior boundaries. Each interior boundary defines a hole in the Polygon.” OGC
(2006). Different rules are provided, the most relevant being the following (examples
of invalid polygons are given between brackets, they refer to those in Figure 3):

1. the rings that define the exterior and inner boundaries should be simple and
closed (p10 and p11). Notice that this prevents the existence of rings with zero-
area (p6). The polygon p1 is thus not allowed by the SFS (the triangle should be
represented with an interior boundary), but ESRI’s Shapefile allows it.

2. the rings should not cross (p3, p7 and p8) but may intersect at one tangent point
(interior boundary of p2 is a valid case, although p2 as a whole is not since the
other interior boundary is located outside the interior one).

3. a polygon may not have cut lines, spikes or punctures (p5 or p6); removing these
is known as the regularisation of a polygon.

4. the interior of every polygon is a connected point set (p4).

5. each inner ring creates a new area that is disconnected from the universe. Thus,
they cannot be outside the outer ring (p2) or inside other inner rings (p9).

Furthermore, since this definition does not enforce an orientation for the rings (be-
sides that the exterior and interior boundaries should have opposite orientations), we
follow the ISO rules which state that the exterior boundary of a polygon is counter-
clockwise, and the inner boundaries clockwise.

3



Figure 3: Several invalid polygons (this is not a complete list of all problematic poly-
gons, but rather an overview of common cases).

p2

p4 p5 p6

p7 p8 p9

p3

p12p11p10

p1

exterior
boundary

interior
boundary

4



3 Related work
Ramsey (2010) gives an excellent overview of the tricks used by practitioners to au-
tomatically repair their polygons (his examples are PostGIS-related only, but since it
uses other open-source libraries such as GEOS we believe this is representative of what
practitioners do). It can be seen that different functions of GEOS and PostGIS have to
be used to fix different problems, as some functions fail in certain conditions. For in-
stance, buffer-by-0 works for polygon p1 in Figure 3, but removes half of the bow-tie
of p10—repairing correctly p10 (i.e. with two output polygons) requires using three
functions2. All these functions are based on the construction of a planar graph of the
input, and on identifying loops in this graph to form rings. Some of them reconstruct
all the possible loops, while others stop after one loop has been found.

The script cleanGeometry.sql3 was the first attempt to formalise the decision
tree based on a given input. Unfortunately, polygons with interior rings are not properly
handled.

ST_MakeValid is an attempt to build a high-level function in PostGIS to repair
any input polygon. It uses the functions of GEOS and PostGIS, and depending on
the topological and geometrical configuration of the input rings, different functions are
used to repair. Basically, a planar graph of the input is built first, and then one loop
in the graph is found and a ring is built (at this point it is unknown if it is an exterior
or an interior ring). Then, for all the other loops in the graph, the resulting polygon
is obtained by the symmetric difference of this ring and the one already found. Each
symmetric difference requires building a new independent graph where the topological
relations of the rings are extracted (to detect which ring is the exterior and which are the
interior). As a consequence, ST_MakeValid is highly inefficient for input containing a
large number of interior rings, as Section 5 shows. It should be noticed that the function
attempts to create a valid representation of a given invalid geometry without losing any
of the input vertices, i.e. if a ring collapses to a line segment, this line segment is also
returned to the user.

4 Repairing a polygon with a constrained triangulation
Our approach to repairing polygons uses a constrained triangulation (CT) as a support-
ing structure, and as Figure 4 illustrates, it has three steps:

1. construction of the CT of the input polygon, closing rings if necessary. Notice
that at this step new vertices are added at the intersection of line segments.

2. labelling of the triangles (outside or inside) using an “area-filling” method which
starts from the outside, and is performed by using simple graph-based algo-
rithms.

3. reconstruction of the polygon(s) by a depth-first counterclockwise search of their
boundaries.

The CT permits us to embed together both the geometry and the topology of the
input polygons in the same structure, which allows us to perform less operations when

2ST_ExteriorRing + ST_Union + ST_BuildArea
3Available at: trac.osgeo.org/postgis/wiki/UsersWikiCleanPolygons

5



Figure 4: Workflow of our approach to repair a polygon. In (a) the input polygon has
2 problems; (b) the interior ring is closed; (c) the CT is constructed; (d) triangles are
labelled as inside (grey) or outside (white); (e) the repaired polygon.

(b)

(c) (d) (e)

(a)

dangling piece

ring not closed

repairing (for instance ST_MakeValid needs to perform extra operations to detect topo-
logical relationships between rings, while with a CT this is not necessary). Another
advantage is that we can exploit the properties of the CT to perform some cleaning that
is otherwise rather cumbersome (e.g. duplicate vertices, collapsing of rings to points or
lines). Furthermore, implementation-wise, several stable and fast constrained triangu-
lation libraries exist (including CGAL (CGAL, 2011), Triangle (Shewchuk, 1997) and
GTS (GTS, 2006)) and we can build over them.

Notice that the valid representation of an invalid output can be either:

• nothing (e.g. the only ring of a polygon is a line segment);

• one polygon (potentially with interior boundaries);

• several polygons (polygons p2, p4, p9 and p10 in Figure 3).

4.1 Constrained triangulations
Given a set of points S and (straight-line) segments in the plane (such as in Figure 4b),
a constrained triangulation (CT) decomposes the convex hull of S into triangles that are
non-overlapping, and every input segment appears as an edge of CT(S). If S contains
segments forming a loop (which defines one ring of a polygon in our case), it permits
us to triangulate the interior of this loop (i.e. a triangulation of the polygon). Notice
here that for the sake of repairing a polygon, we cannot use algorithms to triangulate
a single polygon (e.g. Chazelle (1982)) as these often assume that the input is simple
and forms only one polygon.

In our approach, the triangulation is performed by constructing a CT of all the
segments representing the boundaries (outer + inner) of a polygon. Thus, repairing a

6



polygon starts at this step, as the properties of the CT are strict. If two input segments
intersect, they are split into sub-segments and thus a new point can be added at their
intersection. Also, no two vertices or edges of a CT can be at the same location, which
means that if two identical segments are in the input, only one will be kept in the CT.
At this step, we also perform another validation operation: we close rings whose first
and last points are not the same (Figure 4b). We believe that this is consequent with
the intention of the user: if a new ring was defined it is probably a mistake that it is not
closed.

Observe that while the shape of the triangles constructed is important for many
applications (Shewchuk, 1997), here it is not relevant and any CT can be used (the
constrained Delaunay triangulation can be used but is not necessary). A CT can be
built efficiently with a variety of approaches (Guibas and Stolfi, 1985; Clarkson et al.,
1992). Once the CT is stored, it can be used for solving quickly, and with an extremely
light auxiliary data structure, the point-location problem (Mücke et al., 1999), which is
useful to identify double vertices and intersections of segments.

4.2 Labelling triangles: outside or inside
To label each triangle as either outside or inside, we start at one triangle located outside
any input ring, we label it as outside and we expand to all triangles reachable from it
without passing through a constrained edge of the CT. When these are exhausted, all
remaining triangles reachable by passing once through a constrained edge are known
to be in its interior. From the remaining triangles, those that can be reached by passing
through two constrained edges are in its exterior, and so on.

The fact that we start from the outside is key to ensuring that we always repair
a given polygon in the same way, and it also permits us to predict how a polygon
will be repaired. To find a triangle located outside any ring, we exploit the “far-away
point” (also called the “big triangle”) that is used by several CT implementations (Liu
and Snoeyink, 2005; Facello, 1995). In brief, every edge on the border of the convex
hull has a triangle incident to it, and this triangle is formed by the edge and a special
“infinite” point.

Thus, to label the triangles, the algorithm performs several passes. First the trian-
gles incident to the infinite point and the reachable ones are labelled as outside. Then
this operation is expanded to triangles further in the interior of the polygon (labelling
them as inside). If all the triangles have been flagged (if there are no interior rings)
then the process if finished, otherwise the labelling continues the same way, alternating
between outside and inside, until all triangles have been labelled.

4.3 From the CT to a polygon
To reconstruct the polygon from the labelled CT, we construct a path (a polyline) that
runs along the boundary segments of the polygon, on the inside of it. In a nutshell, we
traverse one area formed by several triangles labelled as interior (or exterior) in a depth-
first search order, always going counter-clockwise. In this process, so-called “bridges”
are generated. Here the generated polyline goes over an unconstrained triangulation
edge twice, once on the left side, once on the right side. These bridges connect the
interior rings to each other or to the outer ring. As these bridges obviously do not
belong to the geometry of the input polygon, they are discarded when the individual
rings of the polygon are obtained. Figure 5 shows an example.

7



Figure 5: The polyline generated from a seeding triangle in the interior of the ring joins
all holes with the external boundary, while always keeping the interior connected and
on the same side of the line (left). A separate polyline is generated for each different
interior connected component.

Polyline 1

Polyline 2

4.4 Example of repaired polygons
Figure 6 shows examples of invalid polygons that were repaired with the method de-
scribed in this section. The following should be noticed:

Level of repair Figure 6 shows all the polygons that can be constructed. Polygon p7
is repaired with 4 polygons, since there are 3 levels and intersections between
the two interior rings. It is possible to modify the algorithm so that only the first
level (exterior ring + 1 level of interior rings) are returned.

Dangling pieces These are ignored because the labels on the left and the right are the
same.

Disconnected interior This is handled properly and one new polygon is created per
interior-connected part.

Collapsed area These areas are simply ignored in the output (same labels on left and
right). However, if they intersected another boundary, then the point(s) added
during the construction of the CT is present in the output. It is possible to post-
process segments and merge two consecutive collinear ones, but we have not
implemented it.

Overlapping boundaries Such boundaries are merged / dissolved together.

Self-intersections Self-intersections, such as p1 in Figure 3, are repaired as an interior
boundary is constructed.

5 Experiments and comparison with other tools
We have implemented the algorithm described in Section 4 in C++; it is open-source
and freely available4. Two libraries are used: (1) CGAL5 (we use its constrained tri-
angulation module and its robust geometric operations); (2) the OGR Simple Features

4github.com/tudelft-gist/prepair
5www.cgal.org

8



Figure 6: Some polygons from Figure 3 and how our method repairs them. Polygon
p13 was added.

p1

=

= +
p7

p4

= +

=
p8

= +
p10

=
p12p12p12p12

=
p13

= ++
p9= +

p3

Library6 (which allows read and write from a large variety of GIS data formats). In
its current form, the prototype reads one Polygon represented with well-known text
(WKT) and returns one valid MultiPolygon also represented as a WKT.

We have tested our prototype (which we named prepair) with all the polygons
shown in Figure 3 and with other similar ones. They are meant as a sort of unit testing
polygons to compare how they fare in different tools (Burns, 2001). We are able to
repair all of these, with the behaviour explained in Section 4.

To test the efficiency of our method, we have tested it with three invalid real-world
polygons from the CORINE land cover dataset (CLC2006), these are shown in Fig-
ure 7. These are land use polygons that can become rather complex and big. The
errors in all these polygons are self-intersection of the exterior boundary (because the
shapefile standard does not follow the SFS); one example is shown in Figure 8(c).

To compare our approach and implementation, we have tested ST_MakeValid with
the same polygons. It repairs the same way as prepair and for the unit tests the per-
formances are similar; these contain very few points and that was expected. However,
for polygons with more points, ST_MakeValid is far less efficient. Indeed, as Table 1
shows, as the number of points grows ST_MakeValid becomes far less efficient than
prepair since several operations have to be repeated for all the pairs of rings for in-
stance.

By comparison, with prepair, one global operation needs to be done (construction
of the CT + labelling), but afterwards no operations with quadratic behaviour need to
be performed. The algorithm’s running time is defined by the computational complex-
ity of creating the CT, O(v logv)7, and of reconstructing the polygon, O(vr logr), with
v the number of vertices and r the number of rings. The other operations (i.e. tagging,
creation of the polylines, and splitting) are performed in linear time. Therefore, the to-

6www.gdal.org/ogr
7Constructing the CT could conceivably take O(v2) time, since a quadratic number of edge-edge inter-

sections are possible (e.g. in certain star polygons). However, in practice the number of intersections is much
smaller than v.

9



Figure 7: Three polygons from CLC2006: (a) EU-47552 (light gray) and EU-47997
(dark gray). (b) EU-180927. Their characteristics are shown in Table 1. (c) Self-
intersection of the exterior boundary of the polygon EU-47552.

(a)

(b)

(c)

10



Table 1: For the three CLC2006 polygons in Figure 7: total number of points and of
rings, and the running times to repair them.

points rings prepair ST_MakeValid

EU-47552 2 412 10 0.5s 0.8s
EU-47997 32 473 346 11.4s 314.0s
EU-180927 102 272 299 52.2s 740.2s

tal running time is O(v logv+vr logr). If v is exponentially larger than r, the algorithm
is dominated by the triangulation time, O(v logv).

6 Discussion
While designing our method we had to make several—often arbitrary—choices for its
behaviour. While the way polygons are repaired is perhaps not always consistent with
what one might do manually, our method is formalised and permits users to predict
easily how their polygons will be repaired. We plan to investigate alternative paradigms
to repair, for instance by following a point-set topology approach. That is, where a
polygon p is defined as p = outerring\{innerrings} (as in Figure 2b). That would be
relatively simple to implement with the labelling of a triangulation.

It should be noticed that our method also improves the robustness of polygons even
if they are valid since we automatically add a node to two touching rings. This is not
mandatory according to the ISO/OGC definitions, but a wished property for represent-
ing polygons and manipulating them (van Oosterom et al., 2004). Furthermore, we
can claim that our implementation is fully robust since we rely on CGAL (which uses
robust arithmetic) and our repair operations are expressed solely in terms of labelling
of triangles (no geometric computations are involved).

References
Tim Burns. Effective unit testing. ACM Ubiquity, January 2001, 2001.

CGAL. CGAL 3.8 User and Reference Manual. CGAL Editorial Board, 2011.

Bernard Chazelle. A theorem on polygon cutting with applications. In Proceed-
ings 23rd Annual Symposium on Foundations of Computer Science, pages 339–349,
Washington, DC, USA, 1982. IEEE Computer Society.

Kenneth L. Clarkson, Kurt Mehlhorn, and Raimund Seidel. Four results on random-
ized incremental constructions. In Alain Finkel and Matthias Jantzen, editors, Pro-
ceedings of the 9th Annual Symposium on Theoretical Aspects of Computer Science,
volume 577 of Lecture Notes in Computer Science, pages 461–474. Springer Berlin
/ Heidelberg, 1992.

Michael A. Facello. Implementation of a randomized algorithm for Delaunay and
regular triangulations in three dimensions. Computer Aided Geometric Design, 12:
349–370, 1995.

11



GTS. GTS Library Reference Manual, 2006. URL http://gts.sourceforge.net/
reference/book1.html.

Leonidas J. Guibas and Jorge Stolfi. Primitives for the manipulation of general subdi-
visions and the computation of Voronoi diagrams. ACM Transactions on Graphics,
4(2):74–123, 1985.

ISO(TC211). ISO 19107:2003: Geographic information—Spatial schema. Interna-
tional Organization for Standardization, 2003.

Yuanxin Liu and Jack Snoeyink. The “far away point” for Delaunay diagram compu-
tation in Ed . In Proceedings 2nd International Symposium on Voronoi Diagrams in
Science and Engineering, pages 236–243, Seoul, Korea, 2005.

Ernst P. Mücke, Isaac Saias, and Binhai Zhu. Fast randomized point location without
preprocessing in two- and three-dimensional Delaunay triangulations. Computa-
tional Geometry—Theory and Applications, 12:63–83, 1999.

OGC. OpenGIS implementation specification for geographic information—simple fea-
ture access. Open Geospatial Consortium inc., 2006. Document 06-103r3.

Paul Ramsey. PostGIS: Tips for power users. Presentation at the FOSS4G 2010 Confer-
ence, Barcelona, Spain, 2010. http://s3.opengeo.org/postgis-power.pdf.

Jonathan Richard Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburg, USA, 1997.

Peter van Oosterom, Wilko Quak, and Theo Tijssen. About invalid, valid and clean
polygons. In Peter F. Fisher, editor, Developments in Spatial Data Handling—11th
International Symposium on Spatial Data Handling, pages 1–16. Springer, 2004.

12


