
Representing three-dimensional topography in a
DBMS with a star-based data structure

Hugo Ledoux Martijn Meijers

3D GeoInfo 2012 (Québec City, Canada)
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Representing and storing 3D topography

Our options:

1 b-rep (CityGML, 3D FDS)

2 CSG (IFC)

3 tetrahedralisation (TEN)
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Constrained Delaunay tetrahedralisation (or TEN)

Advantages:

1 storage is simplified

2 spatial analysis is efficient

3 features can be represented

4 robust implementation

5 spatial relations between
unconnected features explicitly
stored
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But...

“An additional disadvantage of TEN is its
much larger database size compared with
other representations.”

– S. Zlatanova et al. (2004)
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Penninga (2008): Efficient storage is possible

Only vertices and tetrahedra are
stored:

akin to Simple Features

4 IDs per tetrahedron

only 20% more storage than
Oracle Spatial?

66 Chapter 4. Theoretical foundations: Poincaré simplicial homology
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Figure 4.6: Merging two simplexes into one simplicial complex
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S31 =< v0, v1, v3, v4 >

S32 =< v1, v2, v3, v6 >

S33 =< v1, v3, v4, v6 >

S34 =< v1, v4, v5, v6 >

S35 =< v3, v4, v6, v7 >

S36 =< v4, v6, v7, v8 >

S37 =< v4, v5, v6, v8 >

S38 =< v5, v6, v8, v9 >

∂S31 =< v1, v3, v4 > − < v0, v3, v4 > + < v0, v1, v4 > − < v0, v1, v3 >

∂S32 =< v2, v3, v6 > − < v1, v3, v6 > + < v1, v2, v6 > − < v1, v2, v3 >

∂S33 =< v3, v4, v6 > − < v1, v4, v6 > + < v1, v3, v6 > − < v1, v3, v4 >

∂S34 =< v4, v5, v6 > − < v1, v5, v6 > + < v1, v4, v6 > − < v1, v4, v5 >

∂S35 =< v4, v6, v7 > − < v3, v6, v7 > + < v3, v4, v7 > − < v3, v4, v6 >

∂S36 =< v6, v7, v8 > − < v4, v7, v8 > + < v4, v6, v8 > − < v4, v6, v7 >

∂S37 =< v5, v6, v8 > − < v4, v6, v8 > + < v4, v5, v8 > − < v4, v5, v6 >

∂S38 =< v6, v8, v9 > − < v5, v8, v9 > + < v5, v6, v9 > − < v5, v6, v8 >

C3 ∂C3 = − < v0, v3, v4 > + < v0, v1, v4 > − < v0, v1, v3 > + < v2, v3, v6 >
+ < v1, v2, v6 > − < v1, v2, v3 > − < v1, v5, v6 > − < v1, v4, v5 >

− < v3, v6, v7 > + < v3, v4, v7 > + < v6, v7, v8 > − < v4, v7, v8 >

+ < v4, v5, v8 > + < v6, v8, v9 > − < v5, v8, v9 > + < v5, v6, v9 >

+

Figure 4.7: Deriving the boundary triangulation from a simplicial complex

But...

structure not topological

spatial index should be added (e.g. R-tree)
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Our approach: storing stars in a 2D triangulation

p
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A star in 3D in a tetrahedralisation
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The star of an edge in 3D

star(ab) = cdefgh

a

b
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h

g

f

e

d abcd = one tetra

abde = another tetra

abcd and abde are
adjacent

each tetra is in 6 edges

8 / 16



The star of an edge in 3D

star(ab) = cdefgh

a

b

c

h

g

f

e

d abcd = one tetra

abde = another tetra

abcd and abde are
adjacent

each tetra is in 6 edges

8 / 16



The star of an edge in 3D

star(ab) = cdefgh

a

b

c

h

g

f

e

d abcd = one tetra

abde = another tetra

abcd and abde are
adjacent

each tetra is in 6 edges

8 / 16



The star of an edge in 3D

star(ab) = cdefgh

a

b

c

h

g

f

e

d abcd = one tetra

abde = another tetra

abcd and abde are
adjacent

each tetra is in 6 edges

8 / 16



Every star is stored → implicit triangles

9 / 16



Every star is stored → implicit triangles

9 / 16



Every star is stored → implicit triangles

9 / 16



Every star is stored → implicit triangles

9 / 16



Compression = storing only representative edges

|E | ∼= (7/6)|T |
using smart idea of Blandford et al. (2005)
representative edge = both vertex labels are either odd or even
half of edges will be stored
each triangle and each tetra must be in at least 1 star
only 3 labels per tetra on average—Penninga (2008) needs 4
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DBMS storage = easy and efficient

Vertex table

id x y z

1 5.0 2.5 6.0
2 5.0 11.5 6.0
3 5.0 6.0 12.0
. . . . . . . . . . . .
8 1.0 6.0 8.0

Representative edge table

start end star[]

2 4 {∅, 3, 1, 5}
5 7 {6, 1, 2}
1 7 {∅, 8, 2, 5, 6}
1 5 {∅, 6, 7, 2, 4}
. . . . . . . . .
1 3 {∅, 4, 2, 8}
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PostgreSQL table

-- Vertex table

CREATE TABLE pgtet_vertex (

gid bigint,

x numeric,

y numeric,

z numeric

);

ALTER TABLE pgtet_vertex ADD PRIMARY KEY (gid);

-- Edge table

CREATE TABLE pgtet_edge (

start bigint,

end bigint,

link bigint[] -- array of integers

);

ALTER TABLE pgtet_edge ADD PRIMARY KEY (from_gid, to_gid);
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No auxiliary R-tree index needed: “walking” is used

q

starting triangle

(Can be made efficient [MSZ99])
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Experiments with the TU Delft campus dataset

input 3D model CDT star

vertices constraints vertices edges triangles tetrahedra representative edge

5 978 3 982 6 938 56 291 95 420 47 707 25 697
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Experiments with the TU Delft campus dataset

Some facts and statistics:

370 solids (building’s footprints extruded)

1000 vertices added by the tetrahedralisation

20% compacter than Penninga’s (or than Simple Features)

average size of a star = 4.9 (min = 3; max = 28)

input 3D model CDT star

vertices constraints vertices edges triangles tetrahedra representative edge

5 978 3 982 6 938 56 291 95 420 47 707 25 697
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Thanks for your attention

Hugo Ledoux
h.ledoux@tudelft.nl

Martijn Meijers
b.m.meijers@tudelft.nl
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