
Representing Three-Dimensional
Topography in a DBMS
with a Star-Based Data Structure

Hugo Ledoux and Martijn Meijers

Abstract For storing and modelling three-dimensional topographic objects (e.g.
buildings, roads, dykes and the terrain), tetrahedralisations have been proposed as
an alternative to boundary representations. While in theory they have several
advantages, current implementations are either not space efficient or do not store
topological relationships (which makes spatial analysis and updating slow, or
require the use of a costly 3D spatial index). We discuss in this paper an alternative
data structure for storing tetrahedralisations in a DBMS. It is based on the idea of
storing only the vertices and stars of edges; triangles and tetrahedra are represented
implicitly. It has been used previously in main memory, but not in a DBMS—we
describe how to modify it to obtain an efficient implementation in a DBMS. As we
demonstrate with one real-world example, the structure is around 20 % compacter
than implemented alternatives, it permits us to store attributes for any primitives,
and has the added benefit of being topological. The structure can be easily
implemented in most DBMS (we describe our implementation in PostgreSQL) and
we present some of the engineering choices we made for the implementation.

1 Introduction

Several data models to represent 3D topographic objects (e.g. buildings, roads, the
terrain and dikes) and to store them in a database management system (DBMS)
have been proposed. Some of them store only the geometry of single objects while

H. Ledoux (&) ! M. Meijers
Delft University of Technology, Delft, The Netherlands
e-mail: h.ledoux@tudelft.nl

M. Meijers
e-mail: b.m.meijers@tudelft.nl

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_7,
! Springer-Verlag Berlin Heidelberg 2013

119

others permit us to explicitly store the topological relationships between objects
(and also those between the lower-dimensionality primitives of the representation
of an object). Geometry models usually store objects with a boundary represen-
tation, called b-rep, and one popular data structure used in practice is GML (OGC
2007). It can be seen in the overview of Zlatanova et al. (2004) that many topo-
logical models are variations of the formal data structure (FDS) (Molenaar 1990;
Molenaar 1998), which, unlike its name implies, is a conceptual model—with
rules and constraints to preserve the validity—that can be implemented in a
DBMS. FDS is a b-rep model in which four primitives are kept (nodes, arc, edge
and face; bodies are implicit), and where the topological relationships between
them are stored.

An alternative to b-rep models is to use tetrahedralisations, where 3D objects
are decomposed into tetrahedra and where empty space (e.g. between buildings) is
also decomposed into tetrahedra and integrated in the model.1 Carlson (1987) and
Pilouk (1996), among others, argue that tetrahedralisations have several advan-
tages to represent 3D objects, in the same way that triangulations have advantages
in 2D (Frank and Kuhn 1986). The advantages the most often cited are: storage is
simplified as only one convex primitive is needed (Penninga 2005), spatial anal-
ysis operations can perform more efficiently (Ledoux and Gold 2008), and the
overall implementation is simpler, thus more robust. However, tetrahedralisations
also have theoretical drawbacks as Zlatanova et al. (2004) state in their compar-
ison of the different topological models: ‘‘An additional disadvantage of TEN is its
much larger database size compared with other representations.’’

As Penninga (2008) states, the storage penalty is true only if all the primitives
of the tetrahedra are explicitly represented (nodes, edges and faces, as with the
FDS). He proposes a data structure where only vertices and tetrahedra are repre-
sented, and the other primitives are extracted on-the-fly. His data structure can be
seen as a variation of Simple Features (OGC 2006): vertices are stored in one table
and have an ID, and one tetrahedron is formed by the concatenation of 4 vertex IDs
into one series of bits. He ensures that all tetrahedra are correctly oriented (i.e. the
ordering of the vertices is the same for all tetrahedra), which speeds up spatial
analysis and the incremental update of a model.

While Penninga (2008)’s data structure is compact—it takes only about 20 %
more space than Oracle Spatial’s polyhedra for a few tested real-world datasets—
the topological relationships between the tetrahedra are not explicitly stored
(neither adjacency between tetrahedra nor incidence from one tetrahedron to
primitives in other tetrahedra). That means that spatial analysis operations will
perform slowly on big datasets, and so will incremental updates to a model.
Penninga (2008) advocates using an auxiliary spatial index for each tetrahedron,
such as an R-tree (Guttman 1984), although that has not been implemented nor

1 Notice that this model is often called ‘‘TEN’’, which stands for either TEtrahedral Network,
TEtrahedral irregular Network, TEtrahedronised irregular Network or TEtrahedron Network,
depending on the authors. For the purpose of this paper, they are all equivalent and a TEN is a
tetrahedralisation, as defined in Sect. 2.

120 H. Ledoux and M. Meijers

tested. The main problems with an auxiliary index are: (1) storage space, the
bounding box of a tetrahedron (required by the R-tree) has only one point less than
the tetrahedron itself; (2) a R-tree is a rather complex structure and updating
incrementally a large tree can be slow. Triangulations in 2D often do not index at
the triangle level for the same reasons, see Finnegan and Smith (2010).

We discuss in this paper an alternative data structure for storing tetrahedrali-
sations in a DBMS. Instead of storing explicitly tetrahedra, we store only two
lower-dimensionality primitives (vertices and edges), and the stars of edges. It has
been used previously in 3D in main memory (Blandford et al. 2005), but to our
knowledge no attempts has been made to implement it in a DBMS. We define in
Sect. 2 the concept of star, which is related to that of a tetrahedralisation. One
important advantage of our star-based structure is that it permits us to avoid the use
of an auxiliary 3D spatial index, instead the topological relationships between the
tetrahedra are exploited (only a standard B-tree is needed to index the tetrahedra).
As explained in Sects. 3 and 4, the structure is very compact (around 20 %
compacter than that of Penninga (2008)’s) and can be implemented easily in a
DBMS. We have implemented it in PostgreSQL, and tested it with one real-world
3D city model. We are currently working on the development of the structure, and
in Sect. 5 we discuss some of the engineering choices we made so far, and our
future challenges.

2 Constrained Tetrahedralisation and Stars

2.1 Tetrahedralisation

Given a set S of points in 3D space, a tetrahedralisation decomposes the convex
hull of S into non-overlapping tetrahedra. It is possible to construct the Delaunay
tetrahedralisation (DT) of S, i.e. a tetrahedralisation where every tetrahedron has
an empty circumsphere; the DT has desirable properties that make them popular in
several domains.

2.2 Constrained Delaunay Tetrahedralisation

If the input set contains also edges and/or surfaces (boundaries that have to be
respected in the tetrahedralisation; think of a 3D city model, the walls of the
buildings have to be present in the resulting tetrahedralisation), then the problem is
more complex.

In 2D, a constrained Delaunay triangulation can be used, Fig. 1a shows an
example. However, as Shewchuk (2002) explains, in 3D there are two approaches.
The first one is the conforming DT, where additional vertices (known as Steiner

Representing Three-Dimensional Topography in a DBMS 121

vertices) are inserted to ensure that edges/surfaces are recovered (these extra
vertices do not modify the shape of the surfaces/polyhedra). The main problem for
a data structure is that several new vertices can be required (Cohen-Steiner et al.
2004), and that would require more space.

The second solution, the one we use in this paper, is the constrained Delaunay
tetrahedralisation (CDT) (Si 2008), as Fig. 1b shows. The tetrahedra created are
not fully Delaunay, but this is not a problem and the number of newly inserted
vertices is minimised in comparison to the previous two approaches. Another
advantage is that robust and efficient implementations of CDTs exist, as they are
extensively used in engineering.

2.3 Stars and Links

Let v be a vertex in a d-dimensional triangulation. Referring to Fig. 2, the star of v,
denoted star(v), consists of all the simplices that contain v; it forms a star-shaped
polytope. For example, in 2D, all the triangles and edges incident to v form star(v),
but notice that the edges and vertices disjoint from v—but still part of the triangles
incident to v—are not contained in star(v). Also, observe that the vertex v itself is
part of star(v), and that a simplex can be part of a star(v), but not some of its facets.

The set of simplices incident to the simplices forming star(v), but ‘left out’ by
star(v), form the link of v, denoted link(v), which is a (d " 1) triangulation. For
example, if v is a vertex in a tetrahedralisation, then link(v) is a two-dimensional
triangulation formed by the vertices, edges and triangular faces that are contained
by the tetrahedra of star(v), but are disjoint from v.

(a) (b)Fig. 1 a Two-dimensional
polygons representing
buildings footprints, and their
constrained Delaunay
triangulation. b Three-
dimensional representation of
the same buildings
[polyhedra in this case,
obtained by extruding the
footprints in (a)] and their
constrained Delaunay
tetrahedralisation (for clarity
only the tetrahedra inside the
polyhedra are shown here)

122 H. Ledoux and M. Meijers

The closely related concepts of star and link also apply to edges in 3D: in Fig. 3
star(ab) is formed by all the incident simplices (6 in this case), and link(ab) is a
1-dimensional triangulation (a polyline).

3 A Star-Based Data Structure

To our knowledge, Cline and Renka (1984) are the first to design a data structure
where stars of vertices are used to represent a triangulation, albeit in 2D. Their
structure is compact, but does not allow incremental updates (which is arguably
important for a GIS data model). Shewchuk (2005) uses a star-based data structure
to manipulate 3D triangulations, but his structure is very verbose since the star of
every vertex is stored as a 2D triangulation, itself stored with stars. Blandford et al.
(2005) fix both issues with their structure, which is valid for 2D and 3D trian-
gulations. Their representation indeed uses about a factor 3 less memory than
traditional representations in 3D and at the same time can be queried and
dynamically modified. To achieve this compression, they designed a pointer-less
structure where each vertex is assigned a label (an integer) and they compress
based on labels: if possible they store the integers using 4 bits (they use differences
between the labels to achieve that) and use different optimisations to keep the
memory footprint low.

While it would theoretically be possible to implement the compression in a
DBMS, we are interested in their basic idea of using labels for vertices and store
the stars of edges in 3D. In a nutshell, a star-based data structure for a tetrahed-
ralisation in a DBMS is as follows. For an edge ab of the tetrahedralisation, we
store its link as an ordered list of labels. The orientation is consistent with the
right-hand rule: if the thumb points from a to b, the vertices of link(ab) are ordered
in the direction of the curled fingers of the right hand. In Fig. 3, link(ab) is the
ordered list is ½c; d; e; f ; g; h; c$; notice that this is a circular list and that the starting
vertex could be any vertex. The link list is of variable length: its minimum is 2
(one tetrahedron) and its theoretical maximum is the number of vertices in the
tetrahedralisation minus 2. A tetrahedron is formed by ab and 2 consecutive
vertices in the list; a; b; c; d and a; b; h; c are two examples of tetrahedra implicitly

star () link ()
(a)

star) link()
(b)

(

Fig. 2 The star and the link of a vertex v in a 2D and b 3D

Representing Three-Dimensional Topography in a DBMS 123

represented in link(ab). Notice that the length of the list gives the number of
incident tetrahedra to ab. Also, lower-dimensionality simplices (triangles and
edges) are present in links: for instance, referring to Fig. 3, the triangle abc is
present in the links of its 3 edges. Since the link is an ordered list, the simplices
implicitly represented are also ordered.

The key idea behind the structure is that if we represent the link of each edge,
then we obtain a data structure where relationships such as incidence and adja-
cency between tetrahedra are present. It is the overlap between the (ordered) links
that permits us to represent explicitly that information. Observe that each tetra-
hedron is represented in the link of 6 edges, and that since these are ordered, we
can easily navigate from tetrahedron to tetrahedron. We show in Sect. 4.2 a few
examples of queries.

3.1 Representative Edges

Storing the link for each edge of a tetrahedralisation yields a powerful and
topological data structure, but also one that is not space efficient. Indeed, if the
CDT of a set S of n points contains t tetrahedra, then the number e of edges is
significantly higher: Blandford et al. (2005) estimate it at ð7=6Þt for a CDT where
the points are uniformly distributed in space.

To reduce the number of edges whose star is stored, we store only the repre-
sentative edges (RE), as Blandford et al. (2005) suggest. If the label given to each
vertex is an integer, a RE is one where its 2 vertex labels are either odd or even. If
we randomly label the vertices, that should reduce by a factor of about 2 the
number of edges to be stored and still permits us to represent at least once each
triangle and each tetrahedron (which is fundamental to ensure that all topological
relationships are present). Indeed, it ensures that each triangle has at least one RE:

a

b

c

h

g

f

e

d

Fig. 3 The link of the edge
ab in 3D is formed by the
bold dashed polyline
(c; d; e; f ; g; h; c)

124 H. Ledoux and M. Meijers

a triangle has either 3 REs (3 odd or 3 even labels) or one RE (1 odd/2 even; 2 odd/
1 even).

Figure 4 shows the same 6 tetrahedra as Fig. 3 where the REs are highlighted
(in bold). It can be seen that out of the 19 edges, 6 are representative, and that each
triangle contains at least one RE.

3.2 Storage Space

Evaluating the theoretical storage space is difficult since the number of tetrahedra
in a CDT depends on the locations of the points and the constraints. However, to
obtain an order of magnitude, we can state that we need on average 3 labels per
tetrahedron. Indeed, each tetrahedron has 4 triangles, which are shared by 2 tet-
rahedra (if we ignore those on the convex hull); thus 2 triangles per tetrahedron.
A triangle has 3 labels, but since it appears in 3 stars and that only half of the edges
are represented, we obtain 1 1

2. Thus: 2' 1 1
2 ¼ 3 labels per tetrahedron. Our

experiment with a real-world dataset corroborates that, see Sect. 4.3.

3.3 Attributes

Attaching attributes to the tetrahedra is possible, although one must be careful
since tetrahedra are present in multiple stars. We exploit the fact that each vertex
has a unique label (which can be ordered) and attach the attributes to the star of the
REs whose origin is the lowest; in case there are more than one, the one having the
lowest destination is chosen. Given a tetrahedron abcd, we can find out in constant
time which RE stores its attributes. The attributes can be stored either in the same

1

2

3

8

7

6

5

4

Fig. 4 A set of 8 vertices
yields a tetrahedralisation
with 8 tetrahedra. Out of the
total 19 edges the 6
representative edges (REs)
are stored and shown in bold:
h1; 3i, h1; 5i, h1; 7i, h2; 4i,
h2; 6i, h2; 8i

Representing Three-Dimensional Topography in a DBMS 125

link list (alternating vertex labels with attributes), or in another list (having the
same length as the list of the star).

3.4 Spatial Indexing: The Tetrahedralisation Itself

An advantage of a star-based structure—or of any structure in which adjacency and
incidence relationships are stored—is that a spatial index, such as an R-tree
(Guttman 1984), is not necessary to access efficiently the tetrahedra. Instead, the
tetrahedralisation itself can be used to determine which tetrahedron contains a
query point q: the adjacency relationships between the tetrahedra are used to
navigate in the tetrahedralisation. The latter can be implemented with the walking
algorithm as described in Mücke et al. (1999). It is a sub-optimal algorithm that is
favoured by practitioners since it does not require an auxiliary data structure and
yields fast practical performances (Mücke et al. 1999; Devillers et al. 2002).

The idea is as follows: starting from a given tetrahedron r, we move to one of
the neighbours of r (we choose one neighbour such that the query point q and r
are on each side of the triangular face shared by r and its neighbour) until there is
no such neighbour, then the tetrahedron containing q is r. In Fig. 5, only the grey
triangles are visited during the walk.

To minimise the number of triangles visited, the starting triangle should be
close to q. Mücke et al. (1999) investigated a ‘bucketing’ approach where a certain
number of triangles are randomly selected, and each walk starts from the closest
one (selected by a simple Euclidean distance test); it is called the jump-and-walk
method. The result of a query can be either a tetrahedron, or one representative
edge in that tetrahedron. Modifying this algorithm to start from a representative
edge is trivial.

4 Implementation in a DBMS and Experiments

This section describes a prototype implementation of the star-based data structure
in a specific, object-relational DBMS (PostgreSQL), but since the data structure is
based solely on lists of labels, implementing it in another DBMS should be

q

starting triangle

Fig. 5 Walking in a 2D
triangulation, starting from a
given starting triangle to the
query point q. In 3D the
principle is the same: the
walk is performed from
tetrahedron to tetrahedron

126 H. Ledoux and M. Meijers

straightforward. Several engineering decisions had to be taken when implementing
the structure in PostgreSQL, and we report here on the main ones.

4.1 PostgreSQL Tables

Figure 6 shows that the schema definition of the data structure is straightforward if
the DBMS supports an array type of variable length: two tables are created, one
table for vertices (points) and one for representative edges. A unique ID is
assigned to each vertex and is stored together with the ordinates of each point. For
the IDs of the points, the type bigint (64-bit integers) is used since 32-bit
integers would limit the size of the datasets that could be stored. We define the
column ‘gid’ as a primary key, which creates a binary-tree index on the column
(B-tree). This ensures efficient access and enforces uniqueness.

An edge is stored as a reference to its start and end vertices (the primary key of
the table is composed of the concatenation of both IDs), and its link is stored as an
array of type bigint (which refer to the gid in the vertex table). At a later stage
we will aim at compressing the array stored for the link (by using differences in
vertex labels), so that less storage space is needed; this then will have a direct
impact on how much data needs to be read from disk by the DBMS. Also, to be
able to represent triangles and tetrahedra two custom types are defined. Both types
are a sequence of vertex IDs, where triangles are represented by 3 vertex IDs and
tetrahedra by 4. Based on these custom types a view can be defined that ‘glues’ the
geometry of the vertices and edges together to triangles and tetrahedra (performed
by a DBMS join).

Fig. 6 Schema definition of the star-based data structure in PostgreSQL

Representing Three-Dimensional Topography in a DBMS 127

4.2 Examples of Topological Queries

We describe how a few typical queries could be performed with a star-based
structure. All the queries refer to the example in Fig. 7, and the resulting tables in
PostgreSQL (Table 1). Since triangles and tetrahedra can be present multiple times
in the structure, querying the structure has to be done with care. For example,
tetrahedron h5; 7; 1; 2i is present in the edge table in the links of all its represen-
tative edges: h1; 5i, h1; 7i and h5; 7i.

Is tetrahedron h5; 7; 1; 2i present? First, one RE has to be found: h1; 5i is one of
them. Observe that a RE is found in constant time only by finding locally 2 odd or
even IDs in the tetrahedron. Second, the IDs 2 and 7 have to appear consecutively
in the link of that edge (which is the case, therefore the tetrahedron is present).
What tetrahedra are adjacent to h5; 7; 1; 2i? First, find one RE as above (h1; 5i)
and find the position of vertices 2 and 7 in the link. The vertices before and after
the tuple give 2 adjacent tetrahedra: h1; 5; 6; 7i and h1; 5; 2; 4i. Second, find
another RE of h5; 7; 1; 2i and repeat the same operations in its link. Since we know
that each triangle is represented in at least one RE, this operation will always
return the 4 tetrahedra.
Total number of tetrahedra? Here we apply the same criteria as for storing attri-
butes in Sect. 3.3: the lowest concatenation of the IDs is the one representing the
tetrahedron. For instance, tetrahedron h1; 3; 4; 2i is conceptually stored in edge
h1; 3i and not h2; 4i. Thus, it suffices to scan the edge table and take a local
decision to extract tetrahedra.

We are currently investigating which custom functions are necessary for modelling
3D topographic datasets. Other examples than the ones already mentioned above
are insertion of a new point or a constraint, point location, attaching attributes to a

1
2

3

4

5

6

7

8

Fig. 7 Small example
dataset stored in PostgreSQL,
see Table 1 for the
information that is stored

128 H. Ledoux and M. Meijers

specific tetrahedron, etc. These functions will be programmed in PL/pgSQL (the
procedural language that PostgreSQL offers) or C.

4.3 Experiments With Real-World Data

To test the star-based data structure in PostgreSQL, we have made an experiment
with one real-world dataset. It is the 3D city model of our university campus
obtained by extrusion; the process used to construct it is described in Ledoux and
Meijers (2011). The original dataset covers an area of 2:3 km2 and has 370
buildings. We have created the CDT of the model with TetGen2 (Si 2008). Table 2
gives the details of the 3D extruded dataset, and the results of the construction of
the CDT.

Figure 8 shows a part of the extruded TU Delft campus, once tetrahedralised.
As can be seen, each polyhedron is decomposed into a set of tetrahedra. Notice
also that while the tetrahedra representing the ‘air’ are not shown, they are still
stored. In addition, we have constructed six extra planes forming the bounding box
of the dataset and added them to bound the area.

Table 1 Storing the
tetrahedra from the example
dataset of Fig. 7. In the link
column, ; means that the link
of the edge does not form a
cycle, i.e. the edge is on the
convex hull of the dataset

Vertex table

id x y z

1 5.0 2.5 6.0
2 5.0 11.5 6.0
3 5.0 6.0 12.0
4 9.0 6.0 8.0
5 9.0 6.0 4.0
6 5.0 6.0 0.0
7 1.0 6.0 4.0
8 1.0 6.0 8.0

Edge table
Start End Link[]

2 4 {;, 3, 1, 5}
5 7 {6, 1, 2}
1 7 {;, 8, 2, 5, 6}
1 5 {;, 6, 7, 2, 4}
2 6 {;, 5, 7}
2 8 {;, 7, 1, 3}
1 3 {;, 4, 2, 8}

2 www.tetgen.org

Representing Three-Dimensional Topography in a DBMS 129

http://www.tetgen.org

The CDT has added around 1,000 vertices to the original model (the Steiner
points), and the total number of tetrahedra is 47,707, for an input of only 370
polyhedra. However, it should be noticed that while the total number of edges in
the CDT is 56,291, less than half of these are REs and thus the edge table in the
DBMS is only about 25,000 rows. If the data structure of Penninga (2008) was
used—which is, to the best of our knowledge, the most compact structure for
storing tetrahedralisations in a DBMS—the tetrahedra table would have 47,707
rows, and each row would have exactly 4 IDs. The total number of IDs required for
this dataset would thus be 190,828, if we omit the vertex table.

With our structure, the vertex table is exactly the same as Penninga’s. The edge
table has 25,697 rows with 2 IDs (start and end vertices), plus a total of 101,694
IDs in all the links (this number was obtained by querying the DBMS; the average
length of a link is 4.93, the minimum is 3 and the maximum is 28). Thus, the total
is 153,078 IDs, which makes it around 20 % compacter for this real-world dataset.

For populating the DBMS, we have created a program that takes as input the
result of the tetrahedralisation (a list of vertices and tetrahedra) and outputs a list of
REs and their links. Currently, only bulk loading of data is supported in our
prototype.

5 Discussion and Future Work

We have shown that a star-based data structure implemented in a DBMS can be
both compact and topological at the same time, two criteria that are usually
contradictory. Our structure uses in theory only 3 IDs per tetrahedron, which is an
improvement of 33 % over the most compact structure implemented in a DBMS so
far (that of Penninga (2008)). We should add that these results ignore the fact that
with a non-topological structure an auxiliary spatial index must be used, which
increases greatly the storage space (3 extra vertices per tetrahedron are needed,
plus the size of the tree) and is complex to maintain when objects are deleted. With
a star-based structure, only a standard B-tree is needed, and furthermore less rows
need to be indexed (in our real-world dataset, we had around twice as many
tetrahedra as representative edges). Another strong point of the star-based structure
is that it can easily be implemented in any DBMS with two simple tables.

While a star-based structure seems more cumbersome to maintain when the
data are updated, the users need not be aware that this is the structure used. We
plan to add functionalities to the DBMS so that views can be created over the
edges and stars so that only features (e.g. buildings) are shown to the user, which is

Table 2 Details concerning the datasets used for the experiments
Input 3D model CDT Star

Vertices Constraints Vertices Edges Triangles Tetrahedra Representative edge
5,978 3,982 6,938 56,291 95,420 47,707 25,697

130 H. Ledoux and M. Meijers

what van Oosterom et al. (2002) advocate for storing GIS datasets in a DBMS. We
have plans to make the data structure fully dynamic (i.e. supporting insertions and
deletes of tetrahedra and of features, updating the already stored tetrahedra in the
database).

Object relational DBMS systems keep evolving and new powerful features have
been added to mainstream systems. One example is Common Table Expressions
(SQL-99) which paves the way to deal with more complex data structures like
trees and graph storage inside such systems natively. We intend to see how far
these features are useful during implementation of the query part of our data
structure and how much custom procedural functionality still needs to be build.

Apart from 3D topography, 3D models can also be useful for modelling space
and map scale in one integrated 3D data structure, e.g. van Oosterom and Meijers
(2011). Hence, one operation we want to investigate in more detail is to create a
cross section through the stored 3D model: selecting intersecting tetrahedra,
performing intersection and then create a topologically clean output of the inter-
sected elements to see whether this tetrahedra based model can be a useful
underlying technology for producing vario-scale data.

Acknowledgments This research is supported by the Dutch Technology Foundation STW,
which is part of the Netherlands Organisation for Scientific Research (NWO) and partly funded
by the Dutch Ministry of Economic Affairs, Agriculture and Innovation (project codes: 11300 and
11185).

References

Blandford DK, Blelloch GE, Cardoze DE, Kadow C (2005) Compact representations of
simplicial meshes in two and three dimensions. Int J Comput Geom Appl 15(1):3–24

Fig. 8 Part of the tetrahedralised 3D model of our campus, which was obtained by extrusion

Representing Three-Dimensional Topography in a DBMS 131

Carlson E (1987) Three-dimensional conceptual modeling of subsurfaces structures. In:
Proceedings 8th international symposium on computer-assisted cartography (Auto-Carto 8),
Falls Church, VA, pp 336–345.

Cline AK, Renka RJ (1984) A storage-efficient method for construction of a Thiessen
triangulation. Rocky Mountain J Math 14:119–139

Cohen-Steiner D, Colin de Verdire E, Yvinec M (2004) Conforming delaunay triangulations in
3D. Comput Geom Theor Appl 28:217–233

Devillers O, Pion S, Teillaud M (2002) Walking in a triangulation. Int J Found Comp Sci
13(2):181–199

Finnegan DC, Smith M (2010) Managing LiDAR topography using Oracle and open source
geospatial software. In: Proceedings GeoWeb 2010, Vancouver, Canada.

Frank A, Kuhn W (1986) Cell graphs: a provable correct method for the storage of geometry. In:
Proceedings 2nd international symposium on spatial data handling, Seattle, USA.

Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings 1984
ACM SIGMOD international conference on management of data, ACM Press, pp 47–57.

Ledoux H, Gold CM (2008) Modelling three-dimensional geoscientific fields with the Voronoi
diagram and its dual. Int J Geograph Inf Sci 22(5):547–574

Ledoux H, Meijers M (2011) Topologically consistent 3D city models obtained by extrusion. Int J
Geograph Inf Sci 25(4):557–574

Molenaar M (1990) A formal data structure for three dimensional vector maps. In: Proceedings
4th international symposium on spatial data handling, Zurich, Switzerland, pp 830–843.

Molenaar M (1998) An introduction to the theory of spatial object modelling for GIS. Taylor&
Francis, London

Mücke EP, Saias I, Zhu B (1999) Fast randomized point location without preprocessing in two-
and three-dimensional Delaunay triangulations. Comput Geom Theor Appl 12:63–83

OGC (2006) OpenGIS implementation specification for geographic information-simple feature
access. Open Geospatial Consortium inc., document 06–103r3.

OGC (2007) Geography markup language (GML) encoding standard. Open Geospatial
Consortium inc., document 07–036, version 3.2.1.

Penninga F (2005) 3D topographic data modelling: Why rigidity is preferable to pragmatism. In:
Cohn AG, Mark DM (eds) COSIT-Proceedings international conference on spatial
information theory, Lecture Notes in Computer Science, vol 3693. Springer, pp 409–425.

Penninga F (2008) 3D topography: a simplicial complex-based solution in a spatial DBMS. PhD
thesis, Delft University of Technology, Delft, The Netherlands.

Pilouk M (1996) Integrated modelling for 3D GIS. PhD thesis, ITC, The Netherlands.
Shewchuk JR (2002) Constrained Delaunay tetrahedralization and provably good boundary

recovery. In: Proceedings 11th international meshing roundtable, Ithaca, New York, pp 193–
204.

Shewchuk JR (2005) Star splaying: an algorithm for repairing Delaunay triangulations and
convex hulls. In: Proceedings 21st annual symposium on computational geometry, ACM
Press, Pisa, pp 237–246.

Si H (2008) Three dimensional boundary conforming Delaunay mesh generation. PhD thesis,
Berlin Institute of Technology, Berlin.

van Oosterom P, Stoter J, Quak W, Zlatanova S (2002) The balance between geometry and
topology. In: Richardson D, van Oosterom P (eds) Advances in Spatial Data Handling-10th
International Symposium on Spatial Data Handling, Springer, pp 209–224.

van Oosterom P, Meijers M (2011) Towards a true vario-scale structure supporting smooth-zoom.
In: Proceedings of 14th ICA/ISPRS workshop on generalisation and multiple representation,
Paris, pp 1–19.

Zlatanova S, Abdul Rahman A, Shi W (2004) Topological models and frameworks for 3D spatial
objects. Comp Geosci 30(4):419–428

132 H. Ledoux and M. Meijers

	7 Representing Three-Dimensional Topography in a DBMS with a Star-Based Data Structure
	Abstract
	1…Introduction
	2…Constrained Tetrahedralisation and Stars
	2.1 Tetrahedralisation
	2.2 Constrained Delaunay Tetrahedralisation
	2.3 Stars and Links

	3…A Star-Based Data Structure
	3.1 Representative Edges
	3.2 Storage Space
	3.3 Attributes
	3.4 Spatial Indexing: The Tetrahedralisation Itself

	4…Implementation in a DBMS and Experiments
	4.1 PostgreSQL Tables
	4.2 Examples of Topological Queries
	4.3 Experiments With Real-World Data

	5…Discussion and Future Work
	Acknowledgments
	References

