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While CityGML permits us to represent 3D city models, its use for applications where
spatial analysis and/or real-time modiĕcations are required is limited since at this moment
the possibility to store topological relationships between the elements is rather limited and
oen not exploited. We present in this paper a new topological data structure, the dual
half-edge (DHE), which permits us to represent the topology of 3D buildings (including
their interiors) and of the surrounding terrain. It is based on the idea of simultaneously
storing a graph in 3D space and its dual graph, and to link the two. We propose Euler-
type operators for incrementally constructing 3Dmodels (for adding individual edges, faces
and volumes to the model while updating the dual structure simultaneously), and we also
propose navigation operators to move from a given point to all the connected planes or
polyhedra for example. eDHE also permits us to store attributes to any element. We have
implemented the DHE and have tested it with different CityGML models. Our technique
allows us to handle important query-types, for example ĕnding the nearest exterior exit to a
given room, as in disaster management planning. As the structure is locally modiĕable the
model may be adapted whenever a particular pathway is no longer available. e proposed
DHE structure adds signiĕcant analytic value to the increasingly popular CityGMLmodel.

1 Introduction

With the newly adopted Open Geospatial Consortium (OGC) standard CityGML it is possible to rep-
resent the different aspects of three-dimensional (3D) city models (OGC, 2008; Kolbe, 2008). is rep-
resentation can be multi-scale since ĕve levels of details (LODs) for the same city can be stored: from
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Figure 1: eDHEmodels 3D subdivisions by representing the boundary of each polyhedron separately
with a graph (black lines), and two adjacent polyhedra are linked together by the dual graph
(dashed lines). Both graphs are inter-connected.

LOD0 where for example the terrain and the transportation network are stored, to LOD4 where build-
ings have detailed roofs structures, windows, rooms and even pieces of furniture. Also, extensions to
the base model are possible for speciĕc applications: there exist extensions for the modelling of noise, of
Ęoods (Schulte and Coors, 2008) and of sub-surface infrastructures. However, as explained Section 2,
while CityGML provides great Ęexibility for the storage and the representation of 3D buildings, the
spatial data model used currently —the Geography Markup Language GML (OGC, 2007)—has limited
capabilities for storing explicitly topology, and offers no tools/algorithms to build the topological data
model. In most cases, only the geometry of the 3D models are stored. While the connectivity informa-
tion between the elements of the model can always be extracted on-the-Ęy, for many applications it is
highly desirable to have them explicitly stored in a topological data structure (Ellul and Haklay, 2006;
Ellul, 2007; van Oosterom et al., 2002; Zlatanova et al., 2004). Examples of such applications are when
spatial analysis functions and/or dynamism is involved: updating the model in real-time, routing for
emergency situations, etc.
In this paper we propose a new topological data structure and a set of construction and manipulation

operators that permit us to construct, represent and analyse the buildings (and their interiors) of 3D city
models. Our structure, called the dual half-edge (DHE), allows us to store explicitly: (i) the geometry
of the elements of the model (the different buildings, the rooms, the terrain, etc.); (ii) the topological
relationships between the elements of different dimensionality (so we can navigate from a given point to
all the connected faces, from polyhedron to polyhedron, etc.); and (iii) the attributes for any elements
of the model (points, line segments, faces and polyhedra). We achieve this by storing simultaneously
both the primal and the dual subdivisions of a 3D city model (we assume here that the model divides
the 3D space into different polyhedra and that we have one “universe” polyhedron). Duality, which is
described in Section 3, is a concept that implies that two subdivisions are inter-connected: they represent
the same thing but from a different point-of-view. Fig. 1 shows the general idea behind the DHE, which
is that every polyhedron is represented independently with an edge-based structure (a b-repmodel), and
adjacent polyhedra are linked together by their dual edge. We thus use the primal subdivision for the
geometry of the model, and the dual for the connectivity.
e DHE builds upon our previous work on a structure called the augmented quad-edge (AQE) (Gold

et al., 2005; Ledoux and Gold, 2007). It permitted us to simultaneously store the Delaunay tetrahedral-
ization and its dual the 3D Voronoi diagram, but the storage of arbitrary polyhedra and the incremental
construction of models was not possible. As explained in Section 3, the DHE circumvents these prob-
lems by deĕning atomic elements and atomic construction operators (based on Euler operators) that can
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maintain a partially valid model (i.e. dangling edges and dangling faces are allowed). In Section 2 we
compare the DHE with other 3D topological structures used in GIS and CAD. It should also be noticed
that this paper builds on early work related to primal/dual data structures (Boguslawski and Gold, 2010)
and contains several signiĕcant improvements including the automatic construction of CityGML mod-
els, the handling of holes and cavities, and the automatic construction of the dual graph for navigation.
e fact that both the primal and the dual subdivisions of a 3D model are explicitly stored and inter-

connected has many advantages in practice: see for instance Gold (1991) for a discussion in 2D and
Ledoux and Gold (2007) in 3D. We demonstrate in Section 4 how the DHE and its construction and
navigation operators are beneĕcial for themodelling and the analysis of 3D buildings, stored for instance
in CityGML. An important beneĕt is that the dual is always constructed and preserved automatically,
which permits us not only to navigate between rooms but also to perform more complex operations,
like routing in buildings, without having to reconstruct the dual graph each time the model is modiĕed,
and to identify all the parts of a building that are accessible from a given starting location (for security
purposes). Perhapsmore importantly, the DHE is locallymodiĕable (i.e. without a global reconstruction
of the structure) so that real-timemodelling of buildings is possible; one can think of applications related
to disaster management when a certain part of a building is inaccessible and the model must be updated
and, consequently, the navigation network. Finally, we believe our new data structure to be Ęexible
and capable of handling common real-world situations such holes in faces/polyhedra and non-manifold
situations (e.g. when 2 polyhedra are only adjacent by one line segment or a vertex).

2 Related work

e related data structures to store 3D models are many since they have been developed in different
disciplines for different purposes (e.g. CAD, solid modelling, GIS, and meshing). We describe in this
section only the most relevant in the context of modelling several 3D buildings and their interior.

2.1 GIS data models

In the context of GIS and of city modelling, 3D objects (e.g. houses, bridges, towers) are oen repre-
sented with “b-rep” models (boundary representation) using primitive elements such as nodes, edges
and faces. Many applications represent individual 3D objects, and topological relationships are not ex-
plicitly stored. e rationale behind that choice is that these can always be extracted on-the-Ęy. How-
ever, in practice, doing so in 3D is still a problem, especially if the dataset is not consistent (Gröger and
Plümer, 2010). Perhaps the best known topological data model is the 3D formal data structure (FDS) of
Molenaar (1992), which deĕnes four primitives (nodes, edges, faces and solid) linked together by certain
topological relationships; geometric constraints are also deĕned to ensure that for instance polyhedra
do not overlap. Several have simpliĕed this space-consuming model: see for instance Zlatanova (2000)
and Coors (2003). e ISO-19107 abstract speciĕcations ISO (TC211) also uses the four primitives to
represent the topology of 3D objects: a solid is formed by an unordered set of faces, and faces have links
to the 2 solids they bound. Other topological relationships, more complex to calculate—co-boundaries
for instance—are optional. By comparison, the DHE uses only 2 primitives (nodes and edges) and it
explicitly stores more relationships. While GML3 implements the ISO-19107 speciĕcations, at this mo-
ment CityGML does not support the topological primitives, only faces shared by 2 solids can be re-used
with xlink (Kolbe, 2008).
One should be careful in comparing these datamodels to the data structurewe present in this paper. As

explained in Frank (1992), a data model is more abstract than a data structure, and the implementation
of a data model is made with a data structure. Another major difference is that these models do not in
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Figure 2: Examples of non-manifold models (Lee, 1999).

general offer algorithms ormethods to compute the topological relationships: it is assumed that they can
be performed. eGIS datamodels alreadymentioned can be realised with the DHE because it provides
construction and navigation operators, as Sections 3 and 4 show.

2.2 Indoor space navigation

To perform indoor navigation and routing, Lee (2007) and Lee and Kwan (2005) also use the Poincaré
duality. ey deĕne a 3D topological data model to represent buildings, and based on it they extract the
dual graph (which is used for routing). However, unlike the DHE, the primal and dual graphs are not
“linked”, which means that each modiĕcation to the primal implies a reconstruction of the dual graph.
Also, their data model for the primal subdivision has severe restrictions: faces must be either horizontal
or vertical (they extract the dual graph based on a project of the rooms to a 2D plane). eDHE does not
have such restrictions (although the examples shown in Section 4 contain only vertical and horizontal
planes), and the graphs are inter-connected (if one is modiĕed, the dual is automatically updated by the
same operator). Observe also that Becker et al. (2009) have recently extended the model of Lee (2007)
and Lee and Kwan (2005), but their dual graph is also not connected to the primal.

2.3 CAD

Several structures to represent 2-manifolds have been proposed. Unlike GIS where faces are oen ex-
plicitly stored these consider the b-rep as a graph (nodes and edges) embedded in 3D space (faces are
implicit). Early CAD data structures were based on the winged-edge (Baumgart, 1975), and different
variations such as the the DCEL (Muller and Preparata, 1978) and the half-edge (Mäntylä, 1988) have
been used. e latter also detailed the requirements for a set of topological operators (called Euler op-
erators) that could modify the boundary of a single 2-manifold (also called a shell) without breaking its
topology. ese are used extensively in CAD to construct and modify models. A shell (or 2-manifold)
is a 2D boundary of a 3D object—this must remain unbroken during modiĕcation by Euler Operators.
If the boundary is ‘awkward’, e.g. with protruding edges or faces, then this is a non-manifold model (see
Fig. 2).
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2.4 Dual representation

equad-edge data structure (QE) ofGuibas and Stolĕ (1985)was also developed to represent 2-manifolds,
but it goes further than the CAD structures mentioned since it simultaneously stores both the primal
and dual subdivisions. Each quad-edge represents one geometrical edge of a subdivision and its dual
edge. Tse and Gold (2004) showed that sets of Euler operators could be formed in a particularly easy
fashion by using the quad-edge. e quad-edge data structure for a connected graph on a 2-manifold
was of particular interest because it combined the primal and dual graphs, and showed that this made
navigation within the graph particularly easy, whether or not the dual was of speciĕc interest in the
application. Applying this to Euler operators indicated the potential value of an explicit dual.

2.5 Data Structures for non-manifold models

e data structures so far are appropriate for 2-manifolds but are insufficient for complex models—such
as building interiors—where more than two faces may meet at an edge. e radial-edge data structure
of Weiler (1988) was introduced to handle non-manifold models, where the junction of more than two
faces at an edge, for example, precluded the use of manifold models. is complex but well-used struc-
ture is applied in many non-manifold CAD systems. Lienhardt (1994) deĕned the G-Map (Generalized
Map) for cellular models—which are generalizations of b-reps since each k-cell is recursively decom-
posed into cells of lower dimensionality, and the topological relationships between adjacent k-cells are
kept. For example, in two dimensions an atomic cell tuple might be a vertex “seen from” an edge “seen
from” a face. All combinations of tuples are stored, which results in a space-consuming data structure.
Although G-Maps store only one subdivision, it offers efficient functions to extract all the elements of
the dual subdivision. e coupling-entity data structure is perhaps closest to our approach (Yamaguchi
and Kimura, 1995). ere is no skeletal data structure (with multiple edges meeting at an edge), as is
the case in the Radial-Edge. e atomic element is the ‘feather’: a combination of face, edge and vertex.
Each of these requires two types of pointers: a mate pointer to its partner (a fan, blade or wedge, around
a particular face-use or paired face-use) and a cyclic pointer (around a loop cycle, a radial cycle or a
disk cycle). (A face-use is a copy of a face to be used by the polyhedron on one side of that face.) ey
point out that due to dependencies these six pointers may be reduced to three: they choose to use mate
pointers exclusively. However it appears to us that it does not handle the case of two cells joined only at
a vertex. Like the DHE there are pointers to adjacent shells, but there is no representation of the dual.
To our knowledge, one of the few structure permitting the simultaneous representation of both the

primal and dual subdivisions of a cell complex is the facet-edge structure of Dobkin and Laszlo (1989). It
is based on face-edge pairs: part of an edge together with part of its associated face. For every face-edge
pair there are four facet-edges, corresponding to the four ways of describing ‘clockwise’ directions within
the face and around the edge. e facet-edge structure comes with a set of operations tomodify cells and
to navigate within both subdivisions. Its generality makes manipulation of a single cell too complex, and
hence the authors suggest storing extra information for each edge and using the quad-edge operators.
Also, to our knowledge, it has never been fully implemented.
e augmented quad-edge (AQE), on which the work in this paper is based, uses the quad-edge to

individually represent each polyhedron (Ledoux and Gold, 2007). With this structure, it is possible to
navigate within a single cell with the quad-edge operators, but it was initially impossible to navigate to
adjacent cells. at problem was solved by using the dual edge to link two adjacent polyhedra. us the
ability to navigate the primal and dual graphs of a single edge using the quad-edge approach is preserved,
and the 3D dual edge forms part of a complete dual cell complex with exactly the same structure. As
mentioned in the Introduction, Ledoux and Gold (2007) showed that this structure provides navigation
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for 3D Voronoi/Delaunay structures, however the construction operators were complex and arbitrary
3D models and non-manifold cases were not supported.

3 The dual half-edge (DHE)

e constraints of this paper prevent the presentation of all the details of the implementation of this
structure: the authors are preparing a companion paper for publication within the Computer Aided
Design literature. Here we can only give a summary.
In our research we focus on cell complex construction andmanipulation methods. Poincaré duality is

an important issue there—we use the dual graph to take all the primal cells (which are individual b-reps)
and connect them into one complex. Our models can be considered as complexes of 2-manifold cells
topologically connected by a dual structure (non-manifold models can be ‘simulated’ with our models).
e only entities used in a construction process are edges and vertices. Poincaré duality states that for a
space of dimension d and an element of dimension k <= d a dual element exists of dimension d−k. us
in 3D a vertex has a dual cell (volume), a face has a dual penetrating edge, etc. (see Fig. 3). erefore
a cell can be represented as a single dual vertex—there is no need to create a special class of objects to
represent a cell: properties of a cell (i.e. id, volume) can be assigned to its dual vertex. Adjacent cells
of a complex are connected by a shared face, which is represented by a dual edge. is edge links two
dual vertices representing the adjacent cells. In our model each face is represented by a bundle of dual
edges—each dual edge is permanently linked with an associated edge from a primal face. Because edges
in a bundle are bounded by the same vertices, and they form a loop, so navigation around the bundle is
possible. (We consider the bundle as an edge in terms of the Poincaré duality.) Properties of a connection
between two adjacent cells (i.e. distance, wall ĕnishing) can be assigned to one of the edges in the bundle
and considered as properties of this bundle, or references to these properties can be assigned to all edges
in the bundle.

3.1 Details of the data structure / Atomic elements

e DHE was inspired by the half-edge of Mäntylä (1988) and the AQE of Ledoux and Gold (2007). It
uses the half-edges to represent each polyhedron, but like the AQE adds the dual to each element. us
we have pairs of half-edges (see Fig. 4), one in primal space (he) and one in dual space (he.D), which are
permanently linked together. Each half-edge has pointers: to a vertex (he.V); to the paired half-edge that
forms the opposite side of the edge (he.S); to the next half edge around the associated vertex (he.NV); and
to the next half edge around its own face (he.NF)—so the primal part contains a loop pointer around the
face of a single cell and the dual part contains a pointer around the face in dual space—which is equivalent
to a radial loop around an edge in the primal space. is simpliĕes the overall structure considerably.
It is interesting to note that the original half-edge structure consists of twinned pairs of half-edges in

2D, and the same would be true for a model of the dual. e quad-edge combines these two into an ele-
ment containing four half-edges, with improved navigation features. eDHE splits these four elements
in a different way: one primal and one dual in each element. is preserves the 2-manifold navigation
properties of the QE and the easy navigation between cells of the AQE—while allowing Ęexible ‘twin-
ning’ of half-edges in the construction process. us each half edge may be linked to a single other half
edge, forming part of a simple shell, as with b-rep models. To access adjacent shells one goes to the dual
of one of these edges and moves around the dual face until the adjacent primal shell is found. ere are
no shells without an adjacent shell: the boundaries of the model are enclosed by an exterior shell; see
Section 3.2 below.
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a)

c)

b)

d)

Figure 3: 3D Poincaré duality: a) A primal vertex and a dual cell; b) A primal edge and a dual face; c) A
primal face and a dual edge; d) A primal cell and a dual vertex. (Ledoux and Gold, 2007)

he.V

he.D.V

he

he.NF

he.NV

he.Dhe.D.NV

he.S

he.S.V

Figure 4: DHE pointer based data structure; primal graph (solid lines) is connected permanently with
the dual graph (dashed lines); he - original half-edge; S,NV,NF,D,V - pointers.
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Acomplete primal (‘geometric’ or ‘building’)model involves vertices, edges, faces and volumes. Primal
vertices and edges are equivalent to volumes and faces in the dual model. Primal faces and volumes are
equivalent to edges and vertices in the dual model. us all elements may be represented by a graph
structure consisting of vertices and edges—half in primal space and half in dual space. Observe that
each element has a dual role: attributes may be assigned to its primal and/or dual meaning.
In terms of storage, whether in a graph structure or a data base, there are only two atomic element

types: vertices and edges. Both may have attribute information associated with their primal or dual
roles, but only edges have topological pointer information: to the second half of the edge, to the dual
edge, to the next edge around a vertex, to the next edge around a face, and to its associated vertex.

3.2 External cell

While thismodel is complete in the interior of amodel, there could be problems at the exterior boundary.
Each room has a simple quad-edge type shell. e dual edge for each face connects the interior ‘room’
node with that of an adjacent room. If there is no adjacent room the dual graph structure—itself a
collection of simple shells—will be incomplete, and some navigation operations could fail by “falling off
the edge of the world”. To prevent this, and to make all the required Euler operators viable, a simple rule
of the DHE is that there is always a single exterior shell—the ‘exterior’ or the ‘rest of the world’. us an
exterior face of a roomwill have a dual edge connecting the ‘room’ vertex with a single universal ‘exterior’
vertex: all exterior faceswill have dual edges connecting to this vertex. is property is particularly useful
when joining initially-separate buildings (cell complexes).
Without the external cell it is not possible to create dangling edges, and thus the incremental construc-

tion of models, as explained in the next section, would not be possible. Connection of two half-edges in
primal space (geometry) does not cause a problem, but in the dual ‘not-paired’ halves prohibit navigation
within the model. However since the external cell is kept along with the internal cells, every half-edge
has its counterpart in the adjacent cell: in the external or internal cell.

3.3 Construction of models with Euler operators

e construction of a 3D model has several stages. First the cells of a complex are created, and then all
adjacent cells are connected. However, not all cells are the same: arbitrary polyhedra can have different
shapes, a different number of faces, etc. us the process of cell construction should be ‘atomized’ to
make incremental construction (edge by edge) possible. is is possible with Euler operators, which are
widely used in CAD for modifying b-rep objects (Mäntylä, 1988). ey are ‘atomic’ operators that make
only a minimal change in a model while preserving topological integrity (but do not provide rules to
check or ĕx the topological consistency). Examples are: Make Edge and Vertex (MEV)—create a new
edge andnewvertex, and connectwith themodel at a given location; and Make Edge Face (MEF)—create
a new edge between two vertices (that splits a face into two parts). Each operator is accompanied by a
paired reverse operator (e.g. Make Edge and Vertex—Kill Edge and Vertex).
Construction of a single cell (without the dual) is a simple process using traditional Euler opera-

tors. For non-manifold models we need to be able to construct more complex structures: to create
non-manifold cell complexes the standard Euler operators should be extended to manage connections
between cells and to include operations like joining two cells by a shared face, edge or vertex. e idea of
extended Euler operators was presented by Masuda (1993). For example (see Fig. 5), the split_volume
operator splits a volume into two by adding a face that ‘cuts’ the volume in two. is face is shared by
the volumes, thus the resulting model is non-manifold. e reverse operator merge_volume removes the
face to merge the two adjacent volumes.
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split_volume

merge_volume

V V2V1

Figure 5: split(merge)_volume - an example of the extended Euler operator introduced by Masuda
(1993): split_volume splits volume V in two volumes V1 and V2; merge_volume is a reverse
operator.

a) b) c)

d) e) f )

Figure 6: Liing a face and a wired edge. (Masuda, 1993)

Masuda (1993) also presented an example of a li operation based on a sequence of Euler operators.
e li operation is used to extrude 3D objects from their 2D footprints. e process is shown in Fig. 6.
A face and a wire edge are an input 2D model (see Fig. 6a). Wire edges are generated from existing
vertices (see Fig. 6b); and other wire edges are generated between newly created vertices (see Fig. 6c). In
the next steps, ĕve side faces are generated (see Fig. 6d); and one closing face on a top of an empty box
(see Fig. 6e). In the last step a volume is deĕned (see Fig. 6f). e result is a non-manifold model—a
solid (a box) with a laminar face attached.
Our set of construction operators is based on Euler operators and the extended version. is covers

a “spanning set” (Braid et al., 1980) and is a part of a bigger set of all possible Euler operators. We have
added the dual graph to these operators, so that our construction andmanipulation operators also update
the dual. All changes are made locally, thus there is no need for re-computation of the dual graph (graph
of connections) in the whole model.
Using standard Euler operators we can easily build polyhedra of any shape. Fig. 7 shows the sequence

used to create a cube from individual edge elements (this is one of many possible sequences). For clarity
the dual is not shown, but it is present at each step, as with the external cell. e dual connects the
internal and external cells together into one cell complex. Faces are deĕned automatically upon closure
of the edges, and volumes are determined whenever a closed set of faces is completed.
It should also be added that holes and cavities (an example is shown in Fig. 8) are allowed: we use a

so-called ‘bridge edge’ to connect internal rings (holes) to the outside ring (the face); and a bridge face
to connect an internal cell (a cavity) with the outside cell. ese permit us to represent many real-world
situations.
With the extended set of Euler operatorswe can build a cell complex: we can join/separate ormerge/split

cells of the complex. Fig. 9 presents this idea. We perform a sequence of simple, atomic operations, the
same as with standard Euler operators. Lee (1999) shows a similar example using standard Euler Oper-
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Figure 7: One of many possible ways to construct a cube using Euler operators.

eb

fb

lINT

lOUT

cINT

cOUT

a)

b)

Figure 8: a) Hole in a face - bridge edge eb connects internal loop lINT with the outside loop lOUT; and b)
cavity in a cell - bridge face fb connects internal cell cINT with the outside cell cOUT
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a)

b)

Join

Separate

Merge

Split

Figure 9: Operators for a cell complex construction: a) Join/Separate; b) Merge/Split.

ators (with no dual) for joining or splitting cells.

3.4 Navigation operators

Navigation in a model is possible with a set of navigation operators that use topological connections
(pointers) set during the construction process.
A half-edge is a topological element, thus information about neighbouring edges, vertices, associated

cells, and the immediate adjacent cell is easily accessible. With these DHE pointers it is possible to navi-
gate: to the paired half-edge (opposite side of the edge); to the next counter-clockwise (looking at the cell
from outside) half-edge around a vertex; to the next counter-clockwise (looking at the cell from outside)
half-edge around a face; and to the associated dual half-edge (see Fig. 4). ese basic operators are used
to deĕne the set of compound operators for navigation between cells, for example to go to the adjacent
cell: ĕrst go to the dual half-edge, take the opposite side of the edge, and then go back to the primal.
Using the full set of operators it is possible to develop more complex functions for a cell complex: for
example ĕnding all neighbours of a cell involves ĕnding all the half-edges around a dual vertex repre-
senting the primal cell. e opposite ends of these dual edges point at vertices representing neighbouring
cells.
Navigation between cells that are not directly connected is also possible, since a dual node represents

a primal cell, and connections between cells are in the dual. us any graph traversal algorithm can be
used on the dual graph to ĕnd a path between these two nodes (e.g. the shortest path between source and
destination nodes is the result for the Dijkstra algorithm (Dijkstra, 1959)). In order to navigate between
these two nodes we start from a half-edge associated with the source node. en we can navigate to a
half-edge associated with the destination node using simple pointer operators on the edges (nodes do
not store topological connections). Consequently the path can be recorded as a sequence of topological
connections starting from the source half-edge. In the more general case, the source and destination can
be in either the primal or dual graph—these two graphs are connected by pointers, and the navigation
is the same in both of them.

3.5 Attributes / semantic information

eDHEdata structure and its construction and navigationmethods are application independent; mod-
els can be used in many ĕelds (e.g. engineering, mathematical modelling, etc.). However without se-
mantic information they are of little value. We allow attributes to be assigned to each entity in a model.
Although the DHE only has node and edge entities, we exploit the dual to store attribute information to
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faces and volumes: the volume of a cell may be assigned to a dual node representing the cell; the wall
colour to a dual edge representing a face. Attributes have meaning only for applications, and do not
affect the geometry or topology of the model. For example in escape route planning the dual directed
edge, describing communications between adjacent volumes (rooms) may have a cost/time value asso-
ciated with its dual meaning. However, in a virtual museum this directed edge, in its primal mode, may
be used to indicate the image or texture to be applied to one side of the wall in the building model.

4 Applications

Wedemonstrate in this section how our new data structure can be useful for themodelling, management
and analysis of 3D buildings.

4.1 Doors

A building in general consists of several connected rooms that have volumes (corridors, office, storage
spaces, etc. are considered as rooms too), so they are represented by primal cells. e geometry of a
room can be easily modelled with the edges and nodes of a cell; relations between adjacent rooms can be
represented with dual edges connecting cells. Relations can be described in terms of access level from
one room to the adjacent one: access to the next room is easy by a door; the next room is not accessible
because of a wall, but if the wall is thin a hole can be made. It may not be possible to get directly to
the next room, if the wall is made of concrete. is is an example of a basic set of attributes that can
be assigned to connections between rooms and then used as weights in graph traversal algorithms (e.g.
Dijkstra).
Rooms are not the only objects in a building that are important. Walls, doors, windows, installations

etc. are essential in many applications and can also be included in a model. ey can also be represented
as cells with geometry and volume, and attributes can be assigned to them. Further analysis can answer
questions about a building structure: are there any pipes or wires in the wall between rooms A and B; is
the door one- or two-leafed, etc.
Two approaches can be distinguished:

Type 1: Rooms are not the only objects in a model: walls, doors, windows, installations and other
objects are represented with ‘thick’ cells too – non-zero volumes can be calculated from the geometry of
the objects.

Type 2: Only rooms have a non-zero volume; other objects can be present in a model, but they are
‘Ęat’ (Fig. 10). Adjacent rooms are connected directly—there is no wall in between: they can also be
connected by doors that are represented as double-sided Ęat faces. e volume of a Ęat object is zero,
but there is still a dual node for this object.

4.2 Building model construction

To demonstrate the correctness of our methods we developed a prototype. We used the Delphi pro-
gramming language to write it and an in-house graphics engine based on OpenGL for visualization. We
reconstructed two building models with two different model types: Type 1 and Type 2.
ree-dimensional building interior data sets are not easily available, but with the recent adoption

of CityGML as a OGC standard, we should be able to obtain more and more buildings in that format
(which uses GML for the three-dimensional geometry representation). As previously explained, the
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V1

VD

V2

Figure 10: Two adjacent rooms V1 and V2 with the ‘Ęat’ door VD in between. Only connection through
the door is taken into account in an emergency management systems, however a direct con-
nection through a shared wall between V1 and V2 exists in the model (not presented in the
picture).

Figure 11: Boundary intersection module: a) two adjacent cells; b) new edges added to a bigger face
create a new adjacent face; c) two cells connected.

GML mechanism to represent topology has weaknesses and is seldom used: we use the DHE instead.
We can detect if cells are adjacent based on their geometry, and we can easily connect cells by adjacent
faces, but the real world is not so simple. Some cells need to be edited before they can be connected.
Not every wall in a building is shared by exactly two rooms (e.g. one long corridor may have many
adjacent rooms). Adjacent rooms can have walls of different shape or size. To solve this problem we had
to develop a boundary intersection module. During the construction process we check the locations of
two adjacent cells, add new edges if necessary, and then connect them (Fig. 11). We do not test if cells
overlap; data sets have to be validated ĕrst using different methods.
e ĕrst model we reconstructed is a simple house (Fig. 12). is is an example of Type 1—with

walls, ceilings and windows represented as thick cells. An original data set stored in CityGML format
is available from the official CityGML webpageƬ. Good quality data in this set is valid and no extra
cleaning is necessary. e CityGML LOD4 is included in the ĕle; that means that data describing the
interior with rooms, walls and even furniture is present. Besides the geometry there is also semantic
information included: there are sections in the ĕle representing single objects with their function (e.g.

Ƭwww.citygml.org
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Figure 12: Model of a house reconstructed from the CityGML format (source: www.citygml.org) us-
ing the DHE data structure. Topological connections between cells are derived automatically
from the geometry of the model. Walls, doors, windows are represented as thick cells (with
non-zero volume). Holes and cavities are not reconstructed.

this cell represents a room; this set of faces represents a wall, window, door, stairs, etc.). Since holes and
cavities are allowed in our models, we are able to import CityGMLmodels and reconstruct the topology
automatically. However this functionality is not implemented yet: in the current version of our CityGML
format import application, holes and cavities are not detected automatically. e results are shown in
Fig. 12 (it is possible to add bridge edges and bridge faces manually aer a model is imported).
e second model—two buildings from the University of Glamorgan campus (Fig. 13a) connected

by an overground passage (Fig. 13b)—is an example of Type 2 (no walls between rooms; doors are Ęat).
is is reconstructed from scanned paper plans. ese plans were used as a raster background and all
rooms were outlined and extruded in AutoCAD—the result was a set of 1300 cells that are not topolog-
ically connected. All the connections between adjacent rooms were set during the construction process
using the DHE approach described in this paper. We want to use this model in emergency systems for
ĕnding escape routes from a building, thus only adjacency by a face is taken into account (only naviga-
tion through faces is possible); however cells can be connected by a shared edge or vertex. Because all
adjacent cells are connected and we want to avoid navigation through solid walls, weights are assigned
to connections between rooms; they describe how difficult is to move to the next room: an inĕnite value
means no access, any other (positive) value is calculated from a geometric distance between the dual
nodes representing adjacent cells. It is not easy in the plans to check a door’s existence between rooms,
and to input this informationmanually into themodel. Doors were thereforemodelled as well—but with
zero thickness to put them in between two adjacent cells. Since doors are in the model we can calculate
and assign weights only if two rooms are connected by a door.
ere is another element similar to a door: an “open space”—this Ęat cell is used to connect two
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parts of the same room; and has the same meaning in the weight calculation as the door element. It is
useful when big rooms (e.g. long corridors, shopping malls) need to be modelled. It is easier to split
them into smaller pieces than to analyse one room of a complex shape. It may be necessary to assign
attributes (that were assigned to the original room) to two or more cells representing the same room
aer the split. Because only a reference to an attribute is associated with a cell, it is not necessary to store
attributes redundantly—only references need to be multiplied; an attribute itself if stored only once.
e complex feature handling method described by Gröger and Plümer (2010) may be also used. A
hierarchical structure—a tree—is used for maintain aggregated solids. Atomic solids (whole rooms or
parts of a room) are stored in tree leaves, while the root node represents the complex object (e.g. a
building). Attributes could be assigned to the nodes of the tree or directly to the solids represented by
leaves. us attributes could be assigned to any feature at any level of aggregation, while the feature is
not represented explicitly in a model—for example, to a building, Ęoor, corridor, room, etc.
In the current examples, building models represented by internal cells are enclosed by one external

cell. erefore all outside cells (at a boundary of a model) are connected to the exterior. However it
may be required to represent external space above the ground (air) and below the ground (earth) as
separate solids (Gröger and Plümer, 2010). A tessellation of the air and ground surrouning a modelled
object was also presented in a full 3D data model by Penninga (2008). In our model, they would be
represented as two separate cellswith their dual volume vertices. is allows assigning different attributes
not only to these volumes but also to connections between: underground rooms and the earth cell, and
to overground rooms and the air cell.

4.3 Escape routes: shortest path analysis

e shape of the campus building is complex and for that reason the shortest paths between two cells are
not always entirely inside. Sometimes it is faster to ĕnd a shortcut outside the building, and emergency
assembly points are usually located outside buildings. us the surrounding terrain is included in the
model and should improve the efficiency of rescue simulations. Terrain in our model is represented
with cells (in the same manner as the building): they have a small thickness and they are connected to
the building in the same way as building cells are connected together. us the same graph traversal
algorithms can be used for the terrain and building part. An example is shown in Fig. 14—a projection
of a ground Ęoor with symbolic doors in a simple model of a building is presented. Using the same
algorithm a shorter path between two rooms can be found when the exterior terrain is present in a
model.
We use the Dijkstra algorithm on the dual graph to ĕnd the shortest path between two speciĕc rooms

(unlike Lee (2007) our dual graph is automatically constructed). We use the same algorithm to ĕnd a
route from a room to the nearest exit from a building—there is one source room and multiple exits. An
exit can be any cell in a complex, but usually this is a cell representing a door connecting the building
with the exterior. e locations of exits are not known at the beginning, thus they cannot be used as
input parameter (which prevents us from using A⋆ instead of Dijkstra).
e weights used in the Dijkstra algorithm are assigned to the dual edges connecting adjacent rooms.

ey are calculated based on the geometrical distances between the two nodes representing adjacent
rooms only if there is a door or ‘open space’ between these rooms. Otherwise the weight is not calculated
(or can be considered inĕnite) and this connection is not taken into account in the search process. All
temporary attributes (e.g. cumulative distance, previous edge on the path, etc.) are assigned to nodes
and half-edges of the dual graph. Aer the path is found this is visualized as a highlighted set of primal
cells that occur on the way from the source to the destination.
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a)

Figure 13: Two buildings from the University of Glamorgan campus connected by an overground pas-
sage modelled using the DHE data structure: a) light-grey cells represent terrain, grey cells
represent rooms, dark-grey cells represent the overground passage between buildings; b) over-
ground passage between two buildings - dark cells.
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a) b)

Figure 14: e shortest path (dotted line) between two rooms: A and B: a) No exterior terrain—the path
is entirely inside the building: b)e buildingwith the exterior terrain (graymesh)—a shorter
path exists in the model.

5 Discussion and conclusions

emain thrust of this paper has been to demonstrate (but not to formally prove) that an understanding
of the Pointcaré dual of a 3D cell complex—in particular of a 3D (geometric) building model—gives a
clear template for a non-manifold data structure. All geometric elements (volumes, faces, edges, nodes)
have representative entities, as do the dual elements, particularly the navigation network between adja-
cent cells or rooms. Indeed, the usual additional CAD entities of face-use, edge-use and vertex-use are
handled easily, without additional structures. Volume entities are now introduced. Each of these may
be given attributes appropriate to the application domain. e complete model may be represented with
two fundamental element types: edges and vertices, providing great simplicity for conceptualization and
implementation.
e value of the dual data structure for the navigation of cell structures has been mentioned before

(Ledoux and Gold, 2007) but the new DHE data structure demonstrates its value in a more applied
setting: incremental construction and modiĕcation of complex non-manifold structures is now much
simpliĕed. ese results can be used for instance to build an ISO-19107- compliant topological data
model from 3D datasets where only geometry is available.
A major contribution of this paper is the demonstration that Euler-type operators may be imple-

mented with this mode, both ‘true’ Euler operators on a single shell, and related operators that ma-
nipulate multiple shells—or indeed split or join complete cell complexes. Building models are greatly
facilitated if they may be constructed edge by edge, so intermediate cases with individual connected
edges and faces that are not yet complete cells may be handled. In all cases, although difficult to visu-
alise, the dual of each geometric edge is present, and if the connectivity of the geometric model can be
achieved then all the information that is necessary to connect the dual structure is also available: while
more pointers must be connected the conceptual ‘cost’ is unchanged.
As long as the primal structure is a connected graph then the dual graph is correct—for example,

two separate cell complexes may be connected by a single edge using an Euler-type operator: the dual
structure is complete and may be navigated, and additional edges immediately added. e same is true
if the two cell complexes are initially connected only by a common vertex, or a common edge. Holes
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through a solid object are easily constructed by using a traditional bridging edge in each of the two faces
penetrated—and even isolated cavities may be modelled by adding a ‘bridging face’.
Because only vertices and edges are required in the structure, together with their associated primal

and dual attributes, only two tables are required to store the model in a relational database. In this case
a query is required to ĕnd each adjacency link. No attempt has yet been made to performmore efficient
relational queries—this awaits future work. Similarly, more work is required to evaluate the functional-
ity of ‘stripped down’ structures—for example it is possible to perform slightly limited navigation (and
therefore construction) where the dual graph itself is removed, and replaced with a pointer directly to
the adjacent shell: it may suffice for some applications, but not all queries are possible.
e availability of an incrementally-constructed non-manifold model may open up a set of applica-

tions not previously considered. One example is interior building surveying—a particularly difficult task
in the absence of indoor GPS. e availability of relatively simple equipment for determining the posi-
tion of some (non-reĘective) point from a reference position permits rapid two-person surveying: one
to take the reading and the other to express its relation to previous points (for example the next corner
around a ceiling). Current equipment we have found has not the high precision of complete surveying
systems, but it appears to be sufficient to express the relationships between adjacent rooms—the initial
impetus for this project. Further applications, perhaps within BIM, CityGML or other full 3D applica-
tions are clearly possible, and await discovery. For example, Gröger and Plümer (2010) show how to
decompose a 3D city model into simple solids with topological consistency checking rules. However
no particular data structure is suggested. We believe the DHE data structure, which stores topological
connections between elements, could be a useful supplement to their work. Also the modelling rules
described there ĕt to the construction principles presented in this paper.

Role of the funding source e ĕrst author’s research is supported by the Ordnance Survey and EPSRC
funding of a New CASE award.
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