Validation of planar partitions
using constrained triangulations

Hugo Ledoux and Martijn Meijers
(and Ken Arroyo Ohori)

3
TUDelft

Technische Universiteit Delft

GIS technology group

May 26 2010

Introduction

Planar partitions frequently used
in GIS:

land cover
cadastral parcels

administrative boundaries

The problem:

Given a planar partition, we want
to validate it. And if it's broken
repair it automatically.

Planar partitions are often stored with Simple Features

.

Topological structure Simple Features (shapefiles)

Planar partitions are often stored with Simple Features

L

Topological structure Simple Features (shapefiles)

Simple Features paradigm

m Points, lines and polygons are stored independently
m Recognised and used international standards (by ISO/OGC)
m Geo-DBMS and shapefile use it

| §

My favourite polygon!

m Outer boundary has 34 471 points
m Polygon has 3191 holes (inner rings)

Zoom in on my favourite polygon

Where could it go wrong?

In practice, errors/mistakes/inconsistencies are often introduced
during the construction, manipulation or exchange:

m Overlapping polygons
m Gaps between polygons
m Unconnected polygons

m Tiles of a big datasets do not match

Potential solutions

m Construct a planar graph (requires cleaning of slivers)

m Define a set of geometric and topologic validation rules on top
of graph

m Some commercial solutions:

m Oracle Spatial Topology
m ArcGIS
m 1Spatial Radius Topology

Problem is theoretically easy, but implementation is

complicated.

Our solution = constrained triangulation (CT)

Construct CT of input polygons (which is a valid planar
partition)

Flag each triangle with ID of its polygon
Validation made with simple graph-based algos

Steps of our approach

Steps of our approach

Steps of our approach

Steps of our approach

Steps of our approach

Steps of our approach

Steps of our approach

Steps of our approach

Steps of our approach

Steps of our approach

If it's broken, then fix it

Repair = simply re-flagging triangles
No need to modify and update the planar graph (slow
operation)

If it's broken, then fix it

Repair = simply re-flagging triangles
No need to modify and update the planar graph (slow
operation)

Implementation

Fast implementation in C++, with CGAL and OGR
Open-source code, you can test it

Numerical and geometric robustness. Points do not move
during processing.

L

2 input polygons that overlap

Experiments with CORINE dataset

3

Can process around 40 tiles in < 1h
(around 120 000 polygons with 4GB main memory)

Experiments with CORINE dataset

CORINE E39N32 CORINE E40N32

10cm 0.3 mm

None of the tiles fit perfectly with their neighbours.

Future work: edge matching

More Information?

Hugo Ledoux
h.ledoux@tudelft.nl

https://svn.otb.tudelft.nl/trac/0TB-GIST/KEN

5/ 4 KEN - Trac

Search

Integrated SCM & Project Management
Login | Settings | Help/Guide | About Trac

[B Treine | Roadmap | BrowseSouce | ViewTickets | Seacn |
Start Page | Index by Title | Index by Date | Last Change

Validation and Automatic Repair of Planar Partitions

From the paper:
Planar partitions—full ions of the plane into used in GIS to madel concepts such as land cover,
cadastral parcels or administrative boundaries. Since in practice planar partitions are often stored as a set of ual objects (polygons) to which
attributes are attached (e.g. stored with a shapefile), and since different errors/mistakes can be introduced during their construction, manipulation
or exchange, several inconsistencies will often arise in practice. The inconsistencies are for instance overlapping polygons, gaps and unconnected
polygons. We present in this paper a nofrel algorithm to validate such planar partitions. It uses a constrained triangulation as a support for the
validation, and permits us to aveid diffefent problems that arise with existing solutions based on the construction of a planar graph. We describe in
the = paper the details of our algorithm, our implementation, how inconsistencies can be detected, and the experiments we have made with real-
world data (the CORINE2000 dataset).

Since the submission of the paper. the algorithm has been extended and improved in order to:

« Obtain more information about the invalid situations that can occur.
* Maintain and numerical
.
.

Validate and repair individual polygons.
Automatically repair polygons according to predefined criteria.

A fast implementation of the algorithm has been written in C++, using the =+ OGR and = CGAL libraries. It is available for download here.

More Information

h.ledoux@tudelft.nl
https://svn.otb.tudelft.nl/trac/OTB-GIST/KEN

