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Planar partitions—full tessellations of the plane into non-overlapping polygons—are fre-
quently used in GIS to model concepts such as land cover, cadastral parcels or administra-
tive boundaries. Since in practice planar partitions are often stored as a set of individual
objects (polygons) to which attributes are attached (e.g. stored with a shapefile), and
since different errors/mistakes can be introduced during their construction, manipulation
or exchange, several inconsistencies will often arise in practice. The inconsistencies are for
instance overlapping polygons, gaps and unconnected polygons. We present in this paper
a novel algorithm to validate such planar partitions. It uses a constrained triangulation
as a support for the validation, and permits us to avoid different problems that arise with
existing solutions based on the construction of a planar graph. We describe in the paper
the details of our algorithm, our implementation, how inconsistencies can be detected, and
the experiments we have made with real-world data (the CORINE2000 dataset).

1 INTRODUCTION

Planar partitions are frequently used in GIS to model concepts such as land cover, the cadastral
parcels or the administrative boundaries of a given area. As shown in Figure 1, a planar partition
is a full tessellation of the plane into non-overlapping polygons. The spatial extent is partitioned

∗Preliminary version of a paper that will be published in the proceedings of SDH 2010, held in Hong Kong.

Figure 1: Part of the CORINE2000 dataset for a part of the Netherlands.
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into polygons, and every location must be covered by one and only one polygon (gaps are thus not
allowed). In GIS-related disciplines planar partitions, like other geographical phenomena, are often
represented and stored in a computer as a set of individual polygons to which one or more attributes
are attached, and the topological relationships between polygons are not stored. The preferred method
is with the Simple Features paradigm, which is an international standard (OGC, 2006); the de facto
standard ESRI’s shapefile and most databases (e.g. PostGIS) are based on this standard. We discuss
in Section 2 details of the Simple Features paradigm that complicate the representation of planar
partitions.

If a planar partition is stored as a set of individual polygons, then in practice errors, mistakes
and inconsistencies will often be introduced when the planar partition is constructed, updated or
exchanged. The inconsistencies most likely to occur are: (i) overlapping polygons (e.g. slivers); (ii)
gaps between polygons; (iii) polygons not connected to the others.

In this paper we present a novel algorithm to validate such a planar partition, i.e. given a set of
polygons stored with the Simple Features paradigm, our algorithm verifies if this set forms a planar
partition, or not. As explained in Section 2 different solutions currently exist, these are based on
the construction of the planar graph of the polygons and on the use of geometrical and topological
validation rules. The solution we propose—using a constrained triangulation as a supporting structure
for validation—is described in Section 3 and has in our opinion several advantages over existing
methods. We report in Section 4 on our implementation of the algorithm (it uses the stable and fast
triangulator of CGAL1) and on the experiments we have made with the CORINE Land Cover 2000
dataset. Finally, we discuss the advantages of our method in Section 5.

2 RELATED WORK

Validation of planarity of area partitions has its roots in the definition of what is a valid surface
representation for real world features (i.e. a polygon). In this section we will first review the Simple
Features specification (SFS) that describes what is a valid polygon and secondly how a set of polygons
can be validated, so that it forms a planar partition.

2.1 Simple Features

The Simple Features specification is a recognised and used international standard for the storage and
access of geographical objects in vector format such as points, lines and polygons. SFS defines a
polygon by stating that: “A Polygon is a planar Surface defined by 1 exterior boundary and 0 or
more interior boundaries. Each interior boundary defines a hole in the Polygon.” (OGC, 2006). In
the specification 6 assertions are given that together define a valid polygon. Essential for a valid
polygon is that the boundaries of the polygon must define one connected area (each point inside the
polygon can be reached through the interior of the polygon from any other point inside the polygon).
Additionally, a polygon can contain holes. We say that the exterior boundary of the polygon is the
outer ring, and a hole is an inner ring. As shown in Figure 2, these holes can be filled by one or
more polygons, which we call islands. Island polygons can recursively contain holes which are filled
by islands. Observe also that holes are allowed to interact with each others and the outer boundary
under certain circumstances, e.g. they are allowed to touch at one point (as in Figure 2b), as long as
the interior of the polygon stays one connected area.

The polygons can be represented either in text (well-known text–WKT) or binary (well-known
binary–WKB) formats. Each polygon is stored independently from other polygons; even those adjacent
(it is not possible to store topological relationships between the polygons).

Integrity checking of an individual polygon entails checking whether the polygon fulfils the above
definition. A naive way of validity checking could be based on checking each segment of each linear

1The Computational Geometry Algorithms Library: http://www.cgal.org
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(a) (b)

POLYGON((0 0, 9 2, 10 3, 10 10, 4 7, 0 10, 0
0), (6 4, 4 3, 5 6, 5 5, 6 6, 6 4))

POLYGON((0 0, 9 2, 10 3, 10 10, 4 7, 0 10, 0
0), (3 2, 4 4, 6 4, 3 2), (1 1, 1 3, 3 2, 3 1, 1 1),
(10 5, 7 7, 7 4, 10 5))

Figure 2: Two examples of polygons and their WKT. (a) One polygon with one hole. (b) Another
polygon with three holes, and each of them is filled with an island. Observe that two
holes/islands touch each other at one point, and that one hole touch the outer boundary of
the polygon at one location.

(a) (b)

Figure 3: (a) One polygon (in yellow) from the Canadian Land Cover Map. Its outer boundary has
around 35000 points and it has around 3200 holes. (b) Zoom in on this polygon, observe
that holes are filled by islands, and that these touch other rings at several points.

ring with all other segments of the polygon for intersections, which is apparently quite costly with
respect to computation.

In this work, we have adopted the Simple Feature definition for what we consider is a valid polygon.
In the paper by Oosterom et al. it was shown in an experiment with different systems and a set of 37
‘killer polygons’ that in practice the use of this definition is not self-evident and that different products
have different interpretations of what is a valid polygon. The authors concluded that “the consistent
use of a polygon definition is not yet a reality” (van Oosterom et al., 2002). The validation of one
polygon according to the SFS specification has since then found its way into software implementations
and is easily possible with different libraries, e.g. GEOS 2 and JTS 3 being two of those (open source)
libraries.

2.2 Planar partitions

Planar partitions, such as the CORINE2000 dataset, are freely available in shapefile format where
each polygon has one value attached (its code for the land cover). Polygons in such datasets are
usually fairly complex (see for instance Figure 3) and the number of polygons is generally very large.
The specifications of the dataset states that all polygons form a planar partition, but in practice this

2Geometry Engine Open Source: trac.osgeo.org/geos
3Java Topology Suite: www.vividsolutions.com/jts/jtshome.htm
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is not the case (see Section 4).
Having a definition for what is a valid polygon alone is not enough for certain applications: for those

applications it is necessary to define what a valid set of polygons is. Therefore, the disjoint spatial
relation has to be introduced. Two polygons are said to be disjoint, when their interior does not overlap
(i.e. does not have any spatial relation). A brute force approach to enforce planarity of a partition
with independent, loose-lying polygons is rather cumbersome: it is necessary to check whether each
polygon its interior is disjoint with all other polygons, which means a lot of computation (in the order
of O(n2) where n is the number of features to be checked). Furthermore detection of holes between
polygons in the partition is only possible by obtaining the union of all individual polygons, which
again is computational intensive. As final remark: this also assumes that each individual polygon has
already been checked.

In a series of papers on the topic of formal and correct spatial object modelling (Plümer and Gröger,
1996; Gröger and Plümer, 1997; Plümer and Gröger, 1997), a set of mathematical axioms is given for
checking the ‘validity’ of a map, i.e. a collection of polygons. The axioms that Gröger and Plümer
form are a correct and complete set of rules to enforce correctness for all polygons in a map together
with their adjacency relationships. Checking of the axioms has static and dynamic aspects. Static
integrity checking “concerns the question whether a given database as a whole is consistent” (Gröger
and Plümer, 1997). An example of the dynamic aspects—how to keep a (in this case cadastral)
dataset consistent under updates or transactions—is found in (Matijević et al., 2008). Our approach
only examines the state of a geographic dataset as a whole (thus enforcing the integrity rules for a
given set of polygons). For the remaining part of this paper, we will focus on static integrity checking.

Furthermore, it is important to note that Plümer and Gröger (1997) base their axioms on concepts
from graph theory, but they also highlight the fact that a graph-based approach alone is not enough:
the graph has to be augmented with geometrical knowledge (each vertex has geometry attached, i.e.
the coordinates of points have to be stored). Validation is thus underpinned by both geometrical and
topological concepts and systems thus have to deal with those two concepts at the same time.

For validating all polygons in a dataset in a single operation, it is necessary to perform a conversion
to a graph-based description, which is consecutively checked for consistency (following a set of rules
similar to the axioms described by Gröger and Plümer). For this conversion different approaches
are available (Shamos and Hoey, 1976; van Roessel, 1991). Implementation of this conversion to a
graph-based representation is sometimes difficult, especially if the polygon contains holes. The graph
of the boundary is then unconnected and extra machinery is necessary to still represent the knowledge
on holes in the graph structure. The fact that holes are also allowed to touch complicates the task of
validation even further: holes are supposed to form an unconnected planar graph, but if they touch
the graph is connected.

3 Validation with the constrained triangulation

Our approach to validation of planar partitions uses a constrained triangulation (CT) as a supporting
structure because, as explained in Section 3.1, CTs are by definition planar partitions. The workflow
of our approach is as follows:

1. the CT of the input segments forming the polygons is constructed;

2. each triangle in the CT is flagged with the ID of the polygon inside which it is located;

3. problems are detected by identifying triangles having no IDs, and by verifying the connectivity
between triangles.

The flagging and the verification of the connectivity of the input polygons is performed by using
graph-based algorithms on the dual graph of the CT.

We describe in this section the concepts needed and we give a detailed description of the different
steps. It should be noticed that we assume that each input polygon to our approach is individually
valid (as explained in Section 2 this is an easy task and tools are readily available).
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(b)

(d)

(a)

Figure 4: (a) A set S of points in the plane. (b) A triangulation of S; the union of all the triangles
forms conv(S). (c) The set S with 3 constrained segments. (d) The constrained triangula-
tion of the set of points and segments. The dashed lines are the edges of the triangulation
of S that are removed since they are not conform to the input segments.

Figure 5: (a) A polygon with 4 holes. (b) The constrained triangulation of the segments of this
polygon.

3.1 Constrained triangulation

A triangulation decomposes an area into triangles that are non-overlapping. As shown in Figure 4a–b,
given a set S of points in the plane, a triangulation of S will decompose its convex hull, denoted
conv(S). It is also possible to decompose the convex hull of a set T where points and straight-line
segments are present, with a constrained triangulation (CT). In CT(T ) every input segment of T
appears as an edge in the triangulation (see Figure 4c–d).

If T contains segments forming a loop (which defines a polygon), it permits us to triangulate the
interior of this loop (i.e. a triangulation of the polygon). It is known that any polygon (also with holes)
can be triangulated without adding extra vertices (de Berg et al., 2000; Shewchuk, 1997). Figure 5
shows an example.

In our approach, the triangulation is performed by constructing a CT of all the segments representing
the boundaries (outer + inner) of each polygon. If the set of input polygons forms a planar partition,
then each segment will be inserted twice (except those forming the outer boundary of the set of input
polygons). This is usually not a problem for triangulation libraries because they ignore points and
segments at the same location (as is the case with the solution we use, see Section 4).
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Figure 6: One polygon (thick lines) with its triangulation (normal black lines). The dual graph of the
triangulation is drawn with dashed lines, and the filled black point is the centroid of the
polygon from where the walk starts.

big triangle

Figure 7: The 4 input polygons are triangulated and are inside the big triangle. A walk from one
location outside the 4 polygons would appropriately flag as “universe” the 4 triangles inside
the convex hull of the 4 polygons.

3.2 Flagging triangles

Flagging triangles means assigning the ID of each polygon to the triangles inside that polygon (the
triangles that decompose the polygon). To assign this ID, we first compute one point inside each
polygon. This point is what we subsequently call the “centroid” — observe here that this cannot be
always the geometric centroid of the polygon as this could be outside the polygon. Our algorithm
finds a location inside the polygon and makes sure that this location is not inside one of the holes of
the polygon. Then for each centroid c we identify the triangle that contains c, and we start a “walk”
on the dual graph of the triangulation, as shown in Figure 6. The walk is a depth-first search (DFS)
on the dual graph, and observe that constrained edges in the triangulation will act as blockers for the
walk. Observe also that islands are not a problem (see Figure 8c).

Big triangle. To appropriately flag all the triangles of the CT (those inside the convex hull of the input
points/segments but not inside an input polygon) we exploit one particularity of libraries to compute
triangulation: the so-called “big triangle”, which is also being called the “far-away point” (Liu and
Snoeyink, 2005). Many implementations indeed assume that the set S of points is entirely contained
in a big triangle τbig several times larger than the range of S. Figure 7 illustrates the idea. With
this technique the construction of the CT is always initialised by first constructing τbig, and then
the points/segments are inserted. Doing this has many advantages, and is being used by several
implementations (Facello, 1995; Mücke, 1998; Boissonnat et al., 2002). To assign an ID “universe” to
the triangles, we simply start at one triangle incident to one vertex of τbig and perform the same walk
as for the other polygons.
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(a) (b) (c) (d)

Figure 8: (a) Six polygons form the input planar partition. (b) The constrained triangulation of the
boundaries of the input polygons. (c) The dual graph of the triangles is drawn with dashed
lines; the dark points are the points from which the walk in each polygon starts. (d) The
result contains triangles that not flagged (white triangles). The white triangle on the right
is not a problem since it is a “universe” triangle.

Figure 9: Five polygons, with one unconnected to the other ones. The dual graph for the flagged
triangles is shown in with dashed lines.

3.3 Identifying problems

If the set of input polygons forms a planar partition then all the triangles will be flagged with one
and only one ID. Notice that because of the big triangle, triangles outside the spatial extent of the
planar partitions will be flagged as “universe”. Notice also that if a polygon contains a hole, then for
the planar partition to be valid this hole must be filled completely by another polygon (an island).

If there are gaps and/or overlaps in the input planar partition then some triangles will not be flagged.
We can detect these easily by verifying the IDs. Figure 8 illustrates one input planar partition that
contains 6 polygons; notice that one has an island and that some polygons overlap and that there are
also gaps. The walk starting from each centroid is shown in Figure 8c, and the resulting flagging of
triangles is shown in 8d (the grey shadings represent the IDs). When 2 or more polygons overlap then
depending on the location of the centroids some triangles will not be flagged (because the constrained
edges block the walks).

Another problem that could arise is when the union of the input polygons forms more than one
polygon. Figure 9 shows one example with 5 input polygons: 4 of them form a valid planar partition
but one is not connected to the others (thus the 5 polygons do not form a planar partition). We solve
that problem by starting a walk from any centroid, but that walk is not stopped by the constrained,
only by the triangles flagged as “universe”. The connectivity problem simply boils down to ensuring
that all the triangles flagged with an ID other than “universe” can be reached.
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(a) (b)

Figure 10: (a) Two overlapping polygons. (b) CGAL’s constrained triangulation of the polygons.

Figure 11: CORINE2000’s tiles E39N32 and E40N32.

4 IMPLEMENTATION AND EXPERIMENTS

We implemented the algorithm described in this paper with the Python language4. Our implementa-
tion reads as input either a shapefile or a set of WKTs, and tells the user what problems are present
in the input polygons (if any).

For the constrained triangulation, we rely entirely on the implementation of CGAL (we use the
Python bindings of CGAL5). Each segment of the input polygons is inserted incrementally in the
CT. When 2 segments are identical, the second one is simply ignored. Since the input if formed of
individual polygons, it is faster (and simpler) to rely on the spatial indexing scheme of CGAL to detect
the duplicate edges than to pre-process them with an auxiliary data structure. It should be noticed
that we use the default tolerance in CGAL to determine if 2 points are at the same location.

We also rely on CGAL for ensuring that a valid triangulation is formed when 2 or more polygons
overlap. As shown in Figure 10, if 2 polygons overlap their segments will intersect (which would not
be a valid planar graph). However, CGAL has built-in operations to calculate the intersection of 2
segments and to create new sub-segments.

We have tested our implementation with different parts of the CORINE2000 dataset. This is a
dataset modelling the land cover for the whole of Europe, and it is freely available6. The dataset
is divided into tiles and each tile can be downloaded as a shapefile. Although the specifications of
CORINE2000 state that the polygons form a planar partition and that validation rules are used, we
found several errors.

One example is when creating one planar partition from two adjacent tiles, as shown in Figure 11.
The process of tiling the whole dataset has obviously introduced errors because several sliver polygons
were detected during our experiments. We have also found one case where a polygon had been
obviously “shifted” manually by a user (see Figure 12).

4http://www.python.org
5http://cgal-python.gforge.inria.fr
6More information can be found on http://www.eea.europa.eu/themes/landuse/clc-download

8



Figure 12: A polygon manually shifted (from CORINE2000 tile E41N27) – it is overlapping with
neighbours on one side and gaps are present on the opposite side.

5 DISCUSSION AND CONCLUSIONS

The problem of validating a planar partition stored with Simple Features is theoretically a simple one:
construct the planar graph of the input, and define a set of geometric and topological validation rules.
Unfortunately, the implementation of a planar graph construction algorithm and of the validation
rules is far from being trivial (especially when the input polygons contain holes) and can often not
scale to big datasets containing millions of polygons.

We have presented in this paper a new algorithm and we have successfully implemented it. Our
approach solves most of the current problems and has in our opinion several advantages:

1. The algorithm is simple and can be implemented easily over a CT library such as CGAL. The
only things needed are: (i) to be able to add attributes to triangles (for the IDs); (ii) having
access to the data structure. All the validation rules simply boil down to flagging triangles and
graph-based searches.

2. The holes/islands inside polygons are easily handled by the CT. No additional data structure or
special mechanisms are necessary, as is the case with planar graph approaches.

3. The implementation can be built over well-known and optimised CT implementations, which
are fast and can handle millions of objects. It is known that triangulations of several millions
points can be managed in main memory (Amenta et al., 2003; Blandford et al., 2005).

4. If problems are present in the input, we believe the CT could be used to automatically repair the
planar partition. That would simply involve (re)flagging the IDs of problematic triangles (based
on some user-defined rules) and then “following” the boundaries between IDs to reconstruct
polygons and give them back to the user in Simple Features format. We see great potential for
such an application.

5. Apart from static integrity checking, our approach could be used for keeping a dataset consistent
under a set of edits (dynamic checking). The CT can then be used to locally check the validity
of an update.

For future work, we plan on implementing the algorithm in C++ to be able to scale to massive
datasets, and we also plan on working on the automatic repairing and incremental updates with the
help of the CT. Finally, the ideas presented in this paper are all valid in higher dimensions and we
plan on implementing them for constrained tetrahedralization (Si, 2004), which would permit us to
validate 3D city models for instance.
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