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Abstract

Advances in technologies to collect elevation data are far superior to the advances to store
and process the resulting point clouds. This paper investigates the use of a DBMS to store
and manage not only the points coming from massive point-based datasets, but also a TIN of
these points. TINs are used as a support structure to implement processing and manipulation
operators. I discuss in the paper why storing efficiently a TIN in a DBMS is a complex task, and
I propose a new solution. It does not store explicitly triangles, as only the star of each point
is stored. The details of the data structure are discussed and compared with other solutions
currently available.

1 Introduction

New technologies such as airborne altimetric LiDAR (Light Detection and Ranging) or multi-beam
echosounders permit us to collect millions—and even billions—of elevation points (samples) for a
given area, and that very quickly and with great accuracy. One example of the use of that technology
in the Netherlands is the efforts by Rijkswaterstaat to build an accurate digital terrain model (DTM)
of the whole country containing as much as 10 samples per m2 (the AHN2 dataset, www.ahn.nl).
Such datasets have attracted a lot of attention because of all their possible applications, e.g. flood
modelling, monitoring of dikes, forest mapping, generation of 3D city models, etc.

The main problems with massive point cloud datasets is that while they provide us with unprece-
dented precision, computers have great many problems dealing with very large datasets that exceed
the capacity of their main memory. The result is that they cannot efficiently display all the in-
formation, let alone process them. Examples of point cloud processes useful for many applications
are: derivation of slope/aspect, conversion to a grid format, control of double points, calculations of
area/volumes, viewshed analysis, creation of simplified DTM, extraction of bassins, etc. Advances
in technologies to collect data are basically superior to our ability to process data.

LiDAR or multi-beam datasets are formed by scattered points in 3D space, which are—in several
cases—the samples of a surface that can be projected on the horizontal plane (a so called “2.5D
surface”), see Figure 1a. This is of course not always the case but for several situations 2.5D
is enough and it is therefore worth developing specific tools to handle this case since they can be
highly optimised. While simply storing millions of unconnected points in a DBMS is no problem, the
processing of LiDAR datasets needs more: we must be able to reconstruct the surface represented by
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Figure 1: (a) A 2D surface obtained from a set of points in the plane having a height as an attribute.
(b) A triangulation of a set of points in the plane. The vertex v has 7 neighbours.

the points, and we must also be able to access this surface to manipulate it (e.g. adding/removing
new samples), and also to derive values from it. The surface gives us the spatial relationships
between unconnected points in 3D space, which is required if processing on the surface is wanted.
The best way to reconstruct such a surface is arguably with a triangulated irregular network (TIN)
respecting the Delaunay criterion (Wang et al., 2001). As shown in Figure 1b, a TIN subdivides
the space covered by the points into non-overlapping triangles, and these can be used to reconstruct
the surface and answer neighbourhood queries (“which points are close to x and surround it?”). In
Figure 1b, the vertex x has for instance 7 well-defined neighbours.

This paper investigates the use of a DBMS to store and manage not only the points coming from
a very large LiDAR dataset, but also the TIN of these points. DBMSs are investigated since they
are arguably the best tool to store and manage very large datasets (of any kind). The paper briefly
discusses in Sections 2 and 3 current solutions for storing and processing point clouds, and then
proposes in Section 4 an alternative which could have several benefits. This proposed solution goes
beyond the usual “store points and edges and triangles” described in Section 2, and use recent
advances in the compression of graphs.

2 Current solutions for storing and processing point clouds

Many companies offer solutions for the storage and processing of LiDAR data, and the problem
is also being tackled in the academia. What follow is a short overview of the most interesting
solutions, and does not claim to be a thorough review of all the possibilities. These were choosen
because they are, as far as I know, the most used by practitioners and the tools that offer the most
functionalities to handle massive point clouds.



Commercial software

The company Terrasolid1 offers several useful tools for the processing of LiDAR data. The main
problem here is that, as is the case with many other tools, the size of your computer’s main memory
decides how many points can be processed. Basically, once the memory is full, transfer of data
between the disk and the memory starts, and if this happens too much, the computations might
simply stop (called trashing). The first solution that Terrasolid and others provide is tiling a big
dataset into smaller parts that all fit into memory, and working on one given part at a time. While
this solution is viable in some cases, for any processing that goes across a “seam” this can be
problematic, e.g. calculation of areas/volumes of features, simplification often need a global view of
the dataset, flow modelling, etc. The second solution is thinning, which means that when reading
the input file, the algorithm will only read every 500th point for example. While it permits the
user to visualise and process the data, it somehow destroys the idea of working with high-resolution
altimetry data in the first place.

Since version 9.2, ArcGIS also provides a new type for the storage of very large TINs. In a nutshell,
the Terrain type stores all the points in a DBMS, but the triangles are not explicitly stored. The
user must select so-called “vertical indexes” so that a hierarchy of TINs is created. For each level
in the hierarchy, ArcGIS selects representative points to form the TIN (the method used is clear, it
appears that they are randomly selected). Because each TIN is small in size when compared to the
original dataset, one can use the usual processing for TINs as available in ArcGIS (see Peng et al.
(2004) for more details). However, this solution suffers from the same problem as Terrasolid, that
is if the TIN created is larger than the memory there is no guarantee that the processing operations
will terminate. For instance, if one wants to create a high-resolution grid from a TIN with all the
input points, then if the TIN size (points + triangles + topological links) is too big then it will
simply not work.

Oracle Spatial, since version 11g, also provides new types for the storage of LiDAR datasets: a
Point Cloud type and a TIN type, which are similar. For building a Point Cloud, first the input
points are “bucketed” into cells containing a given maximum of points (let us say 2500), then a
spatial index (a R-tree) is constructed, and finally each point within a cell is also indexed (for
TINs, the triangle are simply defined by a reference to 3 vertices, and are also indexed within one
cell). Preliminary tests at GDMC/TUDelft have shown that many intermediate results are stored
to build the spatial indexes, and these use a lot of memory (Tijssen, 2009). Also, the TIN type does
not store the topological relationships between triangles (simply the 3 vertices), which means that
these types are probably more targeted towards the storage of very large datasets, and that the
manipulation of the surface is limited (to the best of my knowledge Oracle Spatial does not offer
any functions to manipulate or analyse the surface at this moment).

Academia

To deal with massive datasets, one can also design external memory algorithms (Vitter, 2001).
These basically use disks to store temporarily files that do not fit in memory, and instead of using
the mechanism of the operating system, design explicit rules for the swapping between the disk
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Figure 2: With the triangle-based data structure, the triangle T has 3 pointers to its 3 vertices a,
b and c; and to its 3 neighbouring triangles A, B and C. The pair vertex-triangle is organised in
such a way that for instance a is ‘opposite’ to A.

and the memory. These are an alternative to using a DBMS, and have been used for a few LiDAR
processing problems, see for instance Agarwal et al. (2006) and Arge et al. (2006). The drawback is
that the design of such algorithms is rather complex, and for different problems different solutions
have to be designed.

An alternative solution is the streaming approach of Isenburg et al. (2006a,b), which mixes ideas
from external memory algorithms with different ways to keep the memory footprint very low. The
input points are processed in a certain order, and removed from memory when they are not needed
anymore. The idea was applied to create a billion-triangle TIN, and they succeeded in under one
hour with a conventional laptop (Isenburg et al., 2006b), which improved by a factor of 12 the fastest
existing, that of Agarwal et al. (2005). The streaming ideas are very useful for certain local problems
(e.g. interpolation), but unfortunately cannot be used (or it would be extremely challenging) for
global processes such as simplification or flow modelling.

3 Storing TINs in a DBMS

The simplest way to store a TIN in a DBMS is to define a new datatype Triangle which contains
either the coordinates or the IDs of three points in the point cloud (a polygon could also be used).
As mentioned previously, that permits us to store the triangle, but topological relationships between
the triangles have to be computed (an expensive operation) if analysis of the surface is wished, and
it required spatially indexing massive amount of triangles.

An alternative is to implement in a DBMS the triangle-based data structure used by most triangu-
lation libraries, e.g. that of CGAL (Boissonnat et al., 2002). As shown in Figure 2, it considers the
triangle its atom and stores each triangle with three pointers to its vertices and three pointers to
its adjacent triangles. The vertices and edges of each triangle τ must be oriented consistently (e.g.
counterclockwise) if we want to manipulate or perform some operations on a triangulation. This
structure stores topological relationships between triangles, but increases the storage space required
and at least two tables (points + triangles) have to be maintained when the structure is updated.

More complex data structures for planar subdivisions could be also used (e.g. the DCEL (Muller
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star(1) = 2, 3, 4, 6, 9, 21
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Figure 3: A triangulation with the stars of vertices 1 (light grey with dashed lines) and 4 (darker
grey with dotted lines) shown.

and Preparata, 1978), the half-edge (Mäntylä, 1988)) or the Generalized Maps (G-Maps) (Bertrand
et al., 1993; Lienhardt, 1994)), but they are very verbose (several primitives are stored and these
are linked by several pointers) and would most likely not be optimal in a DBMS.

4 A star-based data structure

The approach I propose in this paper to store and process massive point clouds is storing the whole
TIN in a DBMS (the points, the triangles and their topological relationships), and rely on the DBMS
for memory management. Since the whole TIN is available (and does not need to be recomputed),
one can readily query it and manipulate it. The processing operations would then be built over the
database without designing special memory management methods. This solution will most likely
be a bit slower than solutions working with main memory, but once the data structure is working
and efficient, the benefits of a DBMS should compensate for the lack of speed.

The data structure proposed uses recent advances in the compression of graphs, particularly the
“star-based” structure of Blandford et al. (2005), which was developed for main memory. It does not
store triangles explicitly, instead the star of every vertex is stored. As shown in Figure 3, the star of
a given vertex v, denoted star(v), consists of all the triangles that contain v; it forms a star-shaped
polygon. The star of a vertex can be simply represented as an ordered list of the IDs of the vertices
on the star; a triangle is formed by the centre of the star plus 2 consecutive vertices in the star list.
If the star of every vertex in a dataset is stored (thus each star overlaps several other stars), then
we can implicitly store not only the triangles of the TIN, but also all their topological relationships.
Adjacency between triangles are stored, but also incidence relationships between vertices and edges
and triangles (so one can for instance navigate counterclockwise through all the triangles incident
to a given vertex). Observe that each triangle is present in exactly 3 stars and each edge in 2 stars



ID x y z star
1 3.21 5.23 2.11 2–44–55–61–23
2 5.19 29.01 4.55 7–98–111–233–222
3 22.43 15.99 8.19 99–101–73–23
... ... ... ... ...

5674 221.19 15.23 37.81 309–802–793–1111

Figure 4: One example of a table to store the star of each point.
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Figure 5: The Walk algorithm for a triangulation.

(in Figure 3 the edge (1,3) is represented in the stars of vertices 4 and 2, in the opposite direction).
The data structure is therefore also akin to the the half-edge (Mäntylä, 1988) where each edge is
stored twice, one for each direction.

As shown in Figure 4, implementing this data structure in a DBMS is straightforward: only one
table with 5 attributes (id − x − y − z − star) is needed; star is an array of IDs. Perhaps the
main advantage of such a structure is that the use of a separate spatial index is not necessary.
Indeed, we can rely on the topological relationships between the triangles to perform typical queries
such as: (i) given a location (x, y), which triangle contains it?; (ii) range queries: return all the
triangles contained in a rectangle; (iii) obtain the triangles adjacent to a given one; etc. Functions
have to be implemented inside the DBMS (server-side programming), and only a standard index
on the ID column is needed because several SQL queries will be have to be made. An example of
such a function is the walking in the triangulation (see Figure 5 for an example) where adjacency
relationships are used to navigate inside a TIN (see Mücke et al. (1999) for a detailed explanation).
Using SQL queries to perform such a walk is usually problematic, but with server-side functions
this is possible.

5 Discussion

The proposed star-based data structure is significantly different from what is usually available in
a DBMS (i.e. each element (point and/or triangle) is stored independently and a spatial index is
used for queries). It permits us to bypass the use of a spatial index at the cost of possible slower
answers to queries. However, it is space efficient compared to other solutions described in this paper



and the topological relationships between the triangles are explicitly stored, which permits us to
process and manipulate the structure. With solutions where the triangles are stored independently,
the reconstruction of these relationships is necessary each time an operation needs to be performed.

Furthermore, the structure permits dynamic updates (addition and removal of triangles and/or
vertices are possible, with local updates (Blandford et al., 2005)), and these could be implemented
directly in the DBMS. The GISt group at the Delft University of Technologies is currently working
on implementing and optimising this structure, with basic functions such as interpolation in TINs,
slope/aspect derivation and conversion to grids.

The solution proposed is valid not for 2.5D models but also for any boundary representations
that can be triangulation (also for closed volumes), and the ideas are readily extensible to higher
dimensions. As a consequence, the idea of storing stars of edges in 3D would permit us to efficiently
store tetrahedra, and would offer an alternative to the structure of Penninga (2008).
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