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One of the simplest methods to construct a 3D city model is to extrude build-
ing footprints to obtain “block-shaped” polyhedra representing buildings. While the
method is well-known and easy to implement, if the 2D topological relationships be-
tween the footprints are not taken into account, the resulting 3D city models will not
necessarily be topologically consistent (i.e. primitives shared by 3D buildings will be
duplicated and/or intersect each others). As a result, the model will be of little use for
most applications, besides visualisation that is. In this paper, we present a new extru-
sion procedure to construct topologically correct 3D city models. It is based on the
use of a constrained triangulation, is conceptually simple, and offers great Ęexibility
to create city models in different formats (e.g. CityGML or a surface-based represen-
tation). We have implemented the procedure, tested it with real-world datasets, and
validated it.

1 Introduction

Technologies such as airborne laser scanning (or LiDAR—Light Detection And Ranging) permits
us to rapidly and easily collect height information for a given area. With the information collected
it is possible to construct automatically three-dimensional urban models (Alexander et al., 2009;
Zhou et al., 2004; Rottensteiner, 2003), and many cities around the world are currently acquiring
their own model. e simplest way to automatically construct a 3D city model is arguably with
extrusion. at is, given a set of footprints representing the buildings (polygons in the plane),
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assign them a height (by averaging LiDAR data for instance) and then push them upwards to create
polyhedra. is volumetric representation will be “block-shaped”: roofs will be horizontal planes
without additional structures, and walls will be vertical planes; Figure 1 depicts the general idea.
is representation is also referred to as the LOD1 (level of detail) in CityGML, the international
standard for representing and storing 3D city models (Kolbe, 2008; OGC, 2012). ere are ĕve
LODs for a city model: from LOD0 where only the terrain is stored to LOD4 where buildings have
detailed roofs structures, windows, rooms and even pieces of furniture. Extrudedmodels obviously
limit the representation of a city (many real-world cases cannot be modelled) but it is nevertheless
widely used since the required datasets are usually readily available and it is an automatic procedure
(by contrast LOD3 and LOD4 oen require manual operations).
Extrusion is widely considered to be an easy operation, and as a consequence little attention has

been paid to it. We argue in this paper that it is indeed an easy operation if the only thing you
want to do with your 3D city model is to look at it! As explained in Section 2, many commercial
GIS packages can extrude polygons to obtain buildings, but the resulting models cannot be stored
in a topological data structure and therefore cannot be used for further analysis. e reason is
that the created models are not topologically consistent. In a nutshell, that means that they contain
for example duplicate points, overlapping faces, faces intersecting where there are no points, etc.
Individually each polyhedron is valid, but the set of polyhedra contains such problems; we deĕne
formally topological consistency in Section 3. Figure 1c shows a simple example of the problems
encountered: the “front face” of the extruded building A should be modelled with two separate
faces since the footprint of building B is adjacent to A in 2D.
It should be stressed here that topological consistency of a dataset has several advantages. ese

have been recognised for years for 2D datasets (Molenaar, 1998; eobald, 2001; van Oosterom
et al., 2002), and the same advantages are present in 3D. e beneĕts the most oen mentioned
are: it is easier to consistently maintain a dataset when changes occur over time; spatial operations
on the objects are possible and their outcome are guaranteed to be valid; the objects can easily be
stored with a topological data structure; etc. It is true that at this moment the use of 3D city models
is mostly restricted to their visualisation, but we believe that in the foreseeable future these models
will also be used to analyse the properties of a city andwill also help in the decision-making process
for urban planners. ere are already several examples of such applications: noise modelling in 3D
(CityGML has an application extension for noise mapping), Ęood modelling (Schulte and Coors,

Figure 1: (a)ree polygons in the plane. (b)ree polyhedra obtained by extrusion of the three
polygons. (c)To be topologically consistent the front polygon of the polyhedron obtained
by the extrusion of A should be modelled with two polygons.
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2008), 3D navigation (Lee and Zlatanova, 2008), disaster management (Kolbe et al., 2008) and
urban planning (Köninger and Bartel, 1998).
In this paper, we present a new procedure to construct topologically consistent 3D city models

by extrusion of building footprints. e procedure, which is described in Section 4, is conceptu-
ally simple and straightforward to implement. It takes as input a topologically consistent dataset
in 2D, and can output different formats, including for instance CityGML. e fact that we main-
tain a topological data structure in 3D during the extrusion process gives us Ęexibility and we can
easily add other output formats, if needed, for speciĕc applications. We have put strict require-
ments on the input because cleaning a 2D dataset is a well-known task for which different tools
exist. In 3D, the same task is titanic, for, to the best of our knowledge, there are simply no tools
available. At the end of Section 4 we demonstrate how our results can be validated. Furthermore,
we report in Section 5 on our implementation of the algorithm to create the 3D city model of a
test area. In this section, we also describe the tools we used to obtain topological consistency out
of a 2D shapeĕle input, and show examples of the results obtained. It should be noticed that this
paper builds on our early results for extrusion (Ledoux and Meijers, 2009), and contains several
signiĕcant improvements: (i) the data structure used to handle the 2D footprints is a constrained
Delaunay triangulation (CDT), which as explained in Section 4.1 has several advantages; (ii) we
easily handle holes/islands in polygons, so that inner courts of buildings can be modelled; (iii) the
output of the prototype we developed can now have several forms, including a “2.75D” surface (see
Section 5); (iv) the extrusion process takes into consideration that the ground is not necessarily a
horizontal plane, and a digital terrain model (DTM) can be used.

2 Related work

As mentioned in the Introduction, the “simple” extrusion of footprints, that is without consid-
ering other footprints, is a straightforward task and has been implemented in many commercial
products, for instance Oracle Spatial 11gƬ, ArcGISƭ, and Google EarthƮ. Each resulting polyhe-
dron is valid (i.e. it is a simple and watertight polyhedron), but there are no guarantees that a set of
footprints will yield a topologically consistent city models. It should be made clear here that most
commercial products consider extrusion simply as a visualisation task, i.e. footprints are extruded
to polyhedra only in the visualisation window (e.g. the OpenGLwindow) and no persistentmodels
are created (although some offer this possibility, but each polyhedron is saved individually).
Tse et al. (2005) extrude footprints and output topologically consistent models, but take a totally

different approach than ours. Instead of using a volumetric approach, they model a city and its
buildings with a single triangulated surface (a 2-manifold embedded in 3D space). Unlike 2.5D
models, the surface is allowed to have vertical walls (and also overhangs, tunnels and bridges), so
their approach is referred to as “2.75D”.ey start by constructing the constrained Delaunay trian-
gulation of the footprints, and then extrude the buildings by always keeping a single triangulated
surface for the whole area. e main advantage of using a surface-based representation is that you
“get 3D for the price of 2D” (Gröger and Plümer, 2005), i.e. 3Dmodelling is performed but the data

Ƭhttp://www.oracle.com/technology/products/spatial/index.html
ƭhttp://www.esri.com/arcgis
Ʈhttp://earth.google.com
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structure used for the storage is two-dimensional, thus simpler. e main drawback is that, unlike
the approach we propose in this paper, it is impossible to represent the vertical walls between two
connected buildings (e.g. the 2 buildings A and B in Figure 1 are stored without the internal walls)
as the whole dataset must be represented by a single surface. Notice that the algorithm we present
in Section 4 permits us to also model a city with such surface, if required.
Another way to obtain topologically consistent 3D city models is to use constructive solid ge-

ometry (CSG). With this method, polyhedra are represented as Boolean combinations (union, in-
tersection and difference) of simpler objects such as cylinders, cubes, spheres or pyramids. CSG
objects are by deĕnition topologically consistent, and it is possible to convert them to a boundary
representation (see Requicha (1982) for more details). Haala and Brenner (1999) create extruded
3D city models by ĕrst decomposing footprints into rectangles, and from these rectangles create
CSG polyhedra, which are then combined to reconstruct the building. e main problem of that
approach is that not every building footprint can be decomposed into rectangles; as can be seen
in Section 5.5, some of the footprints of our test area have for instance circular shapes (discretised
into polylines). Another potential problem of CSG solutions—or of any CAD data structures—is
that the data structures used are rather “heavyweight”, and consequently scaling to datasets with
hundreds of thousands of objects is rather problematic.
Cell decomposition is another approach that can be used to obtain topological consistency (Haala

et al., 2007). Each edge of a building becomes a half-space plane (an inĕnite vertical plane deĕned
mathematically), and intersections of planes permits us to reconstruct the building. It is not clear
how this method would scale up to big datasets since it appears that every half-space plane has to
be tested with every other one in the dataset.

3 Topological concepts related to extrusion

is section introduces the key concepts of graph theory and spatialmodelling related to extrusion.
It should be noticed that in the literature related to these ĕelds different names are oen used to
refer to the same concepts, and our aim in this section is not to give a thorough overview of spatial
modelling (see Molenaar (1998), among others, for that), but rather to introduce our terminology
and avoid ambiguity in the rest of the paper.

3.1 Two-dimensional spatial modelling

Geographical phenomena (e.g. cities, roads and houses) are oenmodelled as embedded inR2, the
two-dimensional Euclidean space, with 3 classes of geometric primitives: (i) points (0-dimensional
objects); (ii) line segments (2-dimensional objects); and (iii) polygons (2-dimensional objects). A
sequence of line segments connected by their end-points is called a polyline; each point in a polyline
is part of two lines, except the ĕrst and the last ones (we call them the extremes of the polyline).
A spatial object σ of dimensionality higher than 0 is formed by lower dimensionality primitives

that deĕne its boundary, denoted ∂σ. If σ is a line segment, then ∂σ is formed by both end-points
of σ. If σ is a polygon, then ∂σ is formed by one or more polyline(s) forming a loop; more than
one loops are required for polygons having holes, which occurs oen in practice. A polygon can
have several holes if: (i) these holes do not intersect each other or the outer boundary of σ; (ii)
the interior of σ, denoted σ○, stays connected; (iii) holes are located inside σ. e validity of a
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Figure 2: (a) A simple polygon σ with one polyline forming its boundary. (b) σ has 2 holes, and
thus ∂σ is formed by 3 polylines. (c)According to ISO (TC211), this polygon is not valid
since its interior is not connected; two polygons would be needed to represent such a
shape.

polygon is a complex process and more rules are necessary, readers can ĕnd more information in
ISO (TC211) and van Oosterom et al. (2004). Observe that holes can also contain other polygons,
and these are named islands. ese concepts are shown in Figure 2.

Topological consistency. Let M be a set of spatial objects in R2, we say that M is topologically
consistent if the following rules are valid:

1. every line segment inM is formed by two points also inM;

2. the intersection of two line segments σ1 and σ2, denoted σ1∩σ2, is either empty or is a point
inM;

3. the intersection of the interior of a polygon σ1 with another object inM, σ○1 ∩ σ2, is empty.

Rule 3 implies that the intersection of two polygons σ1 and σ2, is either empty or a ĕnite set of
objects inM (these can be points and/or line segments).

Connectedness. Consider two geometric primitives σ1 and σ2. We say that σ1 is incident to σ2 if
σ2 is a primitive forming ∂σ1 (the dimensionality of the two primitives is different), andwe say that
σ1 and σ2 are adjacent if they share a lower-dimensionality primitives (here σ1 and σ2 are of the
same dimensionality). If the set of shared primitives contains at least one line segment, σ1 and σ2
are strongly connected, and if it contains only points, then they are weakly connected (in Figure 3a,
polygon A and D are strongly connected, while A and B are weakly connected).

3.2 Three-dimensional spatial modelling

If geographical phenomena are modelled in R3, then one more class of geometric primitives has
to be introduced: polyhedra (3-dimensional objects). As is the case in 2D, a polyhedron is formed
by lower dimensionality primitives. e concept of topological consistency in R3 is a straightfor-
ward generalisation of the three rules previously deĕned. e only differences are that: (i) all the
primitives are embedded in R3 (for our purposes, we assume that polygons embedded in R3 are
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Figure 3: Overview of the extrusion of building A, by taking into account other buildings in the
neighbourhood. (a) e footprint of A is the polygon abcd. (b) Perspective view of the
result (with connected buildings). (c) A is represented with several polygons.

planar); (ii) another rule has to be added: the intersection of the interior of a polyhedron σ1 with
another primitive σ○1 ∩ σ2, is empty.
Observe here that while general polyhedra are allowed to have holes, polyhedra obtained by

extrusion will by deĕnition never contain holes. If a polygon contains a hole, then its extruded
polyhedron can still be represented as one connected volume. As shown in Figure 3, the footprint
B results in a polyhedron having no hole (but a genus 1).

3.3 From 2D to 3D with extrusion

In the context of 3D city models, extrusion means that a building (a polyhedron) is constructed
by “pushing upwards” its footprint (a polygon). For a footprint with n line segments, the resulting
building is formed of n + 2 polygons:

• the polygon on the ground corresponds to the footprint;

• the roof polygon has the same shape as the Ęoor but all points are at the extruded height;

• every line segment becomes a wall (a vertical polygon).

If the building footprints are considered independently, or if a footprint does not have any other
footprint adjacent, then as discussed previously creating a building is an easy task. However, if there
are connected footprints (weakly and/or strongly), the result will not be automatically topologically
consistent. Indeed, consider the case in Figure 3a where ĕve connected footprints are extruded to
different heights, yielding the set of polyhedra shown in Figure 3b.
Let us focus on the building A whose footprint is polygon abcd. Figure 3c shows the resulting

extruded building, with different shades of grey for every extruded polygon. First of all, notice
that A has 17 points and 9 polygons; a “simple extrusion” would have created here 8 points and 6
polygons. Other observations:

• the Ęoor polygon is not the polygon abcd, but abefcd, becauseC andD are strongly connected
to A;

• the roof polygon is however formed only of the four points forming the footprint, for the
buildings adjacent to it are not as high;
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• line segment ab is extruded to two polygons abkl and klno since A and E do not have the
same height. Observe also that polygon abkl will be a polygon of both A and E;

• buildings A and B are weakly connected and have different heights, which means that the
line segments incident to d in 2D (cd and ad) are extruded to polygons containing a point at
the elevation of building B (here polygons cdmqpj and dmqnla). Notice also here that point
l is in the second polygons because E is adjacent to A;

• line segment bc in the footprint is the most complex one to extrude since three polygons
must be extruded (beghijpok, efhg and fcjih).

As can be seen from these observations, two factors are to be considered when extruding building
footprints: (i) the relative heights of two connected buildings, (ii) their type of connectedness.
It should also be said that we cannot simply consider pair-wise the building footprints as more
complex situations arise, for instance in Figure 3c the point f has 3 incident buildings (A, C and
D) that are extruded to different heights. When creating the polygons containing f, all its adjacent
footprints have to be taken into account. It is worth pointing out that many cases are also very
simple to handle, for instance extruding a line whose end-points have only one other incident line,
as is the case for two lines of building B (the two top-right lines). Here, no special cases arise and
the simple extrusion is sufficient.

3.4 Representing and storing topological relationships

Storing spatial objects and storing explicitly the topological relationships between them requires
the use of topological data structures. ese data structures are based on concepts developed in
graph theory (and also in combinatorial topology), where the primitives nodes and edges are used
to represent respectively points and line segments. If the graph is planar (embedded in R2 and no
2 edges cross) then a loop of edges form a face (which represents a polygon).
A graph can also be embedded in R3. Nodes and edges organised in a suitable way will deĕne

faces (for this paper, we restrict to planar faces), and if a set of faces form a closed surface then a
polyhedron is represented.

Two-dimensionaldata structures. If a setM of spatial objectsmodelled in the plane is topologically
consistent then it is straightforward to store it with a topological structure such as the well-known
node-edge-face data structure (NEF). However, if M is not topologically consistent, then the task
is more complex as cleaning is required; we discuss one way to clean GIS datasets in Section 5.2.
With a NEF structure, each edge is directed (it has a start and an end node), and the faces le and
right of each edge are also stored (most GIS textbooks, such as Longley et al. (2001) and Worboys
and Duckham (2004), give detailed description of the structure). is permits us to explicitly
represent the concept of strong connectedness, but notweak connectedness. To represent the latter,
another data structure where the ordering of the edges incident to nodes must be used; the DCEL
structure (Muller and Preparata, 1978) or the half-edge (Mäntylä, 1988) are two examples. It should
however be noticed that, if not explicitly stored, weak connectedness can always be derived, e.g. by
brute force computations, or from the NEF structure.
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Three-dimensional data structures. If the spatial objects are inR3 (e.g. buildings in a city) then dif-
ferent alternatives are possible. Polyhedral objects are usually represented by their exterior bound-
aries (called b-repmodels), and thus the use of 2D topological data structures can be extended into
the 3D domain. Zlatanova et al. (2004) give an excellent summary of the data structures that have
been proposed for GIS-related applications, and also discuss how topological relationships be-
tween objects are derived when they are not explicitly stored. Two examples of data structures for
3D spatial objects are the 3D Formal Data Structures of Molenaar (1990), and the TEN structure
(TEtrahedralized irregular Network, the 3D equivalent of a TIN—triangular irregular network)
discussed and used by several (Egenhofer et al., 1989; Pilouk, 1996; Penninga, 2008).

4 Extrusion with the CDT and the node column approach

is section presents our new approach to extrude 2D footprints and construct a set of topologi-
cally consistent polyhedra. is approach to extrusion has three novel parts. First, it is based on
the idea that the input of the extrusion algorithm is a set of topologically consistent polygons (in
2D), as deĕned previously. As far as we know, there are no tools available to clean a 3D dataset (e.g.
remove slivers and duplicate faces, split faces that intersect, etc), thus we put strict requirements
on the 2D input so that our goal can be achieved. Second, we model the topological relationships
between polygons and polyhedra with the concept of a node column. ird, to construct andmain-
tain the topological relationships between the footprints we use a triangulation, which guarantees
a perfect ĕt between our extruded buildings and the terrain.
e extrusion algorithm we present takes as input a topologically consistent dataset of polygons

(to which an extrusion elevation is assigned), and outputs a list of topologically consistent build-
ings and a list of faces embedded in 3D. A building is modelled by its bounding faces, and thus
in the algorithm it is deĕned as a container for these faces. Faces shared by adjacent polyhedra
are not duplicated, and a building simply has a reference to a set of faces. e algorithm, called
E and described in Figure 4, works as follows. First, the constrained Delaunay triangula-
tion (CDT) of the input dataset is created, and then the ground and roof faces of a given building
are created by identifying the triangles in the CDT forming its footprints. e vertical walls are
then created by visiting the constrained edges in the CDT and extruding them, taking into account
the conĕguration of incident footprints. e important steps of the algorithm are detailed below.

4.1 Representing topology with a constrained triangulation

In our previous work (Ledoux and Meijers, 2009), we used a NEF data structure to store the input
polygons. While that permitted us to extrude the polygons, two problems were present: (i) extra
mechanisms would have had to be added to the NEF structure to handle holes, which would have
resulted in a rather slow and cumbersome implementation; (ii) the NEF did not store explicitly the
weakly-connected polygons, and these had to be extracted on-the-Ęy.
Instead of the NEF we use for the present work a constrained triangulation. Given a set E

of points and straight-line segments in R2, the constrained triangulation of E is a triangulation
where each segment in E is also present in the triangulation. If stored with a data structure such as
the DCEL (Muller and Preparata, 1978) or the half-edge (Mäntylä, 1988), then both strongly- and
weakly-connected components are explicitly stored. As can be seen in Figure 5, each polygon is
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Input: a topologically consistent dataset D with 2D footprints (with extrusion height for every
footprint)

Output: a topologically consistent list B of polyhedra (the 3D buildings)
1: τ ← create the CDT of D
2: Ęag every triangle in τ with ID of footprint
3: for footprint in D do
4: b← create a new building
5: F← fetch triangles in τ having ID of footprint
6: b← create Ęoor face from F {with ground elevation}
7: b← create roof face from F {with extrusion elevation}
8: B← add b
9: end for
10: for constrained edges in D as e do
11: build the node column for estart and eend
12: if only one footprint is incident to e then
13: b← extrude edge to 2 triangular faces {b is the building whose footprint is incident to e}
14: else
15: bleft, bright ← extrude edge to 2 triangular faces {bleft and bright are the 2 buildings incident

to e}
16: bhighest ← extrude upper face of e {bhighest is the building with the highest extrusion height}
17: end if
18: end for

Figure 4: e E algorithm.
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A

B

C

D

Figure 5: (a) Four polygons. (b)e CDT of the points and line segments of the 5 polygons; each
triangle is coloured according to the polygon inside which it is located.

decomposed into triangles, and to add the knowledge of polygon objects in the triangulation we
simply Ęag each triangle with the ID of the input polygon (the colour in this case). Each polygon
can then be represented by a set of connected triangles. Observe that the structure also permits
us to handle holes in polygons: a hole is always connected to the outer boundary of its polygon
by an (unconstrained) edge, and therefore no auxiliary data structure has to be implemented and
maintained. For instance in Figure 5 polygon B is an island inside A and its boundary is connected
by several triangulation edges to the outer boundary of A.
If the triangles are used to represent the bounding faces of buildings, then the constrained De-

launay triangulation (CDT) is probably a better choice than an arbitrary constrained triangulation
since it will avoid, as much as possible, long and skinny triangle. Although its name might imply
that the triangles are Delaunay (i.e. their circumcircle is empty), this is not always the case. Indeed,
a CDT is a triangulation where triangles are empty of points that are visible to them (constraints
act as visibility blockers); see Shewchuk (1997) for more details.

4.2 Ground surface for extrusion and TIN integration

Embedding the input polygons in a triangulation is not only useful to represent the topological
relationships between spatial primitives, it also has other beneĕts for the extrusion. e main
advantage is that it permits us to integrate the buildingswith aDTM; aTIN can be used directly, and
if the DTM is raster-based then it has to be converted to a TIN. We can thus obtain a triangulated
surface containing both the DTM (bare Earth surface) and the buildings, as in the work of Tse et al.
(2005) on 2.75D surfaces.
e extrusion of a set of footprints can be performed from two different ground surfaces:

1. an horizontal plane at a given elevation;

2. a DTM/TIN.

e ĕrst case, although not being very realistic, is usually the deĕnition given to extrusion. e
main problem of the method is that once the buildings are extruded, then making them “ĕt” with
a DTM is rather difficult since all the ground Ęoor of buildings are Ęat faces. Fitting means that
there is a correspondence between the TIN and the ground faces of the extruded buildings. One
cannot simply modify the elevation value of the vertices so that they ĕt with a DTM for the face
will most likely not be planar anymore. A decomposition of that face into planar faces is needed.
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(a) (b) (c) (d)

Figure 6: (a) e input TIN for the ground surface. (b) ree building footprints have the height
of their points interpolated. (c)e input TIN is modiĕed so that it ĕts with the building
footprints. (d) Perspective view of an extruded building integrated in the TIN.

e second option solves that problem by considering a TIN while the extrusion is performed.
With our approach, a TIN can be used as input for the ground surface, and the results of the extru-
sion process is a modiĕed TIN (containing constraints) in which the triangles forming the foot-
prints of the buildings are present. As Figure 6 illustrates, this is performed in different steps. First
the input set of points is triangulated (a Delaunay triangulation), then the points of the input foot-
prints have their elevation estimated by interpolation in the TIN (with linear interpolation in the
triangles). To ensure that the footprints and the TIN will ĕt, the TIN is modiĕed by removing all
the points located inside a footprint, and the boundaries of the footprints are inserted as constraints
in the TIN, with the elevation that were previously interpolated.
To obtain a 2.75D surface representation of all the objects (TIN + 3D buildings), it suffices to

delete from the TIN and the polyhedra the triangles forming the ground surface of every object,
and the triangles forming the inner walls (with our approach, these are automatically identiĕed).
As Penninga (2005) states, while the approach is perhaps less attractive than a volumetric repre-
sentation, managing surfaces is easier and users might prefer this option.

4.3 Extrusion with the node columnmethod

In Section 3 we have shown that ĕnding the geometry of the (vertical) wall faces is complex due to
the different heights and given connectedness of the buildings’ footprints. Our approach tackles
this problem elegantly by introducing the concept of node columns. At the location of each node
in the triangulation, a node column is erected. Such a column consists of a sorted list of all the
different heights of the polyhedra incident to this node, plus the ground height at this location. As
mentioned, a triangulation of the input polygon permits us to obtain these relationships directly.
Figure 7a illustrates a part of the node columns related to building A (as shown in Figure 3a).
We use this concept when extruding constrained edges of the CDT to walls. A function, let us

call it ES, performs the extrusion by taking into account the incident footprints
and the differences in height, and output the correct number of wall faces for each building. Its
input is a constrained edge, and the start and end heights of the face to be created. A wall face is
formed as follows: the given start node column is ascended from the start height, until the end
height is reached. Subsequently the end node column is descended from that height, until the start
height is encountered.
e resulting geometry of the face is then added to the building(s), taking into account the ori-
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Figure 7: (a) Node columns generated for the front side of building A (same conĕguration as in
Figure 3). (b) Extrusion of edge ef results in two faces (c) Extruded result for the footprint
of building A.

entation of the face. e orientation of the face means here that the ordering of its nodes deĕne a
normal vector pointing outwards the building. If two faces are incident to the edge to be extruded,
then the resulting face will be added to both buildings. Furthermore, if one building is higher
than the other, the process will have to be repeated, this time the start height will be that of the
lowest building. Observe also that if both buildings are of the same height, than only one face is
constructed and assigned to both buildings.
Figure 7b shows an illustration of how ES uses the node columns: the node

columns at location e and f are given to the ES function when edge ef is processed.
Edge ef is adjacent to buildingA and building C, for which buildingA is the tallest of the two. First,
the ground height (let us assume 0m here; other values can be used, see Section 4.2) and the height
of building C (8m) are given. is way a loop is formed over the two given node columns and
results in face eghf. Second, the height of building C (8m) and the height of building A (15m) are
given, together with the two node columns and face grsih is the result. Face eghf is added to the
buildings A and C, as both are adjacent to edge ef. Face grsih is only added to building A (as this is
the tallest of the two buildings). Notice here that since we extrude buildings by processing edges,
the resulting face between building A and buildings C and D is modelled with ĕve faces, and not
three as in Figure 3c.
Also, since an edge is extruded to a rectangular face, we can simply arbitrarily decompose this

face into two triangles. Coupled with the triangle-based representation for the ground and the roof
faces, we obtain a boundary representation of a building where all the faces are triangulated.

4.4 Geometric validation of the results with the constrained Delaunay tetrahedralization

e geometric validation of the polyhedra obtained by extrusion can not be performed with the
rules deĕned by the International Organization for Standardization for 3D objects (ISO, TC211;
Kazar et al., 2008; Verbree and Si, 2008) since these consider independently each polyhedron, and
here we want to validate the set of polyhedra together by taking into account their relationships.
Such an operation is possible in 2D because many commercial packages, such as ArcGIS or Oracle
Spatial, offer that possibility. is is based on the validation of geometrical and topological rules
that the planar graph of the input must fulĕll. We are not aware of any such tools for 3D datasets.
Since it is conceptually simple, we can intuitively see that the algorithm presented in this section
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(a)

# The list of points
8 3 0 0
1 0.0 0.0 1.0 # index, x, y, z
2 1.0 0.0 1.0
3 1.0 1.0 1.0
...
# The list of polygons
6 0
# The top polygon
1 # 1 polygon
4 1 2 3 4 # 4 points, by IDs
# Other polygons
...

(b)

Figure 8: (a) A cube is represented with 6 polygons. (b) Example of a PLC ĕle for the cube.

is valid. If the input footprints are topologically consistent, then so should be the output polyhedra.
However, to validate our implementation of the algorithm, we have designed three tests for the
output set of polyhedra:

1. no interior of 2 polyhedra intersect;

2. the set of faces is topologically consistent;

3. each polyhedron is formed by a closed bounding surface; we say it is watertight.

Rule 1 is relatively easy to verify. If the interior of the footprints do not overlap, and if only
vertical walls are extruded, then the interior of the resulting polyhedra should not intersect. is
can be veriĕed by projecting the polyhedra to the x − y plane, and ensuring that they stay within
their own footprint.
To verify the two other rules, we use the properties of the constrained Delaunay tetrahedralization,

which we will abbreviate with CDT3 to avoid confusion with its 2D counterpart. As explained in
Shewchuk (2002), CDT3s have strong mathematical foundations and are used in the generation of
meshes in engineering. e input of a CDT3 algorithm is a piecewise linear complex (PLC), as ĕrst
introduced by Miller et al. (1996). A PLC, which is a general boundary description for 3D shapes,
contains a set of points, together with a set of straight line segments and polygons (embedded in
3D space). Figure 8 shows one example for a cube.
Line segments and polygons in a PLC are allowed to intersect at a shared point, and two poly-

gons may intersect only at a ĕnite number of shared points or lines. PLCs are more general than
polyhedra, i.e. every polyhedra as deĕned in Section 3 is a PLC, but not vice versa. Observe that
these rules are the same as the ones for topological consistency as deĕned in Section 3. As a con-
sequence, if the input of a CDT3 algorithm is not a valid PLC, then it is impossible to compute the
CDT3.
To verify rule 2, we therefore need to convert our set of faces to a PLC format—a straightforward

operation given the output of our approach. To compute the CDT3, we use the soware TetGen (Si,
2004).
To validate rule 3, we exploit one property of a CDT3: the whole area covered by a dataset (its

convex hull) is tetrahedralized. is can be seen in Figure 5 for the 2D case: both the interior of
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Figure 9: Our workĘow to obtain a extruded 3D city model.

the polygons and the “air” between there are triangulated (the 3D case is a straightforward gener-
alisation). To ensure that the extruded polyhedra are watertight, we generate one point inside each
polyhedron and then we start “walking” in the CDT3 to visit the neighbouring tetrahedra, until
we are blocked by a constraint face (as we go, we Ęag tetrahedra). ink of a depth-ĕrst search
on the dual of the tetrahedralization. At the end of the process, we simply need to ensure that
the tetrahedra Ęagged as “air” have not been overwritten: one non-watertight polyhedron would
indeed make the walk visit all the “air” tetrahedra.

5 Implementation and experiment

We report in this section on our implementation of the algorithmdescribed in the previous section,
and on the experiment we carried out with real world data.
We implemented the E algorithm with the Python scripting language⁴. To extrude a

dataset with footprints, we used the workĘow shown in Figure 9. In the following we discuss key
points of our implementation, including the output formats.

5.1 Input dataset

e input that can be used by our implementation is a standard GIS ĕle in shapeĕle format (ESRI,
1998), where each polygon (a building footprint) has one value assigned for its extrusion. Other
standard GIS formats, such as GML, could also be used. How the height values are calculated is out
of scope for this paper, but can be done for instance by simply taking the median (or the average)
of all LiDAR points located inside a footprint.

⁴http://www.python.org
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Figure 10: Le: 4 input polygons input obtained from GRASS.Middle: e planar graph of the 4
polygons. Right: the cleaned planar graph where overlapping areas are removed.

5.2 Cleaning the input with GRASS

e input of our procedure is a shapeĕle with a set of polygons, which means that each poly-
gon is represented independently (the polyline between 2 adjacent polygons is thus duplicated).
In practice, it is oen the case that the polygons overlap a bit each other, because of the over-
shoot/undershoot problems when snapping lines. In order to obtain a topologically consistent 2D
input dataset, we use the open-source—and free—GIS GRASS⁵. Note that GRASS is not the only
GIS package capable of performing this task, others could also be used.
First, a planarmap (a planar graph) of the input polygons is constructed, and stored in theGRASS

data structure, which is basically a NEF plus mechanisms to handle holes (Neteler and Mitasova,
2008). Figure 10 shows the idea for 4 polygons. Observe that polygons B and C overlap a bit (and
we need to ĕx that). During the construction of the topology, GRASS removes the duplicate line
segments, and the points can be snapped to each others (based on a user-deĕned tolerance) so
that small overlap between polygons are avoided. GRASS also offer operators to clean the result,
for example v.clean is used to remove faces that are smaller than a given threshold; that permits
us to ensure that there is no overlapping polygons in the resulting map. In Figure 10, the small
face caused by the overlapping polygons was for instance removed. Observe also that faces in
GRASS are identiĕed by their “centroid” (a point located inside the face); the boundary of the face
is reconstructed from the edges enclosing that centroid.

5.3 Creation of the constrained triangulation

eCDT is computed with the Python bindings of CGAL⁶. e input for the CDT computation is
the output from GRASS: the set of edges representing the boundaries of the footprints (they will
form the constraints). Since the CDT does not have the knowledge of the polygonal objects (but
only of edges), we Ęag each triangle in the CDT so that they contain the ID of the building they are
part of. We do that by starting at the centroid of each polygon (obtained from GRASS), and then
we start walking in the triangulation to visit the neighbouring triangles, as explained in Section 4.4
for the 3D case. is way, as shown in Figure 11, each triangle inside a polygon is Ęagged with

⁵http://grass.itc.it
⁶Computational Geometry Algorithms Library. http://www.cgal.org and http://cgal-python.gforge.inria.fr

15

http://grass.itc.it
http://www.cgal.org
http://cgal-python.gforge.inria.fr


AA

C

B

D

Figure 11: Le: e input obtained from GRASS.Middle: the CDT of the input. Right: the CDT
where each triangle is Ęagged according to the input polygons. e white triangles are
the “universe” triangles.

the ID of its footprint. e triangles forming the “universe” (the space between footprints) will be
Ęagged as such (the white triangles in Figure 11).

5.4 Output of the program

Since our program creates a list of unique oriented faces, and that each building simply contains
references to these faces (with the proper orientation), it is easy to generate different output formats.
At this moment, we offer as output format:

• CityGML;

• a PLC ĕle;

• a triangulated surface of the whole scene;

• and also the list of faces and buildings so that these can be used directly (and stored in a
DBMS for instance).

In a CityGML ĕle, each building is stored as a gml:Solid, which means that it is a volume with a
watertight boundary. Notice that CityGML does not offer (yet) mechanisms to represent topo-
logical relationships between primitives, which means that nodes and edges shared by higher-
dimensionality primitives are repeated. e only mechanism available at the time of writing is
the possibility to store only once faces shared by two adjacent polyhedra A and B: the face is rep-
resented only once, e.g. A contains that face, and B has a pointer to the face (an xlink in XML
language).

5.5 Experiment

To test our implementation, we have setup an experiment with real world data of the Del Uni-
versity of Technology campus (TU Del). For this area, covering 2.3 km2 with 370 buildings, we
obtained the Large Scale Base map of Del (Grootschalige Basiskaart in Dutch), see Figure 12. is

16



Figure 12: Part of the footprints used for the extrusion.

map was a line-oriented dataset, consequently the ĕrst step was to form footprint polygons out of
the lines.
As the footprints appeared to be too coarse to get an accurate city model with respect to the

height of the buildings, it was decided to split all building footprints into multiple, with respect to
height, homogeneous parts. is was amanual work andwas accomplished by using interpretation
of additional aerial photographs of the area. While this was not necessary, the resulting model was
more realistic, and was a better test case as more footprints interacted with each other. Observe
that this operation could also in theory be done automatically, if the algorithm of Vosselman and
Dijkman (2001) was used.
Aer subdividing the footprints, a height was assigned to each part. is value was obtained by

using the median z value of all LiDAR points within a given footprint.
Having a complete footprint dataset, we followed the workĘow described in Section 5. Cleaning

the dataset with GRASS implied trying different parameters for the snapping of vertices and the
removal of small faces (slivers), until the output contained the same amount of polygons as the
input. Note that our input datasetwas far frombeing topologically consistent, so different iterations
were necessary. ere are also known cases from the practice, e.g. the Large Scale Base map of the
municipality of Amsterdam, for which a topological structure is used to maintain the dataset. If
this had been the case, the cleaning part could have been skipped.
Figure 13 shows a part of the extruded TU Del campus, once tetrahedralized. As can be seen,

each polyhedron is decomposed into a set of tetrahedra. Notice also that while the tetrahedra
representing the “air” are not shown, they are still present. For our set of 370 buildings’ footprints,
the PLC has 5841 points, and 8152 triangular faces (which act as constrained faces for the CDT3).
e result of this operation is a set of 20486 tetrahedra. We have validated this output with the 3
rules deĕned in the previous section, and no problems were found.

17



Figure 13: Part of the TU Del campus tetrahedralized.

6 Conclusions

We have shown that a problem that appears to be rather simple at ĕrst glance—the extrusion of
building footprints—turns out to be considerably more complex if we put requirements on the
resulting datasets. We have solved the problem by detailing an algorithm that is conceptually sim-
ple, and easy to implement. A requirement of our approach is that we require the input of our
algorithm to be a set of topologically consistent polygons in 2D, since “cleaning tools” are readily
available. Our solution introduces the concept of a node column, which permits us to elegantly
translate to 3D the topological relationships existing between polygons in the plane. is way, we
can construct faces and assign them to the correct buildings (modelled as polyhedra), which yields
a topologically consistent 3D dataset. We hope that this work has also shed some light on the topo-
logical relationships between 2D data and 3D data obtained by extrusion, and that this will be used
in other contexts.
We have used a triangulation as the foundation for the extrusion, and that has according to us

several beneĕts. First, all the topological relationships between footprints can be stored explicitly
(including the presence of holes in polygons). Second, the faces created can all be triangulated
directly, which gives us Ęexibility to produce output in different formats (full polyhedra or 2.75D
surfaces). ird, triangulated surfaces can directly be used for visualisation since most graphical
cards use triangles as their primitives. Fourth, our algorithm can easily scale to very big datasets
since the operations to retrieve topological relationships are all local, and it is known that triangu-
lation with several millions of points can be constructed rather quickly, see for instance Isenburg
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et al. (2006) and Amenta et al. (2003).
For future work, we plan to automatically construct LOD2 models by “glueing” detailed roofs

(obtained from photogrammetry or with LiDAR-based methods) to the block-shaped buildings
we have obtained. It suffices indeed to replace the Ęat roof by another more detailed one, and
ensure that its x − y projection ĕts in the footprint of the building.
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