
Storing and analysing massive aerial
LiDAR datasets in a DBMS

Hugo Ledoux

November 30 2010
ELMF, Den Haag

1 / 22

Introduction

Computers have many problems dealing with
billions of points:

Storing is OK
Visualisation is still a challenge
Processing and analysis are very problematic

Processing operations:

derivation of slope/aspect,
conversion to grid format,
calculations of area/volumes,
viewshed analysis,
creation of simplified DTM,
extraction of bassins,
etc.

Advances in technologies to collect data are far
superior to our ability to process data.

2 / 22

Introduction

Computers have many problems dealing with
billions of points:

Storing is OK
Visualisation is still a challenge
Processing and analysis are very problematic

Processing operations:

derivation of slope/aspect,
conversion to grid format,
calculations of area/volumes,
viewshed analysis,
creation of simplified DTM,
extraction of bassins,
etc.

Advances in technologies to collect data are far
superior to our ability to process data.

2 / 22

Point clouds are often “2.5D surface”

LiDAR datasets are formed by scattered points in 3D space, which
are the samples of a surface that can be projected on the
horizontal plan.

3 / 22

Reconstruction of the surface

Original LiDAR points

4 / 22

Reconstruction of the surface

Raster representation

4 / 22

Reconstruction of the surface

Raster representation

4 / 22

Reconstruction of the surface

TIN (with Delaunay triangles)

4 / 22

Reconstruction of the surface

p

TIN (with Delaunay triangles)

4 / 22

Reconstruction of the surface

p

a

b

c

d

e

f

TIN (with Delaunay triangles)

4 / 22

Related work

Terrasolid: max is main memory

ArcGIS: Terrain type (hierarchical structure)

Oracle Spatial 11g : Point Cloud & TIN types

External memory algorithms [AAD06, ADHZ06]

Streaming of geometries of Isenburg et al. [ILSS06, ILS+06]

5 / 22

Storing triangles in a DBMS

1 Storing independently triangles (∼ OGC)

2 Triangle-based data structure used by triangulation
libraries [BDP+02]

3 Edge-based data structure (e.g. half-edge [M8̈8])

6 / 22

A star-based data structure

Goes beyond the usual “store points and edges/triangles”
Ideas come from data structures for compression of
graphs [BBCK05]

p

7 / 22

A star-based data structure

Goes beyond the usual “store points and edges/triangles”
Ideas come from data structures for compression of
graphs [BBCK05]

p

a

b

c

d

e

f

7 / 22

A star-based data structure

Goes beyond the usual “store points and edges/triangles”
Ideas come from data structures for compression of
graphs [BBCK05]

p

a

b

c

d

e

f

7 / 22

A star-based data structure

Goes beyond the usual “store points and edges/triangles”
Ideas come from data structures for compression of
graphs [BBCK05]

p

a

b

c

d

e

f

star(p) = abcdef

7 / 22

Every star(v) is stored → implicit triangles

8 / 22

Every star(v) is stored → implicit triangles

8 / 22

Every star(v) is stored → implicit triangles

8 / 22

Every star(v) is stored → implicit triangles

8 / 22

Stars in a DBMS

ID x y z star[]

1 3.21 5.23 2.11 [2,44,55,61,23]

2 5.19 29.01 4.55 [7,98,111,233,222]

3 22.43 15.99 8.19 [99,101,73,23]

...

5674 221.19 15.23 37.81 [309,802,793,1111]

Advantages:

1 Only one table with id − x − y − z − star

2 No spatial index needed: fetching of triangles based on
“walking”

3 Star column need not be filled (∼ Simple Features)

4 Local updates are possible (insertion and removals)

9 / 22

Point Location = “Walking” in the triangulation

starting triangle

p

(Can be made efficient with some tricks [MSZ99])

10 / 22

Range Queries: also uses the triangulation

d

a b

c

(a) (b)

11 / 22

One problem: how to create that DT in the first place?

Figure from Martin Isenburg’s presentation at GIScience 2006 [ILSS06]

12 / 22

Streaming of geometries to construct massive TINs

x, y, z
x, y, z
. . .
x, y, z

input.txt

spfinalize spdelaunay2d

points
+
finalization tags

smb2star.py

points + triangles
+
finalization tags

PostgreSQL

ID, x, y, z, link[]
ID, x, y, z, link[]
. . .
ID, x, y, z, link[]

13 / 22

Experiments with AHN2 datasets

pts # triangle degreeavg degreemax

20tiles 281 884 687 563 768 199 6.00 63
g37en1 15 8 605 090 17 201 289 6.00 39

14 / 22

Experiments with AHN2 datasets

15 / 22

Examples of queries: statistics about convex hull

20tiles=# select count(id) from points where is_convexhull(star) is true;

count

1173

(1 row)

Time: 333050.861 ms

16 / 22

Examples of queries: statistics about convex hull

20tiles=# select count(id) from points where is_convexhull(star) is true;

count

1173

(1 row)

Time: 333050.861 ms

16 / 22

Examples of queries: statistics about convex hull

20tiles=# select count(id) from points where is_convexhull(star) is true;

count

1173

(1 row)

Time: 333050.861 ms

16 / 22

Examples of queries: statistics about degree of vertices

20tiles=# select avg(degree(star)) from points;

avg

5.9999958142601850

(1 row)

Time: 332265.041 ms

17 / 22

Examples of queries: statistics about degree of vertices

20tiles=# select avg(degree(star)) from points;

avg

5.9999958142601850

(1 row)

Time: 332265.041 ms

17 / 22

Examples of queries: statistics about degree of vertices

20tiles=# select avg(degree(star)) from points;

avg

5.9999958142601850

(1 row)

Time: 332265.041 ms

17 / 22

Examples of queries: statistics about degree of vertices

g37en1_15=# select degree(star) as degree, count(id) from points group

by degree order by degree;

degree | count

--------+---------

3 | 65620

4 | 844625

5 | 2277911

6 | 2484212

7 | 2005407

8 | 698540

9 | 170214

10 | 37534

11 | 9587

12 | 3395

13 | 1552

14 | 772

15 | 456

... (truncated) ...

37 | 3

39 | 1

(35 rows)

Time: 39722.017 ms
17 / 22

Examples of queries: point location

g37en1_15=# select point_location(84111, 446666, 0, 0.2);

WARNING: #of samples checked: 24

WARNING: start distance is 49.843357

WARNING: # of triangles visited is 222

point_location

(3672278,3695197,3695256)

(1 row)

Time: 191.903 ms

starting triangle

p

18 / 22

Visualisation with a GIS

19 / 22

Thanks for your attention

Hugo Ledoux
h.ledoux@tudelft.nl

20 / 22

h.ledoux@tudelft.nl

References

P. K. Agarwal, L. Arge, and A. Danner.
From point cloud to grid DEM: A scalable approach.
In A. Reidl, W. Kainz, and G. Elmes, editors, Progress in Spatial Data Handling—12th
International Symposium on Spatial Data Handling. Springer, 2006.

L. Arge, A. Danner, H. Haverkort, and N. Zeh.
I/O-efficient hierarchical watershed decomposition of grid terrain models.
In A. Reidl, W. Kainz, and G. Elmes, editors, Progress in Spatial Data Handling—12th
International Symposium on Spatial Data Handling, pages 825–844. Springer-Verlag, 2006.

Daniel K. Blandford, Guy E. Blelloch, David E. Cardoze, and Clemens Kadow.
Compact representations of simplicial meshes in two and three dimensions.
International Journal of Computational Geometry and Applications, 15(1):3–24, 2005.

Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, and Mariette Yvinec.
Triangulations in CGAL.
Computational Geometry—Theory and Applications, 22:5–19, 2002.

Martin Isenburg, Yuanxin Liu, Jonathan Richard Shewchuk, Jack Snoeyink, and Tim Thirion.
Generating raster DEM from mass points via TIN streaming.
In Geographic Information Science—GIScience 2006, volume 4197 of Lecture Notes in Computer
Science, pages 186–198, Mnster, Germany, 2006.

Martin Isenburg, Yuanxin Liu, Jonathan Richard Shewchuk, and Jack Snoeyink.
Streaming computation of Delaunay triangulations.
ACM Transactions on Graphics, 25(3):1049–1056, 2006.

Martti Mäntylä.
An introduction to solid modeling.
Computer Science Press, New York, USA, 1988.

Ernst P. Mücke, Isaac Saias, and Binhai Zhu.
Fast randomized point location without preprocessing in two- and three-dimensional Delaunay
triangulations.
Computational Geometry—Theory and Applications, 12:63–83, 1999.

21 / 22

Populating the database

time pipepline time B-tree time tr time lasblock widthmax

20tiles 178.3 24.65 36.8 crashed 53 003
g37en1 15 4.7 0.3 1.1 4.3 7 601

22 / 22

