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Introduction

Computers have many problems dealing with
billions of points:

Storing is OK
Visualisation is still a challenge
Processing and analysis are very problematic

Processing operations:

derivation of slope/aspect,
conversion to grid format,
calculations of area/volumes,
viewshed analysis,
creation of simplified DTM,
extraction of bassins,
etc.

Advances in technologies to collect data are far
superior to our ability to process data.
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Point clouds are often “2.5D surface”

LiDAR datasets are formed by scattered points in 3D space, which
are the samples of a surface that can be projected on the
horizontal plan.
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Reconstruction of the surface

Original LiDAR points
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Reconstruction of the surface

Raster representation
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Reconstruction of the surface

TIN (with Delaunay triangles)
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Related work

Terrasolid: max is main memory

ArcGIS: Terrain type (hierarchical structure)

Oracle Spatial 11g : Point Cloud & TIN types

External memory algorithms [AAD06, ADHZ06]

Streaming of geometries of Isenburg et al. [ILSS06, ILS+06]

5 / 22



Storing triangles in a DBMS

1 Storing independently triangles (∼ OGC)

2 Triangle-based data structure used by triangulation
libraries [BDP+02]

3 Edge-based data structure (e.g. half-edge [M8̈8])
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A star-based data structure

Goes beyond the usual “store points and edges/triangles”
Ideas come from data structures for compression of
graphs [BBCK05]
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Every star(v) is stored → implicit triangles
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Stars in a DBMS

ID x y z star[]

1 3.21 5.23 2.11 [2,44,55,61,23]

2 5.19 29.01 4.55 [7,98,111,233,222]

3 22.43 15.99 8.19 [99,101,73,23]

... ... ... ... ...

5674 221.19 15.23 37.81 [309,802,793,1111]

Advantages:

1 Only one table with id − x − y − z − star

2 No spatial index needed: fetching of triangles based on
“walking”

3 Star column need not be filled (∼ Simple Features)

4 Local updates are possible (insertion and removals)
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Point Location = “Walking” in the triangulation

starting triangle

p

(Can be made efficient with some tricks [MSZ99])
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Range Queries: also uses the triangulation
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One problem: how to create that DT in the first place?

Figure from Martin Isenburg’s presentation at GIScience 2006 [ILSS06]
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Streaming of geometries to construct massive TINs

x, y, z
x, y, z
. . .
x, y, z

input.txt

spfinalize spdelaunay2d

points
+
finalization tags

smb2star.py

points + triangles
+
finalization tags

PostgreSQL

ID, x, y, z, link[]
ID, x, y, z, link[]
. . .
ID, x, y, z, link[]
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Experiments with AHN2 datasets

# pts # triangle degreeavg degreemax

20tiles 281 884 687 563 768 199 6.00 63
g37en1 15 8 605 090 17 201 289 6.00 39
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Experiments with AHN2 datasets
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Examples of queries: statistics about convex hull

20tiles=# select count(id) from points where is_convexhull(star) is true;

count

-------

1173

(1 row)

Time: 333050.861 ms
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Examples of queries: statistics about degree of vertices

20tiles=# select avg(degree(star)) from points;

avg

--------------------

5.9999958142601850

(1 row)

Time: 332265.041 ms
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Examples of queries: statistics about degree of vertices

g37en1_15=# select degree(star) as degree, count(id) from points group

by degree order by degree;

degree | count

--------+---------

3 | 65620

4 | 844625

5 | 2277911

6 | 2484212

7 | 2005407

8 | 698540

9 | 170214

10 | 37534

11 | 9587

12 | 3395

13 | 1552

14 | 772

15 | 456

... (truncated) ...

37 | 3

39 | 1

(35 rows)

Time: 39722.017 ms
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Examples of queries: point location

g37en1_15=# select point_location(84111, 446666, 0, 0.2);

WARNING: #of samples checked: 24

WARNING: start distance is 49.843357

WARNING: # of triangles visited is 222

point_location

---------------------------

(3672278,3695197,3695256)

(1 row)

Time: 191.903 ms

starting triangle

p
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Visualisation with a GIS
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Thanks for your attention

Hugo Ledoux
h.ledoux@tudelft.nl
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Populating the database

time pipepline time B-tree time tr time lasblock widthmax

20tiles 178.3 24.65 36.8 crashed 53 003
g37en1 15 4.7 0.3 1.1 4.3 7 601
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