Storing and analysing **MASSIVE** aerial LiDAR datasets in a DBMS

Hugo Ledoux

Technische Universiteit Delft

November 30 2010 ELMF, Den Haag

- Computers have many problems dealing with billions of points:
 - Storing is OK
 - Visualisation is still a challenge
 - Processing and analysis are very problematic
- Processing operations:
 - derivation of slope/aspect,
 - conversion to grid format,
 - calculations of area/volumes,
 - viewshed analysis,
 - creation of simplified DTM,
 - extraction of bassins,
 - etc.

Advances in technologies to collect data are far superior to our ability to process data.

- Computers have many problems dealing with billions of points:
 - Storing is OK
 - Visualisation is still a challenge
 - Processing and analysis are very problematic
- Processing operations:
 - derivation of slope/aspect,
 - conversion to grid format,
 - calculations of area/volumes,
 - viewshed analysis,
 - creation of simplified DTM,
 - extraction of bassins,
 - etc.

Advances in technologies to collect data are far superior to our ability to process data.

LiDAR datasets are formed by scattered points in 3D space, which are the samples of a surface that can be projected on the horizontal plan.

Original LiDAR points

Raster representation

Raster representation

TIN (with Delaunay triangles)

TIN (with Delaunay triangles)

TIN (with Delaunay triangles)

- Terrasolid: max is main memory
- ArcGIS: Terrain type (hierarchical structure)
- Oracle Spatial 11g: Point Cloud & TIN types
- External memory algorithms [AAD06, ADHZ06]
- Streaming of geometries of Isenburg *et al.* [ILSS06, ILS⁺06]

- **1** Storing independently triangles (\sim OGC)
- 2 Triangle-based data structure used by triangulation libraries [BDP⁺02]
- 3 Edge-based data structure (e.g. half-edge [M88])

- Goes beyond the usual "store points and edges/triangles"
- Ideas come from data structures for compression of graphs [BBCK05]

- Goes beyond the usual "store points and edges/triangles"
- Ideas come from data structures for compression of graphs [BBCK05]

- Goes beyond the usual "store points and edges/triangles"
- Ideas come from data structures for compression of graphs [BBCK05]

- Goes beyond the usual "store points and edges/triangles"
- Ideas come from data structures for compression of graphs [BBCK05]

Stars in a DBMS

ID	X	у	Z	star[]
1	3.21	5.23	2.11	[2,44,55,61,23]
2	5.19	29.01	4.55	[7,98,111,233,222]
3	22.43	15.99	8.19	[99,101,73,23]
5674	221.19	15.23	37.81	[309,802,793,1111]

Advantages:

- **1** Only **one** table with id x y z star
- 2 No spatial index needed: fetching of triangles based on "walking"
- 3 Star column need not be filled (\sim Simple Features)
- 4 Local updates are possible (insertion and removals)

Point Location = "Walking" in the triangulation

(Can be made efficient with some tricks [MSZ99])

Range Queries: also uses the triangulation

Figure from Martin Isenburg's presentation at GIScience 2006 [ILSS06]

Streaming of geometries to construct massive TINs

Experiments with AHN2 datasets

	# pts	# triangle	degree _{avg}	degree _{max}
20tiles	281 884 687	563 768 199	6.00	63
g37en1_15	8 605 090	17 201 289	6.00	39

Experiments with AHN2 datasets

Examples of queries: statistics about convex hull

20tiles=# select count(id) from points where is_convexhull(star) is true count

1173 (1 row) Time: 333050.861 ms

Examples of queries: statistics about convex hull

20tiles=# select count(id) from points where is_convexhull(star) is true count

1173 (1 row) Time: 333050.861 ms

Examples of queries: statistics about convex hull

20tiles=# select count(id) from points where is_convexhull(star) is true count

1173 (1 row) Time: 333050.861 ms

20tiles=# select avg(degree(star)) from points; avg ------5.9999958142601850 (1 row) Time: 332265.041 ms

g37en1_15=# select degree(star) as degree, count(id) from points group by degree order by degree;

3 65620 4 844625 5 2277911 6 2484212 7 2005407 8 698540 9 170214 10 37534 11 9587 12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	degree	count	
3 65620 4 844625 5 2277911 6 2484212 7 2005407 8 698540 9 170214 10 37534 11 9587 12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	+		
4 844625 5 2277911 6 2484212 7 2005407 8 698540 9 170214 10 37534 11 9587 12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	3	65620	
5 2277911 6 2484212 7 2005407 8 698540 9 170214 10 37534 11 9587 12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	4	844625	
6 2484212 7 2005407 8 698540 9 170214 10 37534 11 9587 12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	5	2277911	
7 2005407 8 698540 9 170214 10 37534 11 9587 12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	6	2484212	
8 698540 9 170214 10 37534 11 9587 12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	7	2005407	
9 170214 10 37534 11 9587 12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	8	698540	
10 37534 11 9587 12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	9	170214	
11 9587 12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	10	37534	
12 3395 13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	11	9587	
13 1552 14 772 15 456 (truncated) 37 3 39 1 (35 rows)	12	3395	
14 772 15 456 (truncated) 37 3 39 1 (35 rows)	13	1552	
15 456 (truncated) 37 3 39 1 (35 rows)	14	772	
(truncated) 37 3 39 1 (35 rows)	15	456	
37 3 39 1 (35 rows)	(trur	ncated)	
39 1 (35 rows)	37	3	
(35 rows)	39	1	
	(35 rows)	1	
	Time 2010/	00 017	

Examples of queries: point location

g37en1_15=# select point_location(84111, 446666, 0, 0.2); WARNING: #of samples checked: 24 WARNING: start distance is 49.843357 WARNING: # of triangles visited is 222 point_location

(3672278,3695197,3695256) (1 row)

Time: 191.903 ms

Visualisation with a GIS

Hugo Ledoux

h.ledoux@tudelft.nl

References

P. K. Agarwal, L. Arge, and A. Danner. From point cloud to grid DEM: A scalable approach. In A. Reidl, W. Kainz, and G. Elmes, editors, <i>Progress in Spatial Data Handling—12th</i> <i>International Symposium on Spatial Data Handling</i> . Springer, 2006.
L. Arge, A. Danner, H. Haverkort, and N. Zeh. I/O-efficient hierarchical watershed decomposition of grid terrain models. In A. Reidl, W. Kainz, and G. Elmes, editors, <i>Progress in Spatial Data Handling—12th</i> <i>International Symposium on Spatial Data Handling</i> , pages 825–844. Springer-Verlag, 2006.
Daniel K. Blandford, Guy E. Blelloch, David E. Cardoze, and Clemens Kadow. Compact representations of simplicial meshes in two and three dimensions. International Journal of Computational Geometry and Applications, 15(1):3–24, 2005.
Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, and Mariette Yvinec. Triangulations in CGAL. Computational Geometry—Theory and Applications, 22:5–19, 2002.
Martin Isenburg, Yuanxin Liu, Jonathan Richard Shewchuk, Jack Snoeyink, and Tim Thirion. Generating raster DEM from mass points via TIN streaming. In <i>Geographic Information Science—GIScience 2006</i> , volume 4197 of <i>Lecture Notes in Computer Science</i> , pages 186–198, Mnster, Germany, 2006.
Martin Isenburg, Yuanxin Liu, Jonathan Richard Shewchuk, and Jack Snoeyink. Streaming computation of Delaunay triangulations. ACM Transactions on Graphics, 25(3):1049–1056, 2006.
Martti Mäntylä. An introduction to solid modeling. Computer Science Press, New York, USA, 1988.
Ernst P. Mücke, Isaac Saias, and Binhai Zhu. Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations. Computational Geometry—Theory and Applications, 12:63–83, 1999.

Populating the database

	time pipepline	time B-tree	time tr	time lasblock	width _{max}
20tiles	178.3	24.65	36.8	crashed	53 003
g37en1_15	4.7	0.3	1.1	4.3	7 601