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Abstract

Geoscientific datasets are often formed by scattered samples in 3D space having highly
anisotropic distribution. To model the continuity of the phenomena they represent (e.g.
temperature of a body of water, or percentage of a chemical in the air) raster structures
are in most cases used. To overcome the shortcomings of rasters the Voronoi diagram
(VD) has been proposed as an alternative. However, while in theory the VD is a sound
solution, its use in practice is hindered by the fact that it is complex to construct and to
manipulate (removal of samples, interpolation, etc.), and spatial tools have to be built.
We propose in this paper a “middle” solution: the 3D discrete Voronoi diagram (DVD).
We investigate the properties of the 3D DVD, we propose algorithms to construct and
manipulate it, and we demonstrate its use in practice with a prototype that we have
built. Our prototype uses existing tools for visualisation and further analysis of DVDs.

∗Preliminary version of a paper that will be published in the proceedings of 3D GeoInfo 2010, held in
Berlin, Germany.
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1 Introduction

The geoscientific disciplines such as oceanography, meteorology and geophysics are dif-
ferent from the other applications of 3D GIS because, instead of modelling man-made
objects (e.g. houses, bridges, tunnels), we have to model the spatial distribution of contin-
uous geographical phenomena in 3D space. Examples of these phenomena are the salinity
of a body of water, the humidity of the air or the percentage of a certain chemical in the
soil. The representation and analysis of such phenomena is complicated by the fact that
the collection of samples is problematic: it is often impossible to measure everywhere
these phenomena and as a results the datasets are formed by sparse and anisotropi-
cally distributed samples in 3D space. Three-dimensional continuous geo-information is
usually modelled with raster structures, either directly with 3D grids (voxels) or with
hierarchical grids such as octrees (Bak and Mill, 1989; Jones, 1989). This is due to the
fact that raster structures are simple structures naturally stored and manipulated in a
computer (with arrays of numbers) and hence a certain number of modelling tools are
available. However, raster structures also have several disadvantages both in theory and
in practice (Fisher, 1997; Kemp, 1993): (i) space is arbitrarily divided without taking
into account the original samples; (ii) the size of a 3D raster can become huge is a fine
resolution is wanted; (iii) rasters scale badly and are not rotationally invariant; (iv) the
original samples are ‘lost’. To circumvent these problems, Ledoux (2006) and Ledoux
and Gold (2008) have proposed the Voronoi diagram (VD) as an alternative and showed
that it is useful not only for the representation of 3D phenomena, but also for their anal-
ysis. The main advantages are: (i) the tessellation of the 3D space obtained with the VD
gives a clear and consistent definition of neighbourhood of the samples and adapts to
the distribution of these; (ii) the continuity of the 3D phenomena can be reconstructed
with Voronoi-based interpolation methods; (iii) the structure is locally modifiable, which
permits us to interactively explore a dataset and manipulate it; (iv) it enables several
visualisation operations, as well as several spatial analysis operations.

While the 3D VD is conceptually superior to raster structures, it has drawbacks in
practice. It is indeed rather difficult to construct it in a robust and efficient way (Field,
1986; Sugihara and Inagaki, 1995), and manipulation algorithms (movement and removal
of points) are problematic to implement and as far as we know only exist for the VD of
points in Euclidean space (Devillers and Teillaud, 2003; Ledoux et al., 2005; Hoffmann,
1989; Russel, 2007). Another obstacle to its use by practitioners is that specialised tools
have to be built.

In this paper we investigate the use of the 3D discrete Voronoi diagram (DVD) for the
modelling of geoscientific datasets. The DVD is one natural variant of the “normal” VD;
several other variations are possible, see Okabe et al. (2000) for an exhaustive list. It can
be seen as a “middle” solution between the VD and raster structures. Both models have
pros and cons, and it is interesting to study which ones will be retained with the DVD.
As Figure 1(a) shows, given a set of points in space the VD divides the space into cells
(called Voronoi cells) in such a way that every location within each cell is closest to the
points that lies within that cell compared to all other points; the boundaries of the cells
represent the locations that are equidistant from two or more points. The DVD of the
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Figure 1: (a) The VD for a set of points in 2D. (b) The DVD in 2D for the same set
of points; the zooming in on a small section of the DVD shows the discrete
nature of the structure.

same pointset is shown in Figure 1(b). With it the cells are formed by groups of pixels
having the same ID (here a colour) and we can notice that they have a similar shape;
but when we zoom-in on an edge between two cells, the tessellation becomes visible. The
DVD is also possible in 3D: the cells are convex polyhedra formed by groups of voxels.
We describe further in Section 2 the DVD and discuss related work. We also present
in Section 3 new algorithms to construct and manipulate (e.g. removal of points) 3D
DVDs. Observe that we are particularly interested in dynamic solutions where users
can modify interactively DVDs (as in Anselin (1999)) because we believe it to greatly
help the exploration and understanding of complex 3D datasets. We have implemented
these algorithms and used them for the modelling of geoscientific datasets. We describe
briefly in Section 4 the architecture we used, which is a mix of our own code and the use
of the open-source tools for the handling, analysis and visualisation of the 3D DVDs.

2 Work related to the 3D DVD

Given a set of points in 3D space (also called ‘seeds’), the 3D VD divides the space
into convex polyhedra that represent the ‘closest’ space around each seed. As Figure 2
illustrates, for the 3D DVD of the seeds the space is tessellated into regular cells (cubes)
that we call voxels. The Voronoi cells in discrete space are represented by a group voxels
which share the same value (the ID of the seed generating the Voronoi cell). It should be
noticed that while the Voronoi cells of the seeds on the boundary of the convex hull are
in theory unbounded, for the DVD they have to be bounded arbitrarily (as the Figure 2
shows).

Constructing the DVD for a set of seeds therefore boils down to finding the closest
seed of every voxel and assigning that ID. When a voxel is situated at exactly the same
distance from two or more seeds we have a ‘tie’ or a ‘conflict situation’. Notice that in
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Figure 2: Left: An example of a 3D DVD, only the boundary of the space is shown.
Right: A slice from the DVD, which helps understanding the spatial distribu-
tion of the points in space.

this paper we use Euclidean distances and not a different metric (e.g. the Manhanttan
distance). The distance between 2 voxels is thus a Euclidean distance between the 2
centres of the voxels. However, using another metric would be relatively simple and
could help building generalised Voronoi diagrams (Okabe et al., 1994); we discuss in
Section 5 the possibilities.

We review in this section the algorithms and methods that have been proposed to
construct a DVD. It should first be noticed that of all methods that we discuss only one
was specifically developed for the 3D DVD, the rest were aimed towards the 2D VD; the
generalisation of these is however technically possible.

To construct a 3D DVD, we distinguish between two different types of methods (as
shown in Figure 3):

� Explicit methods calculate the value to assign to each voxel by finding the closest
seed in the input dataset.

� Implicit methods assign a voxel to a seed based on the value of the voxel next
to them; several passes over a grid is needed. They are theoretically efficient
since distance calculations are not required for every voxel. However, a control
mechanism is imperative to ensure that voxels are assigned correctly.

2.1 Explicit methods

A brute-force implementation of the explicit method with n seeds and m voxels would
require for all m voxels to calculate the distance to each seed and assigning the ID of
the closest, which is O(nm)—with an arguably small tessellation of 100x100x100 voxels
with only 500 seeds, 500 millions distances have to be calculated. A major disadvantage
of this method is when trying to add, move or remove seeds: it requires the entire VD
to be rebuilt.

The brute-force algorithm can however be sped up with the use of auxiliary data
structures, such as the kd-tree. Park et al. (2006) use it to create both the 2D and
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Figure 3: The implicit and explicit methods to construct a DVD.

the 3D DVD. A kd-tree recursively partitions the space into a binary tree that can
be used to efficiently solve the nearest neighbour problem. However, the efficiency of
nearest neighbour queries requires a balanced tree and after points have been inserted or
removed the tree becomes unbalanced and has to be re-balanced. But the tree structure
and the DVD are not dynamically linked; in other words, when updating the tree, the
DVD is not updated automatically. The main advantage of explicit methods is that they
are not error-prone.

Several people have devised ways to create a DVD with the aid of the GPU (graphical
processing unit) instead of the CPU, see among others Hoff et al. (1999) and Rong
and Tan (2006, 2007). While these methods are very fast for the 2D case, they do not
generalise directly to the 3D case, except Rong and Tan (2007) who propose a slice-by-
slice approach. Another issue with GPU-based methods is that an approximation of the
DVD is sought for visualisation purposes (i.e. they do not guarantee that a correct DVD
is created in case of ties), and that could be problematic if this DVD is used for further
analysis.

2.2 Implicit methods

Schueller (2007) proposes a 2D method based on the principle of expanding circles around
each seed to assign IDs (principle of dilation). It is theoretically more efficient than the
brute-force explicit algorithm because only the pixels at the boundaries between two or
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Figure 4: (a) Left: the Moore neighbour. Right: the Neumann neighbourhood. (b)
Three rounds of dilation for the Neumann neighbourhood.

more Voronoi cells have to be checked to determine the closest seed. In other words, as
long as circles of two seeds do not touch, all the pixels within that circle are correctly
assigned to the corresponding seed. To assess which pixels are neighbours of a claimed
pixel P , he proposes different neighbourhoods: the Moore and the Neumann neighbour-
hood (also called in 2D the 8- and the 4-neighbourhood), as shown in Figure 4(a). These
are approximations of a circle and are dilated around each seed; Figure 4(b) shows the
first three rounds of dilating a Neumann neighbourhood.

Li et al. (1999) use the dilation principle to create the DVD of different shapes (lines
and polygons) but to make their implementation faster they use the Manhattann instead
of the Euclidean distance.

Zhao et al. (2002) also use the dilation concept but in combination with a quadtree.
They reason that when dilating seeds into Voronoi cells, it is only necessary to calculate
distances between a pixel and two or more seeds for pixels near the boundaries of Voronoi
cells. Pixels that are closer to the seeds might be assigned to a seed more effectively.
This is done by creating a quadtree of the raster, so that whole areas of pixels that
belong to a certain seed can be assigned that value in one operation.

3 Our algorithms to construct and manipulate a 3D DVD

We describe in this section the algorithms that we have designed to construct a 3D
DVD, to add/remove a single point to/from a 3D DVD, and to convert one DVD into
a continuous raster with natural neighbour interpolation. The algorithms we propose
are based on the dilation method of Schueller (2007); we generalised it to 3D and we
made several modifications to the dilation component to make it more efficient. First
observe that in 3D the Moore neighbourhood consists of a 3x3 voxels cube, and that the
Neumann neighbourhood consists of a 6-voxel object, where all six faces of the central
voxel are adjacent to one of the six voxels. These approximate a sphere in raster space,
but, because they are not perfect spheres, when dilating them errors can occur. The
challenge is ensuring that no errors occur while minimising the number of distances
calculated. Figure 5 illustrates the problem with a 10x7 pixels in which two seeds
have been inserted. These seeds are iteratively dilated with a Moore neighbourhood
structuring element, resulting in expanding squares. The green voxel in the figure shows

6



Figure 5: Dilation of 2 seeds and the incorrect claiming of a pixel/voxel.

a situation that could introduce errors. In the last round, this has been claimed by the
blue seed, but when looking purely at the Euclidean distance, the distance to the blue
seed is larger than that of the orange. The way to overcome this is to allow the algorithm
to reassign voxels that have already been claimed.

Notice that because of space constraints we can not give all the details of the al-
gorithms but these are available—including pseudo-code—in the Master’s thesis of the
first author (van der Putte, 2009). A proof of correctness for the construction, and its
termination, is also available.

3.1 Construction of the 3D DVD

The following construction algorithm assumes that all seeds are known in advance and
construct the DVD in one operation. The general idea of the algorithm is as follows.
First all the voxels containing an input seed are assigned an ID, and the other ones are
assigned NoData. Then a Neumann neighbour is used (we have used and tried others but
the Neumann gave the best result, as it did for Schueller (2007)) and placed over every
voxel that has been given a ID value already, which actually ‘stamps’ the structuring
element onto the original 3D grid. The algorithm continues until every voxel has been
assigned an ID (the termination condition is that no voxel has been modified during one
pass).

At each step of the algorithm the voxels with IDs are dilated, which means that they
try to claim their neighbours. If the neighbour has the same ID value as the current
voxel v, it is correctly assigned already; if a neighbour has NoData it is automatically
assigned the ID of v; if an ID has been previously set, but not the same as that of v,
then we have a conflict. The Euclidean distance to both claiming seeds are calculated
and the minimum wins. If the two distances are exactly the same an arbitrary choice
must be made, which can be based for instance on the lexicographic order of the IDs
or first-come-first-served. Notice that the rule can influence significantly the resulting
DVD, as Figure 6 shows.

Observe that the only voxels that need to be dilated are in fact the voxels on the
boundary of each dilating area; those ‘inside’ a dilating Voronoi cells have already been
processed. This criterion can be narrowed down even further by stating that only the
boundary voxels of Voronoi cells that are still dilating need to be processed at each step
of the algorithm. This removes the need for dilating those voxels that are at boundaries
that are stationary, either at the edges of the image or at the stable boundaries between
areas. In effect, this means that only the voxels that—in the current pass—have been
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Figure 6: Random assignment of 2 equidistant seeds. The pixels/voxels of the middle
column could be assigned to either seeds, which would yield different DVDs.

Figure 7: The process of removing a seed and its Voronoi cell. (a) Three Voronoi cells.
(b) Identifying the green voxels and boundary voxels. (c) The darker coloured
boundary voxels are then redilated until all green voxels are overwritten.

assigned a different ID value than they originally carried need to be considered for
dilation. The improvement to the algorithm is done by keeping a list of these voxels,
and since we use arrays we have direct access to them.

3.2 Insertion and removal of points

The same mechanism that enables a seed to propagate throughout a grid to all ‘correct’
voxels in the construction algorithm can be readily used to insert a new seed in a valid
DVD. To do this, first the voxel representing the new seed has to be assigned the new ID,
and the list of voxels to process contains only that seed. Then, the neighbours will be
reassigned if they are closer to the new seed then the old ones. In this way, the new DVD
will be finished in as many rounds as it takes to dilate the new seed. This method will
not only allow for the insertion of one point, but can be used to simultaneously insert
multiple new points. Building the adapted DVD will then take only as many rounds as
are necessary for the slowest Voronoi cell to be dilated. Incremental construction of the
DVD is thus possible without designing new algorithms.

In vector space, removing a point from a 3D VD is problematic when degenerate
cases are present (Devillers and Teillaud, 2003; Ledoux et al., 2005). By contrast, in
raster environment it is relatively straightforward and there are no degenerate cases.
The idea behind the algorithm is depicted in Figure 7 and is as follows. First, all the
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Figure 8: Interpolation a DVD using natural neighbour interpolation. (a) The DVD. (b)
The inserted point q, to be interpolated, and the corresponding new Voronoi
cell (grey area). (c) The amount of voxels within the black outline correspond-
ing to a specific seed, relative to the total amount of voxels within the outline,
determines the weight for each of the corresponding seeds.

voxels having the ID to be deleted must be identified. We start at the seed to delete
and expands until we reach the border of the cell, and we keep a list of the boundary
voxels. Second, these voxels are processed with the same dilate function as is used for
the incremental insertion; that will ‘re-dilate’ the Voronoi cell surrounding the removed
Voronoi cell, overwriting the voxels that are to be deleted, finally yielding a recreated
Voronoi diagram (Figure 7c).

3.3 Natural neighbour interpolation

One direct possible use of the DVD is to perform a natural neighbour interpolation on the
input dataset. The natural neighbour interpolation is a method that can be performed
with the VD or the Delaunay triangulation as a basis (Sibson, 1981), and is used in
several fields that make use of datasets containing scattered data such as engineering,
computer sciences and geosciences (Gold, 1989; Watson, 1992; Sambridge et al., 1995).

Although the concepts behind natural neighbour interpolation are simple and easy to
understand, its implementation is far from being straightforward, especially in higher
dimensions (Owen, 1992; Perez and Traversoni, 1996; Ledoux, 2006). The main reasons
are that the method requires the computation of two VDs—one with and one without
the interpolation point—and also the computation of volumes of Voronoi cells. While
these operations are error-prone in vector space, we have seen that in raster space they
are simple and degenerate cases do not arise. Moreover, the volumetric calculations that
can be difficult to implement in vector space are replaced by simply counting voxels, and
multiplying the number of voxels by their (known) volume, as Figure 8 shows.

4 Modelling continuous phenomena in geoscience

To test our approach for the modelling of 3D geoscientific datasets, we have implemented
a prototype whose architecture is described in Figure 9. We have implemented all the
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Figure 9: Schematics showing the different software packages and the accompanying data
formats

algorithms described in the previous section with the Python language (using the well-
known numpy package for n-dimensional arrays). To be able to analyse and visualise the
3D DVDs we use GRASS1, the only off-the-shelf GIS that permits us to handle 3D grids
(as far as we know). Other GIS packages do handle 3D grids such as NetCDF, but they
slice them to obtain 2D grids before carrying out analysis. For the visualisation of 3D
grids, we found GRASS’s capabilities limited and instead decided to use MayaVi22. It is
an implementation of the Visualization Toolkit (VTK)3 and permits us to import differ-
ent 3D formats (both vector and grids) and to perform several visualisation operations.
While our solution does involve exporting and importing DVDs in different formats (we
also wrote some conversion scripts), it has the benefits of using well-known tools and no
new software has to be developed from scratch.

To show the possibilities the 3D DVD offers some examples of its usage are shown
here. The dataset used is a geological dataset containing the concentration of a chemical
substance; it contains 150 data points, each with (x, y, z, attribute). Normally a point
dataset would be much larger, ranging from 10 000 to 100 000 points, however for this
showcase a small dataset is used to be able to show details clearly. In Figure 10 the
distribution of the sample points in this test dataset is shown. It can be seen that most
of the points are taken along lines parallel to the z-axis (blue), which indicates that the
data is taken from for instance drilled wells. The anisotropy of the distribution of the
sample points is also clear from this image. The 3D DVD of the dataset is shown in
Figure 2, and all the figures from this section were made with that dataset.

The 3D DVD, when combined with a GIS and a visualisation tool, can can be used
in different ways; what follows is an overview.

1http://grass.itc.it
2http://code.enthought.com/projects/mayavi/
3http://www.vtk.org
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Figure 10: Distribution of points in the test dataset. The anisotropy in distribution is
clearly visible.

To establish neighbourhood relations between unconnected points This is especially
useful for anisotropically distributed datasets, because the VD permits us to find points
that are both close to a location, and located ‘around’ that location. There is not much
difference in the way the exact and the DVD handle these relations. Adjacency is in this
case the key, which, for the exact version, is usually explicitly stored. In the discrete
representation of the 3D VD, although not implemented yet, storing adjacency would
be easily added as a functionality—this would also permit us to derive the Delaunay
tetrahedralization from a DVD.

To determine the area of influence of points For the exact 3D VD, a Voronoi cell
(which represents the area of influence) is described by a polyhedron, whereas in the DVD
it is determined by the collection of voxels that carry the same ID. This means that it is
relatively easy to determine the area of influence by simply finding all voxels that carry
the same value. In this way sub-selections can easily be made and be used in combination
with different spatial analysis operations, such as map algebra. Reclassification is one
of these operations. Suppose a user wants to divide the attribute values into three
classes (low, medium and high values). This can be easily done using 3D map algebra
functionalities (Tomlin, 1983; Mennis et al., 2005), as implemented in GRASS. Figure 11
shows a cut plane through a reclassified 3D DVD (the reclassification is based here on
the value of the attribute).

To support numerous visualisation and spatial analysis operations The exact 3D VD
is difficult to visualise and analyse, and special tools have to be built (Ledoux and Gold,
2008). By contrast, the 3D DVD can be used with off-the-shelf tools. Figure 12 shows
that by slicing the data the distribution of points can be easily understood by the user.
With tools such as MayaVi2, this plane can be controlled interactively in any directions.
It must be noted here that the resulting slices do not represent a 2D VD.
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Figure 11: A cut plane through a reclassified 3D DVD, showing a reclassification into 3
classes.

Figure 12: Visualisation of a DVD by using a special slicing tool in MayaVi2, allowing
for 3D visualization control. Three consecutive slices of one DVD are shown.

As for the spatial analysis operations, it has already been mentioned that with the
DVD Voronoi cells are easily identified, and since the raster format is used, performing
spatial analyses on these structures is relatively easy. This is one of the points that the
strength of the DVD may lie in, since spatial analysis operations for grids are simple,
well-known and already implemented in GRASS. One example is the creation of a mask
for a given grid if one wants to show only a particular section of the raster, based on the
value of each voxel. Another example is the creation of neighbourhood (local) filters. To
create these filters, a function is provided that enables the user to incorporate values of
neighbouring voxels for each evaluated voxel. Using this function, it is possible create
for instance raster representing the derivative of a continuous field (like the slope for
grids of elevation).

As a prerequisite for natural neighbour interpolation As explained in Section 3.3, the
DVD is well-suited for recreating a 3D grid with the natural neighbour interpolation.
Figure 13 shows some results of interpolation of the 3D DVD. Figure 13(a) shows one
isosurface for the geological dataset, and Figure 13(b) shows respectively the interpolated
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Figure 13: (a) Isosurface created from the DVD. (b) The interpolated volume. Left: its
surface boundary; Centre: a slice from it; Right: an isosurface (same value
as (a)).

volume, a slice from it and the isosurface (same value as the one from the DVD). The
isosurface created from the DVD tends to follow the edges of the boundary voxels of
the Voronoi cells, whereas in the interpolated volume the isosurface is smooth. This is
because the values between the boundary voxels of two Voronoi cells can be relatively
far apart, resulting in very distinct isosurfaces. In the interpolated volume however, the
difference in values is spread over a larger area, resulting in smoother isosurfaces.

5 Conclusions

We have shown that the 3D DVD provides a simple but effective tool for the modelling
of 3D continuous datasets, and offers an alternative to using 3D grids or the 3D VD.
It retains several of the advantages of the 3D VD, but has the advantages of being
stored in a spatial model (grids) for which there are several tools available already. We
have presented new algorithms to construct and dynamically modify 3D DVDs, these
have the main advantage of being much less error-prone than the exact 3D VD and being
conceptually simple (thus relatively simple to implement). The incremental construction,
the dynamic deletion of seeds and the natural neighbour interpolation are all based on
one operation that dilates spheres to update a DVD.

It should however be said that, as presented in this paper, the use of the 3D DVD
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for point-based geoscientific datasets is somewhat limited. We however believe it to
be the first step for the construction and the modelling of other types of VDs, such
as the generalised VD or the VD for other primitives. Indeed, the VD discussed in
this paper is the ordinary VD, which assigns volumes to points based on the Euclidean
distance. There are however many more types of VDs that are also used in different
fields. Okabe et al. (1994) show how, with the help of 12 different generalised VDs,
35 different neighbourhood operations can be performed. The VDs they propose are
generalised in space, in the assignment function (which determines to which seed a
location is assigned to), and in the set of seeds that are used. Examples of these are
the weighted VD and the high order VD. These can be very difficult to construct or
modify in vector format in 2D (Gahegan and Lee, 2000; Dong, 2008), let alone in 3D.
It would be interesting to see if the discrete versions of these generalised VDs can also
be created with the algorithm we proposed in this paper. Our first analysis tells us that
minor changes to the algorithm would permit us to indeed create weighted VDs, but we
have not implemented them yet. The 3D VD for other primitives such as lines, surfaces
and polyhedra is also an interesting extension of this project since, as far as we know,
no known (robust) algorithms currently exist.
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